WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = C && D = A && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl6(A,B,C,D,E,F) [A >= 1 && A >= C && B = C && D = A && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 3. lbl6(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && A >= C && E = F && D = A && B = C] (?,1) 4. lbl111(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 2 && E = 0 && D = A && B = C] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 6. lbl111(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 7. lbl121(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 1 && C >= A && E = 0 && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 10. cut(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && C >= 1 + A && E = 0 && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{3},2->{7,8,9},3->{},4->{10},5->{4,5,6},6->{7,8,9},7->{10},8->{4,5,6},9->{7,8,9},10->{},11->{0,1 ,2}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [6] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = C && D = A && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl6(A,B,C,D,E,F) [A >= 1 && A >= C && B = C && D = A && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 3. lbl6(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && A >= C && E = F && D = A && B = C] (?,1) 4. lbl111(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 2 && E = 0 && D = A && B = C] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 7. lbl121(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 1 && C >= A && E = 0 && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 10. cut(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && C >= 1 + A && E = 0 && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{3},2->{7,8,9},3->{},4->{10},5->{4,5},7->{10},8->{4,5},9->{7,8,9},10->{},11->{0,1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, B + D, .* 0) (< 2,0,F>, F, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, F, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, 1 + E, .+ 1) (< 5,0,F>, F, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, 1 + E, .+ 1) (< 8,0,F>, F, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, 1 + D + E, .* 1) (< 9,0,F>, F, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, F, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, C, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, A, .= 0) (<11,0,E>, F, .= 0) (<11,0,F>, F, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = C && D = A && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl6(A,B,C,D,E,F) [A >= 1 && A >= C && B = C && D = A && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 3. lbl6(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && A >= C && E = F && D = A && B = C] (?,1) 4. lbl111(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 2 && E = 0 && D = A && B = C] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 7. lbl121(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 1 && C >= A && E = 0 && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 10. cut(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && C >= 1 + A && E = 0 && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{3},2->{7,8,9},3->{},4->{10},5->{4,5},7->{10},8->{4,5},9->{7,8,9},10->{},11->{0,1,2}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, F) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, F) (< 3,0,F>, F) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A + C) (< 4,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, A + C) (< 7,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 1 + A + C) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = C && D = A && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl6(A,B,C,D,E,F) [A >= 1 && A >= C && B = C && D = A && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 3. lbl6(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && A >= C && E = F && D = A && B = C] (?,1) 4. lbl111(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 2 && E = 0 && D = A && B = C] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 7. lbl121(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 1 && C >= A && E = 0 && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 10. cut(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && C >= 1 + A && E = 0 && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{3},2->{7,8,9},3->{},4->{10},5->{4,5},7->{10},8->{4,5},9->{7,8,9},10->{},11->{0,1,2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, F) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, F) (< 3,0,F>, F) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A + C) (< 4,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, A + C) (< 7,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 1 + A + C) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,7)] * Step 5: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [0 >= A && B = C && D = A && E = F] (?,1) 1. start(A,B,C,D,E,F) -> lbl6(A,B,C,D,E,F) [A >= 1 && A >= C && B = C && D = A && E = F] (?,1) 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 3. lbl6(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && A >= C && E = F && D = A && B = C] (?,1) 4. lbl111(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 2 && E = 0 && D = A && B = C] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 7. lbl121(A,B,C,D,E,F) -> cut(A,B,C,D,E,F) [C >= 1 + A && A >= 1 && C >= A && E = 0 && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 10. cut(A,B,C,D,E,F) -> stop(A,B,C,D,E,F) [A >= 1 && C >= 1 + A && E = 0 && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [0->{},1->{3},2->{8,9},3->{},4->{10},5->{4,5},7->{10},8->{4,5},9->{7,8,9},10->{},11->{0,1,2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, A) (< 0,0,E>, F) (< 0,0,F>, F) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, A) (< 1,0,E>, F) (< 1,0,F>, F) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 3,0,A>, A) (< 3,0,B>, C) (< 3,0,C>, C) (< 3,0,D>, A) (< 3,0,E>, F) (< 3,0,F>, F) (< 4,0,A>, A) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, A) (< 4,0,E>, 1 + A + C) (< 4,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 7,0,A>, A) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, A) (< 7,0,E>, A + C) (< 7,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, A) (<10,0,E>, 1 + A + C) (<10,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [1,4,7,0,3,10] * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [2->{8,9},5->{5},8->{5},9->{8,9},11->{2}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 1 p(lbl121) = 1 + x5 p(start) = x2 p(start0) = x3 The following rules are strictly oriented: [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] ==> lbl121(A,B,C,D,E,F) = 1 + E > 1 + -1*D + E = lbl121(A,B,C,D,-1*D + E,F) The following rules are weakly oriented: [A >= 1 && C >= 1 + A && B = C && D = A && E = F] ==> start(A,B,C,D,E,F) = B >= 1 + B + -1*D = lbl121(A,B,C,D,B + -1*D,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] ==> lbl111(A,B,C,D,E,F) = 1 >= 1 = lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] ==> lbl121(A,B,C,D,E,F) = 1 + E >= 1 = lbl111(A,B,C,D,-1 + E,F) True ==> start0(A,B,C,D,E,F) = C >= C = start(A,C,C,A,F,F) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (?,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (?,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (C,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [2->{8,9},5->{5},8->{5},9->{8,9},11->{2}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (1,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (?,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (1 + C,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (C,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [2->{8,9},5->{5},8->{5},9->{8,9},11->{2}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 1 + x5 p(lbl121) = x1 p(start) = x1 p(start0) = x1 The following rules are strictly oriented: [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] ==> lbl111(A,B,C,D,E,F) = 1 + E > E = lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] ==> lbl121(A,B,C,D,E,F) = A > E = lbl111(A,B,C,D,-1 + E,F) The following rules are weakly oriented: [A >= 1 && C >= 1 + A && B = C && D = A && E = F] ==> start(A,B,C,D,E,F) = A >= A = lbl121(A,B,C,D,B + -1*D,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] ==> lbl121(A,B,C,D,E,F) = A >= A = lbl121(A,B,C,D,-1*D + E,F) True ==> start0(A,B,C,D,E,F) = A >= A = start(A,C,C,A,F,F) * Step 9: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. start(A,B,C,D,E,F) -> lbl121(A,B,C,D,B + -1*D,F) [A >= 1 && C >= 1 + A && B = C && D = A && E = F] (1,1) 5. lbl111(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && E >= 0 && C >= 1 + A + E && A >= 2 + E && D = A && B = C] (A,1) 8. lbl121(A,B,C,D,E,F) -> lbl111(A,B,C,D,-1 + E,F) [E >= 1 && A >= 1 + E && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (1 + C,1) 9. lbl121(A,B,C,D,E,F) -> lbl121(A,B,C,D,-1*D + E,F) [E >= 1 && E >= A && C >= 1 + A && A >= 1 && E >= 0 && C >= A + E && D = A && B = C] (C,1) 11. start0(A,B,C,D,E,F) -> start(A,C,C,A,F,F) True (1,1) Signature: {(cut,6);(lbl111,6);(lbl121,6);(lbl6,6);(start,6);(start0,6);(stop,6)} Flow Graph: [2->{8,9},5->{5},8->{5},9->{8,9},11->{2}] Sizebounds: (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, A) (< 2,0,E>, A + C) (< 2,0,F>, F) (< 5,0,A>, A) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, A) (< 5,0,E>, A) (< 5,0,F>, F) (< 8,0,A>, A) (< 8,0,B>, C) (< 8,0,C>, C) (< 8,0,D>, A) (< 8,0,E>, 1 + A + C) (< 8,0,F>, F) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, A) (< 9,0,E>, C) (< 9,0,F>, F) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, A) (<11,0,E>, F) (<11,0,F>, F) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^1))