WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = A && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (?,1) 2. lbl71(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [D >= 1 + C && B = 0 && C + E = D + F && A + C = D] (?,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, 1 + C, .+ 1) (<1,0,D>, D, .= 0) (<1,0,E>, 1 + E, .+ 1) (<1,0,F>, F, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, 1 + B, .+ 1) (<3,0,C>, 1 + C, .+ 1) (<3,0,D>, D, .= 0) (<3,0,E>, 1 + E, .+ 1) (<3,0,F>, F, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, A, .= 0) (<4,0,C>, D, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>, F, .= 0) (<4,0,F>, F, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = A && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (?,1) 2. lbl71(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [D >= 1 + C && B = 0 && C + E = D + F && A + C = D] (?,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<1,0,A>, A) (<1,0,B>, 1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>, 1 + F) (<1,0,F>, F) (<2,0,A>, A) (<2,0,B>, 1 + A + D) (<2,0,C>, 1 + D) (<2,0,D>, D) (<2,0,E>, 1 + D + F) (<2,0,F>, F) (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>, D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, D) (<4,0,D>, D) (<4,0,E>, F) (<4,0,F>, F) * Step 3: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = A && C = D && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (?,1) 2. lbl71(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [D >= 1 + C && B = 0 && C + E = D + F && A + C = D] (?,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<1,0,A>, A) (<1,0,B>, 1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>, 1 + F) (<1,0,F>, F) (<2,0,A>, A) (<2,0,B>, 1 + A + D) (<2,0,C>, 1 + D) (<2,0,D>, D) (<2,0,E>, 1 + D + F) (<2,0,F>, F) (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>, D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, D) (<4,0,D>, D) (<4,0,E>, F) (<4,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,2] * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (?,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, 1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>, 1 + F) (<1,0,F>, F) (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>, D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, D) (<4,0,D>, D) (<4,0,E>, F) (<4,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl71) = x1 + x3 + -1*x4 p(start) = -1 + x1 + x3 + -1*x4 p(start0) = -1 + x1 The following rules are strictly oriented: [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] ==> lbl71(A,B,C,D,E,F) = A + C + -1*D > -1 + A + C + -1*D = lbl71(A,-1 + B,-1 + C,D,1 + E,F) The following rules are weakly oriented: [A >= 1 && B = A && C = D && E = F] ==> start(A,B,C,D,E,F) = -1 + A + C + -1*D >= -1 + A + C + -1*D = lbl71(A,-1 + B,-1 + C,D,1 + E,F) True ==> start0(A,B,C,D,E,F) = -1 + A >= -1 + A = start(A,A,D,D,F,F) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (?,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (1 + A,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, 1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>, 1 + F) (<1,0,F>, F) (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>, D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, D) (<4,0,D>, D) (<4,0,E>, F) (<4,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F] (1,1) 3. lbl71(A,B,C,D,E,F) -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (1 + A,1) 4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F) True (1,1) Signature: {(lbl71,6);(start,6);(start0,6);(stop,6)} Flow Graph: [1->{3},3->{3},4->{1}] Sizebounds: (<1,0,A>, A) (<1,0,B>, 1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>, 1 + F) (<1,0,F>, F) (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>, D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, D) (<4,0,D>, D) (<4,0,E>, F) (<4,0,F>, F) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))