WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 5. lbl91(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 && 39 >= E && E >= 1 && 40 >= E && C = 100 && A = 0 && B = 0] (?,1) 6. lbl91(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 && 39 >= E && E >= 1 && 40 >= E && C = 100 && A = 0 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 8. lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{3,4,5,6},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4,5,6},5->{7,8,9,10},6->{7,8,9,10},7->{},8->{3,4,5 ,6},9->{7,8,9,10},10->{7,8,9,10},11->{0,1,2}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [5,6] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 8. lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1 ,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, 100, .= 100) (< 0,0,D>, D, .= 0) (< 0,0,E>, 1, .= 1) (< 0,0,F>, F, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, 100, .= 100) (< 1,0,D>, D, .= 0) (< 1,0,E>, 2, .= 2) (< 1,0,F>, F, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, 100, .= 100) (< 2,0,D>, D, .= 0) (< 2,0,E>, 2, .= 2) (< 2,0,F>, F, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, 40, .= 40) (< 4,0,F>, F, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, 40, .= 40) (< 8,0,F>, F, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, 41, .= 41) (< 9,0,F>, F, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 41, .= 41) (<10,0,F>, F, .= 0) (<11,0,A>, B, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, D, .= 0) (<11,0,D>, D, .= 0) (<11,0,E>, F, .= 0) (<11,0,F>, F, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 8. lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1 ,2}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 8. lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{3,4},1->{7,8,9,10},2->{7,8,9,10},3->{},4->{3,4},7->{},8->{3,4},9->{7,8,9,10},10->{7,8,9,10},11->{0,1 ,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,3) ,(1,7) ,(1,8) ,(1,10) ,(2,7) ,(2,8) ,(2,9) ,(9,8) ,(9,10) ,(10,8) ,(10,9)] * Step 5: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 8. lbl111(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 2 && 41 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},3->{},4->{3,4},7->{},8->{3,4},9->{7,9},10->{7,10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) (< 8,0,A>, B) (< 8,0,B>, B) (< 8,0,C>, 100) (< 8,0,D>, D) (< 8,0,E>, 40) (< 8,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [8] * Step 6: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 3. lbl91(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E = 40 && C = 100 && A = 0 && B = 0] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 7. lbl111(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [E >= 40 && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},3->{},4->{3,4},7->{},9->{7,9},10->{7,10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 3,0,A>, B) (< 3,0,B>, B) (< 3,0,C>, 100) (< 3,0,D>, D) (< 3,0,E>, 40) (< 3,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 7,0,A>, B) (< 7,0,B>, B) (< 7,0,C>, 100) (< 7,0,D>, D) (< 7,0,E>, 41) (< 7,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,7] * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 43 + -1*x5 p(lbl91) = 42 p(start) = 42 p(start0) = 42 The following rules are strictly oriented: [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 43 + -1*E > 41 + -1*E = lbl111(A,B,C,D,2 + E,F) The following rules are weakly oriented: [A = 0 && B = 0 && C = D && E = F] ==> start(A,B,C,D,E,F) = 42 >= 42 = lbl91(A,B,100,D,1,F) [0 >= 1 + B && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 42 >= 41 = lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 42 >= 41 = lbl111(A,B,100,D,2,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==> lbl91(A,B,C,D,E,F) = 42 >= 42 = lbl91(A,B,C,D,1 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 43 + -1*E >= 41 + -1*E = lbl111(A,B,C,D,2 + E,F) True ==> start0(A,B,C,D,E,F) = 42 >= 42 = start(B,B,D,D,F,F) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (?,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (42,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (1,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (1,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (1,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (?,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (42,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 19 + -99*x1 + -1*x5 p(lbl91) = -83 + -99*x1 + x3 p(start) = 18 + -99*x1 p(start0) = 18 + -99*x2 The following rules are strictly oriented: [A = 0 && B = 0 && C = D && E = F] ==> start(A,B,C,D,E,F) = 18 + -99*A > 17 + -99*A = lbl91(A,B,100,D,1,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 19 + -99*A + -1*E > 17 + -99*A + -1*E = lbl111(A,B,C,D,2 + E,F) The following rules are weakly oriented: [0 >= 1 + B && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 18 + -99*A >= 17 + -99*A = lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 18 + -99*A >= 17 + -99*A = lbl111(A,B,100,D,2,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==> lbl91(A,B,C,D,E,F) = -83 + -99*A + C >= -83 + -99*A + C = lbl91(A,B,C,D,1 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 19 + -99*A + -1*E >= 17 + -99*A + -1*E = lbl111(A,B,C,D,2 + E,F) True ==> start0(A,B,C,D,E,F) = 18 + -99*B >= 18 + -99*B = start(B,B,D,D,F,F) * Step 10: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (1,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (1,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (1,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (?,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (18 + 99*B,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (42,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 39 p(lbl91) = 41 + -1*x5 p(start) = 40 p(start0) = 40 The following rules are strictly oriented: [0 >= 1 + B && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 40 > 39 = lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] ==> start(A,B,C,D,E,F) = 40 > 39 = lbl111(A,B,100,D,2,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] ==> lbl91(A,B,C,D,E,F) = 41 + -1*E > 40 + -1*E = lbl91(A,B,C,D,1 + E,F) The following rules are weakly oriented: [A = 0 && B = 0 && C = D && E = F] ==> start(A,B,C,D,E,F) = 40 >= 40 = lbl91(A,B,100,D,1,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 39 >= 39 = lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] ==> lbl111(A,B,C,D,E,F) = 39 >= 39 = lbl111(A,B,C,D,2 + E,F) True ==> start0(A,B,C,D,E,F) = 40 >= 40 = start(B,B,D,D,F,F) * Step 11: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> lbl91(A,B,100,D,1,F) [A = 0 && B = 0 && C = D && E = F] (1,1) 1. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [0 >= 1 + B && A = B && C = D && E = F] (1,1) 2. start(A,B,C,D,E,F) -> lbl111(A,B,100,D,2,F) [B >= 1 && A = B && C = D && E = F] (1,1) 4. lbl91(A,B,C,D,E,F) -> lbl91(A,B,C,D,1 + E,F) [39 >= E && E >= 1 && 40 >= E && A = 0 && C = 100 && B = 0] (40,1) 9. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [0 >= 1 + B && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (18 + 99*B,1) 10. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,2 + E,F) [B >= 1 && 39 >= E && E >= 2 && 41 >= E && C = 100 && A = B] (42,1) 11. start0(A,B,C,D,E,F) -> start(B,B,D,D,F,F) True (1,1) Signature: {(lbl111,6);(lbl91,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{4},1->{9},2->{10},4->{4},9->{9},10->{10},11->{0,1,2}] Sizebounds: (< 0,0,A>, B) (< 0,0,B>, B) (< 0,0,C>, 100) (< 0,0,D>, D) (< 0,0,E>, 1) (< 0,0,F>, F) (< 1,0,A>, B) (< 1,0,B>, B) (< 1,0,C>, 100) (< 1,0,D>, D) (< 1,0,E>, 2) (< 1,0,F>, F) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 100) (< 2,0,D>, D) (< 2,0,E>, 2) (< 2,0,F>, F) (< 4,0,A>, B) (< 4,0,B>, B) (< 4,0,C>, 100) (< 4,0,D>, D) (< 4,0,E>, 40) (< 4,0,F>, F) (< 9,0,A>, B) (< 9,0,B>, B) (< 9,0,C>, 100) (< 9,0,D>, D) (< 9,0,E>, 41) (< 9,0,F>, F) (<10,0,A>, B) (<10,0,B>, B) (<10,0,C>, 100) (<10,0,D>, D) (<10,0,E>, 41) (<10,0,F>, F) (<11,0,A>, B) (<11,0,B>, B) (<11,0,C>, D) (<11,0,D>, D) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))