WORST_CASE(?,O(n^1))
* Step 1: UnsatRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                                    (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                               (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                                   (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                                 (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]           (?,1)
          5.  lbl91(A,B,C,D,E,F)  -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 && 39 >= E && E >= 1 && 40 >= E && C = 100 && A = 0 && B = 0] (?,1)
          6.  lbl91(A,B,C,D,E,F)  -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 && 39 >= E && E >= 1 && 40 >= E && C = 100 && A = 0 && B = 0] (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]                    (?,1)
          8.  lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0]           (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]      (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]          (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                                  (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{3,4,5,6},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4,5,6},5->{7,8,9,10},6->{7,8,9,10},7->{},8->{3,4,5
          ,6},9->{7,8,9,10},10->{7,8,9,10},11->{0,1,2}]
        
    + Applied Processor:
        UnsatRules
    + Details:
        The following transitions have unsatisfiable constraints and are removed:  [5,6]
* Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                            (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]               (?,1)
          8.  lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1
          ,2}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, 100, .= 100) (< 0,0,D>, D, .= 0) (< 0,0,E>,  1,  .= 1) (< 0,0,F>, F, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, 100, .= 100) (< 1,0,D>, D, .= 0) (< 1,0,E>,  2,  .= 2) (< 1,0,F>, F, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, 100, .= 100) (< 2,0,D>, D, .= 0) (< 2,0,E>,  2,  .= 2) (< 2,0,F>, F, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,   C,   .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>,  E,  .= 0) (< 3,0,F>, F, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,   C,   .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, 40, .= 40) (< 4,0,F>, F, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,   C,   .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>,  E,  .= 0) (< 7,0,F>, F, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,   C,   .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, 40, .= 40) (< 8,0,F>, F, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>,   C,   .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, 41, .= 41) (< 9,0,F>, F, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,   C,   .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 41, .= 41) (<10,0,F>, F, .= 0) 
          (<11,0,A>, B, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,   D,   .= 0) (<11,0,D>, D, .= 0) (<11,0,E>,  F,  .= 0) (<11,0,F>, F, .= 0) 
* Step 3: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                            (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]               (?,1)
          8.  lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1
          ,2}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) 
          (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
* Step 4: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                            (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]               (?,1)
          8.  lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1
          ,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) 
          (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(0,3)
                                                             ,(1,7)
                                                             ,(1,8)
                                                             ,(1,10)
                                                             ,(2,7)
                                                             ,(2,8)
                                                             ,(2,9)
                                                             ,(9,8)
                                                             ,(9,10)
                                                             ,(10,8)
                                                             ,(10,9)]
* Step 5: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                            (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]               (?,1)
          8.  lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},3->{},4->{3,4},7->{},8->{3,4},9->{7,9},10->{7,10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) 
          (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [8]
* Step 6: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          3.  lbl91(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)       [E = 40 && C = 100 && A = 0 && B = 0]                            (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          7.  lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F)       [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B]               (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},3->{},4->{3,4},7->{},9->{7,9},10->{7,10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,7]
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1)
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1)
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1)
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (?,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl111) = 43 + -1*x5
           p(lbl91) = 42        
           p(start) = 42        
          p(start0) = 42        
        
        The following rules are strictly oriented:
        [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                 lbl111(A,B,C,D,E,F)   = 43 + -1*E              
                                                                       > 41 + -1*E              
                                                                       = lbl111(A,B,C,D,2 + E,F)
        
        
        The following rules are weakly oriented:
                                      [A = 0 && B = 0 && C = D && E = F] ==>                        
                                                      start(A,B,C,D,E,F)   = 42                     
                                                                          >= 42                     
                                                                           = lbl91(A,B,100,D,1,F)   
        
                                 [0 >= 1 + B && A = B && C = D && E = F] ==>                        
                                                      start(A,B,C,D,E,F)   = 42                     
                                                                          >= 41                     
                                                                           = lbl111(A,B,100,D,2,F)  
        
                                     [B >= 1 && A = B && C = D && E = F] ==>                        
                                                      start(A,B,C,D,E,F)   = 42                     
                                                                          >= 41                     
                                                                           = lbl111(A,B,100,D,2,F)  
        
             [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==>                        
                                                      lbl91(A,B,C,D,E,F)   = 42                     
                                                                          >= 42                     
                                                                           = lbl91(A,B,C,D,1 + E,F) 
        
        [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                     lbl111(A,B,C,D,E,F)   = 43 + -1*E              
                                                                          >= 41 + -1*E              
                                                                           = lbl111(A,B,C,D,2 + E,F)
        
                                                                    True ==>                        
                                                     start0(A,B,C,D,E,F)   = 42                     
                                                                          >= 42                     
                                                                           = start(B,B,D,D,F,F)     
        
        
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (?,1) 
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (?,1) 
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (?,1) 
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1) 
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (42,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1) 
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (1,1) 
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (1,1) 
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (1,1) 
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1) 
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (42,1)
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1) 
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl111) = 19 + -99*x1 + -1*x5
           p(lbl91) = -83 + -99*x1 + x3  
           p(start) = 18 + -99*x1        
          p(start0) = 18 + -99*x2        
        
        The following rules are strictly oriented:
                                      [A = 0 && B = 0 && C = D && E = F] ==>                        
                                                      start(A,B,C,D,E,F)   = 18 + -99*A             
                                                                           > 17 + -99*A             
                                                                           = lbl91(A,B,100,D,1,F)   
        
        [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                     lbl111(A,B,C,D,E,F)   = 19 + -99*A + -1*E      
                                                                           > 17 + -99*A + -1*E      
                                                                           = lbl111(A,B,C,D,2 + E,F)
        
        
        The following rules are weakly oriented:
                             [0 >= 1 + B && A = B && C = D && E = F] ==>                        
                                                  start(A,B,C,D,E,F)   = 18 + -99*A             
                                                                      >= 17 + -99*A             
                                                                       = lbl111(A,B,100,D,2,F)  
        
                                 [B >= 1 && A = B && C = D && E = F] ==>                        
                                                  start(A,B,C,D,E,F)   = 18 + -99*A             
                                                                      >= 17 + -99*A             
                                                                       = lbl111(A,B,100,D,2,F)  
        
         [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==>                        
                                                  lbl91(A,B,C,D,E,F)   = -83 + -99*A + C        
                                                                      >= -83 + -99*A + C        
                                                                       = lbl91(A,B,C,D,1 + E,F) 
        
        [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                 lbl111(A,B,C,D,E,F)   = 19 + -99*A + -1*E      
                                                                      >= 17 + -99*A + -1*E      
                                                                       = lbl111(A,B,C,D,2 + E,F)
        
                                                                True ==>                        
                                                 start0(A,B,C,D,E,F)   = 18 + -99*B             
                                                                      >= 18 + -99*B             
                                                                       = start(B,B,D,D,F,F)     
        
        
* Step 10: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (1,1)        
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (1,1)        
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (1,1)        
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (?,1)        
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (18 + 99*B,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (42,1)       
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)        
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(lbl111) = 39        
           p(lbl91) = 41 + -1*x5
           p(start) = 40        
          p(start0) = 40        
        
        The following rules are strictly oriented:
                            [0 >= 1 + B && A = B && C = D && E = F] ==>                       
                                                 start(A,B,C,D,E,F)   = 40                    
                                                                      > 39                    
                                                                      = lbl111(A,B,100,D,2,F) 
        
                                [B >= 1 && A = B && C = D && E = F] ==>                       
                                                 start(A,B,C,D,E,F)   = 40                    
                                                                      > 39                    
                                                                      = lbl111(A,B,100,D,2,F) 
        
        [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==>                       
                                                 lbl91(A,B,C,D,E,F)   = 41 + -1*E             
                                                                      > 40 + -1*E             
                                                                      = lbl91(A,B,C,D,1 + E,F)
        
        
        The following rules are weakly oriented:
                                      [A = 0 && B = 0 && C = D && E = F] ==>                        
                                                      start(A,B,C,D,E,F)   = 40                     
                                                                          >= 40                     
                                                                           = lbl91(A,B,100,D,1,F)   
        
        [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                     lbl111(A,B,C,D,E,F)   = 39                     
                                                                          >= 39                     
                                                                           = lbl111(A,B,C,D,2 + E,F)
        
            [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==>                        
                                                     lbl111(A,B,C,D,E,F)   = 39                     
                                                                          >= 39                     
                                                                           = lbl111(A,B,C,D,2 + E,F)
        
                                                                    True ==>                        
                                                     start0(A,B,C,D,E,F)   = 40                     
                                                                          >= 40                     
                                                                           = start(B,B,D,D,F,F)     
        
        
* Step 11: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  start(A,B,C,D,E,F)  -> lbl91(A,B,100,D,1,F)    [A = 0 && B = 0 && C = D && E = F]                               (1,1)        
          1.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [0 >= 1 + B && A = B && C = D && E = F]                          (1,1)        
          2.  start(A,B,C,D,E,F)  -> lbl111(A,B,100,D,2,F)   [B >= 1 && A = B && C = D && E = F]                              (1,1)        
          4.  lbl91(A,B,C,D,E,F)  -> lbl91(A,B,C,D,1 + E,F)  [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0]      (40,1)       
          9.  lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (18 + 99*B,1)
          10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B]     (42,1)       
          11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F)      True                                                             (1,1)        
        Signature:
          {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}]
        Sizebounds:
          (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>,  1) (< 0,0,F>, F) 
          (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>,  2) (< 1,0,F>, F) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>,  2) (< 2,0,F>, F) 
          (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) 
          (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) 
          (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) 
          (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>,   D) (<11,0,D>, D) (<11,0,E>,  F) (<11,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))