WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [0 >= A && B = A && C = D && E = F]                                            (?,1)
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (?,1)
          2. lbl71(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [D >= 1 + C && B = 0 && C + E = D + F && A + C = D]                            (?,1)
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>,     B, .= 0) (<0,0,C>,     C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>,     E, .= 0) (<0,0,F>, F, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>, 1 + B, .+ 1) (<1,0,C>, 1 + C, .+ 1) (<1,0,D>, D, .= 0) (<1,0,E>, 1 + E, .+ 1) (<1,0,F>, F, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>,     C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>,     E, .= 0) (<2,0,F>, F, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>, 1 + B, .+ 1) (<3,0,C>, 1 + C, .+ 1) (<3,0,D>, D, .= 0) (<3,0,E>, 1 + E, .+ 1) (<3,0,F>, F, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>,     A, .= 0) (<4,0,C>,     D, .= 0) (<4,0,D>, D, .= 0) (<4,0,E>,     F, .= 0) (<4,0,F>, F, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [0 >= A && B = A && C = D && E = F]                                            (?,1)
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (?,1)
          2. lbl71(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [D >= 1 + C && B = 0 && C + E = D + F && A + C = D]                            (?,1)
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>,         A) (<0,0,C>,     D) (<0,0,D>, D) (<0,0,E>,         F) (<0,0,F>, F) 
          (<1,0,A>, A) (<1,0,B>,     1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>,     1 + F) (<1,0,F>, F) 
          (<2,0,A>, A) (<2,0,B>, 1 + A + D) (<2,0,C>, 1 + D) (<2,0,D>, D) (<2,0,E>, 1 + D + F) (<2,0,F>, F) 
          (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>,     D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) 
          (<4,0,A>, A) (<4,0,B>,         A) (<4,0,C>,     D) (<4,0,D>, D) (<4,0,E>,         F) (<4,0,F>, F) 
* Step 3: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [0 >= A && B = A && C = D && E = F]                                            (?,1)
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (?,1)
          2. lbl71(A,B,C,D,E,F)  -> stop(A,B,C,D,E,F)                [D >= 1 + C && B = 0 && C + E = D + F && A + C = D]                            (?,1)
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [0->{},1->{2,3},2->{},3->{2,3},4->{0,1}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>,         A) (<0,0,C>,     D) (<0,0,D>, D) (<0,0,E>,         F) (<0,0,F>, F) 
          (<1,0,A>, A) (<1,0,B>,     1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>,     1 + F) (<1,0,F>, F) 
          (<2,0,A>, A) (<2,0,B>, 1 + A + D) (<2,0,C>, 1 + D) (<2,0,D>, D) (<2,0,E>, 1 + D + F) (<2,0,F>, F) 
          (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>,     D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) 
          (<4,0,A>, A) (<4,0,B>,         A) (<4,0,C>,     D) (<4,0,D>, D) (<4,0,E>,         F) (<4,0,F>, F) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [0,2]
* Step 4: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (?,1)
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (?,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,     1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>,     1 + F) (<1,0,F>, F) 
          (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>,     D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) 
          (<4,0,A>, A) (<4,0,B>,         A) (<4,0,C>,     D) (<4,0,D>, D) (<4,0,E>,         F) (<4,0,F>, F) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(lbl71) = x1 + x3 + -1*x4     
           p(start) = -1 + x1 + x3 + -1*x4
          p(start0) = -1 + x1             
        
        The following rules are strictly oriented:
        [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] ==>                                 
                                                                    lbl71(A,B,C,D,E,F)   = A + C + -1*D                    
                                                                                         > -1 + A + C + -1*D               
                                                                                         = lbl71(A,-1 + B,-1 + C,D,1 + E,F)
        
        
        The following rules are weakly oriented:
        [A >= 1 && B = A && C = D && E = F] ==>                                 
                         start(A,B,C,D,E,F)   = -1 + A + C + -1*D               
                                             >= -1 + A + C + -1*D               
                                              = lbl71(A,-1 + B,-1 + C,D,1 + E,F)
        
                                       True ==>                                 
                        start0(A,B,C,D,E,F)   = -1 + A                          
                                             >= -1 + A                          
                                              = start(A,A,D,D,F,F)              
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (?,1)    
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (1 + A,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)    
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,     1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>,     1 + F) (<1,0,F>, F) 
          (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>,     D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) 
          (<4,0,A>, A) (<4,0,B>,         A) (<4,0,C>,     D) (<4,0,D>, D) (<4,0,E>,         F) (<4,0,F>, F) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. start(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A >= 1 && B = A && C = D && E = F]                                            (1,1)    
          3. lbl71(A,B,C,D,E,F)  -> lbl71(A,-1 + B,-1 + C,D,1 + E,F) [A + C >= 1 + D && D >= 1 + C && A + C >= D && C + E = D + F && B + D = A + C] (1 + A,1)
          4. start0(A,B,C,D,E,F) -> start(A,A,D,D,F,F)               True                                                                           (1,1)    
        Signature:
          {(lbl71,6);(start,6);(start0,6);(stop,6)}
        Flow Graph:
          [1->{3},3->{3},4->{1}]
        Sizebounds:
          (<1,0,A>, A) (<1,0,B>,     1 + A) (<1,0,C>, 1 + D) (<1,0,D>, D) (<1,0,E>,     1 + F) (<1,0,F>, F) 
          (<3,0,A>, A) (<3,0,B>, 1 + A + D) (<3,0,C>,     D) (<3,0,D>, D) (<3,0,E>, 1 + D + F) (<3,0,F>, F) 
          (<4,0,A>, A) (<4,0,B>,         A) (<4,0,C>,     D) (<4,0,D>, D) (<4,0,E>,         F) (<4,0,F>, F) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))