WORST_CASE(?,O(n^1))
* Step 1: UnsatRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,D,H)           [0 >= A && B = C && D = A && E = F && G = H]                                    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          4.  start(A,B,C,D,E,F,G,H)  -> stop(A,0,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H)  [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          6.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,-1 + E,F,-1 + G,H) [E >= 2 && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)       [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          8.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,0,F,-1 + G,H)      [1 >= E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)   [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          10. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,1 + E,F,-1 + G,H)  [A >= 2 + E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                (?,1)
          11. cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,0,F,-1 + G,H)       [G >= 2 && 1 + E >= A && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          12. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,0,F,-1 + G,H)      [A >= 1 && A >= 2 && G = 1 && 1 + E = A && D = A]                               (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)          True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{5,6,7,8,9,10,11,12},2->{},3->{5,6,7,8,9,10,11,12},4->{},5->{5,6,7,8,9,10,11,12},6->{},7->{5,6,7
          ,8,9,10,11,12},8->{},9->{5,6,7,8,9,10,11,12},10->{},11->{5,6,7,8,9,10,11,12},12->{},13->{0,1,2,3,4}]
        
    + Applied Processor:
        UnsatRules
    + Details:
        The following transitions have unsatisfiable constraints and are removed:  [11]
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,D,H)           [0 >= A && B = C && D = A && E = F && G = H]                                    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          4.  start(A,B,C,D,E,F,G,H)  -> stop(A,0,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H)  [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          6.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,-1 + E,F,-1 + G,H) [E >= 2 && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)       [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          8.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,0,F,-1 + G,H)      [1 >= E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)   [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          10. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,1 + E,F,-1 + G,H)  [A >= 2 + E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                (?,1)
          12. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,0,F,-1 + G,H)      [A >= 1 && A >= 2 && G = 1 && 1 + E = A && D = A]                               (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)          True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{5,6,7,8,9,10,12},2->{},3->{5,6,7,8,9,10,12},4->{},5->{5,6,7,8,9,10,12},6->{},7->{5,6,7,8,9,10
          ,12},8->{},9->{5,6,7,8,9,10,12},10->{},12->{},13->{0,1,2,3,4}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>,     0, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>,     D, .= 0) (< 0,0,H>, H, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>,     0, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, 1 + D, .+ 1) (< 1,0,H>, H, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>,     0, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>,     0, .= 0) (< 2,0,H>, H, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, 0, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>,     1, .= 1) (< 3,0,F>, F, .= 0) (< 3,0,G>, 1 + D, .+ 1) (< 3,0,H>, H, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, 0, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>,     0, .= 0) (< 4,0,F>, F, .= 0) (< 4,0,G>,     0, .= 0) (< 4,0,H>, H, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 1 + E, .+ 1) (< 5,0,F>, F, .= 0) (< 5,0,G>, 1 + G, .+ 1) (< 5,0,H>, H, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, 1 + E, .+ 1) (< 6,0,F>, F, .= 0) (< 6,0,G>,     0, .= 0) (< 6,0,H>, H, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>,     0, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, 1 + G, .+ 1) (< 7,0,H>, H, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>,     0, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>,     0, .= 0) (< 8,0,H>, H, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, E, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, 1 + E, .+ 1) (< 9,0,F>, F, .= 0) (< 9,0,G>, 1 + G, .+ 1) (< 9,0,H>, H, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, E, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<10,0,F>, F, .= 0) (<10,0,G>,     0, .= 0) (<10,0,H>, H, .= 0) 
          (<12,0,A>, A, .= 0) (<12,0,B>, E, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<12,0,E>,     0, .= 0) (<12,0,F>, F, .= 0) (<12,0,G>,     0, .= 0) (<12,0,H>, H, .= 0) 
          (<13,0,A>, A, .= 0) (<13,0,B>, C, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, A, .= 0) (<13,0,E>,     F, .= 0) (<13,0,F>, F, .= 0) (<13,0,G>,     H, .= 0) (<13,0,H>, H, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,D,H)           [0 >= A && B = C && D = A && E = F && G = H]                                    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          4.  start(A,B,C,D,E,F,G,H)  -> stop(A,0,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H)  [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          6.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,-1 + E,F,-1 + G,H) [E >= 2 && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)       [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          8.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,0,F,-1 + G,H)      [1 >= E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)   [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          10. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,1 + E,F,-1 + G,H)  [A >= 2 + E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                (?,1)
          12. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,0,F,-1 + G,H)      [A >= 1 && A >= 2 && G = 1 && 1 + E = A && D = A]                               (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)          True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{5,6,7,8,9,10,12},2->{},3->{5,6,7,8,9,10,12},4->{},5->{5,6,7,8,9,10,12},6->{},7->{5,6,7,8,9,10
          ,12},8->{},9->{5,6,7,8,9,10,12},10->{},12->{},13->{0,1,2,3,4}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<13,0,F>, ?) (<13,0,G>, ?) (<13,0,H>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>,     C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     0) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>,     C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     0) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>,     0) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>,     0) (< 4,0,F>, F) (< 4,0,G>,     0) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>,     ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 2 + A) (< 6,0,F>, F) (< 6,0,G>,     0) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>,     ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>,     0) (< 8,0,F>, F) (< 8,0,G>,     0) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, 1 + A) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 2 + A) (<10,0,F>, F) (<10,0,G>,     0) (<10,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     0) (<12,0,F>, F) (<12,0,G>,     0) (<12,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>,     F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,D,H)           [0 >= A && B = C && D = A && E = F && G = H]                                    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          4.  start(A,B,C,D,E,F,G,H)  -> stop(A,0,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H)  [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          6.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,-1 + E,F,-1 + G,H) [E >= 2 && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)       [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          8.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,0,F,-1 + G,H)      [1 >= E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)   [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          10. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,1 + E,F,-1 + G,H)  [A >= 2 + E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                (?,1)
          12. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,0,F,-1 + G,H)      [A >= 1 && A >= 2 && G = 1 && 1 + E = A && D = A]                               (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)          True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{5,6,7,8,9,10,12},2->{},3->{5,6,7,8,9,10,12},4->{},5->{5,6,7,8,9,10,12},6->{},7->{5,6,7,8,9,10
          ,12},8->{},9->{5,6,7,8,9,10,12},10->{},12->{},13->{0,1,2,3,4}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     0) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>,     C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     0) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>,     0) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>,     0) (< 4,0,F>, F) (< 4,0,G>,     0) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>,     ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 2 + A) (< 6,0,F>, F) (< 6,0,G>,     0) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>,     ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>,     0) (< 8,0,F>, F) (< 8,0,G>,     0) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, 1 + A) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 2 + A) (<10,0,F>, F) (<10,0,G>,     0) (<10,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     0) (<12,0,F>, F) (<12,0,G>,     0) (<12,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>,     F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,5)
                                                             ,(1,6)
                                                             ,(1,12)
                                                             ,(3,5)
                                                             ,(3,6)
                                                             ,(3,10)
                                                             ,(5,12)
                                                             ,(7,5)
                                                             ,(7,6)
                                                             ,(7,12)]
* Step 5: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,D,H)           [0 >= A && B = C && D = A && E = F && G = H]                                    (?,1)
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          2.  start(A,B,C,D,E,F,G,H)  -> stop(A,B,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)       [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          4.  start(A,B,C,D,E,F,G,H)  -> stop(A,0,C,D,0,F,-1 + D,H)      [D = 1 && B = C && A = 1 && E = F && G = H]                                     (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H)  [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          6.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,-1 + E,F,-1 + G,H) [E >= 2 && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)       [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          8.  cut(A,B,C,D,E,F,G,H)    -> stop(A,B,C,D,0,F,-1 + G,H)      [1 >= E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                    (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)   [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          10. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,1 + E,F,-1 + G,H)  [A >= 2 + E && E >= 0 && A >= 2 && A >= 1 + E && G = 1 && D = A]                (?,1)
          12. cut(A,B,C,D,E,F,G,H)    -> stop(A,E,C,D,0,F,-1 + G,H)      [A >= 1 && A >= 2 && G = 1 && 1 + E = A && D = A]                               (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)          True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [0->{},1->{7,8,9,10},2->{},3->{7,8,9,12},4->{},5->{5,6,7,8,9,10},6->{},7->{7,8,9,10},8->{},9->{5,6,7,8,9
          ,10,12},10->{},12->{},13->{0,1,2,3,4}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>,     C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>,     0) (< 0,0,F>, F) (< 0,0,G>,     A) (< 0,0,H>, H) 
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>,     0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 2,0,A>, A) (< 2,0,B>,     C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>,     0) (< 2,0,F>, F) (< 2,0,G>,     0) (< 2,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>,     1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 4,0,A>, A) (< 4,0,B>,     0) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>,     0) (< 4,0,F>, F) (< 4,0,G>,     0) (< 4,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>,     A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 6,0,A>, A) (< 6,0,B>,     ?) (< 6,0,C>, C) (< 6,0,D>, A) (< 6,0,E>, 2 + A) (< 6,0,F>, F) (< 6,0,G>,     0) (< 6,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>,     0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 8,0,A>, A) (< 8,0,B>,     ?) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>,     0) (< 8,0,F>, F) (< 8,0,G>,     0) (< 8,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>,     A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<10,0,A>, A) (<10,0,B>, 1 + A) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 2 + A) (<10,0,F>, F) (<10,0,G>,     0) (<10,0,H>, H) 
          (<12,0,A>, A) (<12,0,B>, 1 + A) (<12,0,C>, C) (<12,0,D>, A) (<12,0,E>,     0) (<12,0,F>, F) (<12,0,G>,     0) (<12,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>,     F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0,2,4,6,8,10,12]
* Step 6: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H) [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)      [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)  [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (?,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)         True                                                                            (1,1)
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [1->{7,9},3->{7,9},5->{5,7,9},7->{7,9},9->{5,7,9},13->{1,3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>, F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
             p(cut) = -1 + x7
           p(start) = -2 + x4
          p(start0) = -2 + x1
        
        The following rules are strictly oriented:
        [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                              
                                                                   cut(A,B,C,D,E,F,G,H)   = -1 + G                       
                                                                                          > -2 + G                       
                                                                                          = cut(A,E,C,D,1 + E,F,-1 + G,H)
        
        
        The following rules are weakly oriented:
                                       [A >= 2 && B = C && D = A && E = F && G = H] ==>                               
                                                             start(A,B,C,D,E,F,G,H)   = -2 + D                        
                                                                                     >= -2 + D                        
                                                                                      = cut(A,B,C,D,0,F,-1 + D,H)     
        
                                       [A >= 2 && B = C && D = A && E = F && G = H] ==>                               
                                                             start(A,B,C,D,E,F,G,H)   = -2 + D                        
                                                                                     >= -2 + D                        
                                                                                      = cut(A,0,C,D,1,F,-1 + D,H)     
        
        [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                               
                                                               cut(A,B,C,D,E,F,G,H)   = -1 + G                        
                                                                                     >= -2 + G                        
                                                                                      = cut(A,B,C,D,-1 + E,F,-1 + G,H)
        
        [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                               
                                                               cut(A,B,C,D,E,F,G,H)   = -1 + G                        
                                                                                     >= -2 + G                        
                                                                                      = cut(A,B,C,D,0,F,-1 + G,H)     
        
                                                                               True ==>                               
                                                            start0(A,B,C,D,E,F,G,H)   = -2 + A                        
                                                                                     >= -2 + A                        
                                                                                      = start(A,C,C,A,F,F,H,H)        
        
        
* Step 7: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (?,1)    
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H) [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)    
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)      [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)    
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)  [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (2 + A,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)         True                                                                            (1,1)    
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [1->{7,9},3->{7,9},5->{5,7,9},7->{7,9},9->{5,7,9},13->{1,3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>, F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H) [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)    
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)      [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)    
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)  [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (2 + A,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)         True                                                                            (1,1)    
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [1->{7,9},3->{7,9},5->{5,7,9},7->{7,9},9->{5,7,9},13->{1,3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>, F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
             p(cut) = -1 + x7
           p(start) = -1 + x4
          p(start0) = -1 + x1
        
        The following rules are strictly oriented:
                                           [A >= 2 && B = C && D = A && E = F && G = H] ==>                              
                                                                 start(A,B,C,D,E,F,G,H)   = -1 + D                       
                                                                                          > -2 + D                       
                                                                                          = cut(A,B,C,D,0,F,-1 + D,H)    
        
                                           [A >= 2 && B = C && D = A && E = F && G = H] ==>                              
                                                                 start(A,B,C,D,E,F,G,H)   = -1 + D                       
                                                                                          > -2 + D                       
                                                                                          = cut(A,0,C,D,1,F,-1 + D,H)    
        
            [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                              
                                                                   cut(A,B,C,D,E,F,G,H)   = -1 + G                       
                                                                                          > -2 + G                       
                                                                                          = cut(A,B,C,D,0,F,-1 + G,H)    
        
        [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                              
                                                                   cut(A,B,C,D,E,F,G,H)   = -1 + G                       
                                                                                          > -2 + G                       
                                                                                          = cut(A,E,C,D,1 + E,F,-1 + G,H)
        
        
        The following rules are weakly oriented:
        [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                               
                                                               cut(A,B,C,D,E,F,G,H)   = -1 + G                        
                                                                                     >= -2 + G                        
                                                                                      = cut(A,B,C,D,-1 + E,F,-1 + G,H)
        
                                                                               True ==>                               
                                                            start0(A,B,C,D,E,F,G,H)   = -1 + A                        
                                                                                     >= -1 + A                        
                                                                                      = start(A,C,C,A,F,F,H,H)        
        
        
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H) [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (?,1)    
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)      [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (1 + A,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)  [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (1 + A,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)         True                                                                            (1,1)    
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [1->{7,9},3->{7,9},5->{5,7,9},7->{7,9},9->{5,7,9},13->{1,3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>, F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
             p(cut) = x7
           p(start) = x1
          p(start0) = x1
        
        The following rules are strictly oriented:
        [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                               
                                                               cut(A,B,C,D,E,F,G,H)   = G                             
                                                                                      > -1 + G                        
                                                                                      = cut(A,B,C,D,-1 + E,F,-1 + G,H)
        
        
        The following rules are weakly oriented:
                                           [A >= 2 && B = C && D = A && E = F && G = H] ==>                              
                                                                 start(A,B,C,D,E,F,G,H)   = A                            
                                                                                         >= -1 + D                       
                                                                                          = cut(A,B,C,D,0,F,-1 + D,H)    
        
                                           [A >= 2 && B = C && D = A && E = F && G = H] ==>                              
                                                                 start(A,B,C,D,E,F,G,H)   = A                            
                                                                                         >= -1 + D                       
                                                                                          = cut(A,0,C,D,1,F,-1 + D,H)    
        
            [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                              
                                                                   cut(A,B,C,D,E,F,G,H)   = G                            
                                                                                         >= -1 + G                       
                                                                                          = cut(A,B,C,D,0,F,-1 + G,H)    
        
        [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] ==>                              
                                                                   cut(A,B,C,D,E,F,G,H)   = G                            
                                                                                         >= -1 + G                       
                                                                                          = cut(A,E,C,D,1 + E,F,-1 + G,H)
        
                                                                                   True ==>                              
                                                                start0(A,B,C,D,E,F,G,H)   = A                            
                                                                                         >= A                            
                                                                                          = start(A,C,C,A,F,F,H,H)       
        
        
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1.  start(A,B,C,D,E,F,G,H)  -> cut(A,B,C,D,0,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          3.  start(A,B,C,D,E,F,G,H)  -> cut(A,0,C,D,1,F,-1 + D,H)      [A >= 2 && B = C && D = A && E = F && G = H]                                    (1,1)    
          5.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,-1 + E,F,-1 + G,H) [G >= 2 && E >= 2 && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (A,1)    
          7.  cut(A,B,C,D,E,F,G,H)    -> cut(A,B,C,D,0,F,-1 + G,H)      [G >= 2 && 1 >= E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A]     (1 + A,1)
          9.  cut(A,B,C,D,E,F,G,H)    -> cut(A,E,C,D,1 + E,F,-1 + G,H)  [G >= 2 && A >= 2 + E && G >= 1 && E >= 0 && A >= 1 + G && A >= E + G && D = A] (1 + A,1)
          13. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,A,F,F,H,H)         True                                                                            (1,1)    
        Signature:
          {(cut,8);(start,8);(start0,8);(stop,8)}
        Flow Graph:
          [1->{7,9},3->{7,9},5->{5,7,9},7->{7,9},9->{5,7,9},13->{1,3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>,     C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, 0) (< 1,0,F>, F) (< 1,0,G>, 1 + A) (< 1,0,H>, H) 
          (< 3,0,A>, A) (< 3,0,B>,     0) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, 1) (< 3,0,F>, F) (< 3,0,G>, 1 + A) (< 3,0,H>, H) 
          (< 5,0,A>, A) (< 5,0,B>,     ?) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 5,0,G>,     A) (< 5,0,H>, H) 
          (< 7,0,A>, A) (< 7,0,B>,     ?) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, 0) (< 7,0,F>, F) (< 7,0,G>,     A) (< 7,0,H>, H) 
          (< 9,0,A>, A) (< 9,0,B>, 1 + A) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, A) (< 9,0,F>, F) (< 9,0,G>,     A) (< 9,0,H>, H) 
          (<13,0,A>, A) (<13,0,B>,     C) (<13,0,C>, C) (<13,0,D>, A) (<13,0,E>, F) (<13,0,F>, F) (<13,0,G>,     H) (<13,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))