WORST_CASE(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 3. lbl161(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [0 >= 10 && 89 >= A && 0 >= 1 && D = 2 && H = A && F = 101 && B = 91] (?,1) 4. lbl161(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [0 >= 2 && 89 >= A && H = A && F = 101 && D = 1 && B = 91] (?,1) 5. lbl161(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [0 >= 1 && 89 >= A && H = A && F = 101 && D = 1 && B = 91] (?,1) 6. lbl161(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [0 >= 10 && 0 >= 2 && 89 >= A && H = A && F = 101 && D = 1 && B = 91] (?,1) 7. lbl221(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [1 >= D && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 8. lbl221(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A && 89 >= A && F = 111 && D = 2 && H = A && B = C] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 13. lbl111(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [A + 11*D >= 112 && 1 >= D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 14. lbl111(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 && D = 2 && H = 100 && B = C && A = 100] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,13,14,15,16,17},2->{},3->{2,3,4,5,6},4->{7,8,9,10,11},5->{7,8,9,10,11},6->{7,8,9,10,11} ,7->{},8->{2,3,4,5,6},9->{7,8,9,10,11},10->{7,8,9,10,11},11->{7,8,9,10,11},12->{12,13,14,15,16,17},13->{} ,14->{2,3,4,5,6},15->{7,8,9,10,11},16->{7,8,9,10,11},17->{7,8,9,10,11},18->{0,1}] + Applied Processor: UnsatRules + Details: The following transitions have unsatisfiable constraints and are removed: [3,4,5,6,7,13] * Step 2: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 8. lbl221(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A && 89 >= A && F = 111 && D = 2 && H = A && B = C] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 14. lbl111(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 && D = 2 && H = 100 && B = C && A = 100] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,14,15,16,17},2->{},8->{2},9->{8,9,10,11},10->{8,9,10,11},11->{8,9,10,11},12->{12,14,15,16 ,17},14->{2},15->{8,9,10,11},16->{8,9,10,11},17->{8,9,10,11},18->{0,1}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, 10 + H, .+ 10) (< 0,0,C>, C, .= 0) (< 0,0,D>, 1, .= 1) (< 0,0,E>, E, .= 0) (< 0,0,F>, H, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 2, .= 2) (< 1,0,E>, E, .= 0) (< 1,0,F>, 11 + H, .+ 11) (< 1,0,G>, G, .= 0) (< 1,0,H>, H, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, H, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, 91, .= 91) (< 8,0,C>, C, .= 0) (< 8,0,D>, 1, .= 1) (< 8,0,E>, E, .= 0) (< 8,0,F>, 101, .= 101) (< 8,0,G>, G, .= 0) (< 8,0,H>, H, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, 111, .= 111) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, 111, .= 111) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>, E, .= 0) (<11,0,F>, 102, .= 102) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, 1 + D, .+ 1) (<12,0,E>, E, .= 0) (<12,0,F>, 11 + F, .+ 11) (<12,0,G>, G, .= 0) (<12,0,H>, H, .= 0) (<14,0,A>, A, .= 0) (<14,0,B>, 91, .= 91) (<14,0,C>, C, .= 0) (<14,0,D>, 1, .= 1) (<14,0,E>, E, .= 0) (<14,0,F>, 101, .= 101) (<14,0,G>, G, .= 0) (<14,0,H>, H, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, 111, .= 111) (<15,0,G>, G, .= 0) (<15,0,H>, H, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, 111, .= 111) (<16,0,G>, G, .= 0) (<16,0,H>, H, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, 2 + D, .+ 2) (<17,0,E>, E, .= 0) (<17,0,F>, 102, .= 102) (<17,0,G>, G, .= 0) (<17,0,H>, H, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, C, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, E, .= 0) (<18,0,E>, E, .= 0) (<18,0,F>, G, .= 0) (<18,0,G>, G, .= 0) (<18,0,H>, A, .= 0) * Step 3: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 8. lbl221(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A && 89 >= A && F = 111 && D = 2 && H = A && B = C] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 14. lbl111(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 && D = 2 && H = 100 && B = C && A = 100] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,14,15,16,17},2->{},8->{2},9->{8,9,10,11},10->{8,9,10,11},11->{8,9,10,11},12->{12,14,15,16 ,17},14->{2},15->{8,9,10,11},16->{8,9,10,11},17->{8,9,10,11},18->{0,1}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<14,0,F>, ?) (<14,0,G>, ?) (<14,0,H>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,G>, ?) (<17,0,H>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<18,0,F>, ?) (<18,0,G>, ?) (<18,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 2,0,A>, A) (< 2,0,B>, 91) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, 101) (< 2,0,G>, G) (< 2,0,H>, A) (< 8,0,A>, A) (< 8,0,B>, 91) (< 8,0,C>, C) (< 8,0,D>, 1) (< 8,0,E>, E) (< 8,0,F>, 101) (< 8,0,G>, G) (< 8,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<14,0,A>, A) (<14,0,B>, 91) (<14,0,C>, C) (<14,0,D>, 1) (<14,0,E>, E) (<14,0,F>, 101) (<14,0,G>, G) (<14,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<18,0,A>, A) (<18,0,B>, C) (<18,0,C>, C) (<18,0,D>, E) (<18,0,E>, E) (<18,0,F>, G) (<18,0,G>, G) (<18,0,H>, A) * Step 4: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 8. lbl221(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A && 89 >= A && F = 111 && D = 2 && H = A && B = C] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 14. lbl111(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 && D = 2 && H = 100 && B = C && A = 100] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,14,15,16,17},2->{},8->{2},9->{8,9,10,11},10->{8,9,10,11},11->{8,9,10,11},12->{12,14,15,16 ,17},14->{2},15->{8,9,10,11},16->{8,9,10,11},17->{8,9,10,11},18->{0,1}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 2,0,A>, A) (< 2,0,B>, 91) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, 101) (< 2,0,G>, G) (< 2,0,H>, A) (< 8,0,A>, A) (< 8,0,B>, 91) (< 8,0,C>, C) (< 8,0,D>, 1) (< 8,0,E>, E) (< 8,0,F>, 101) (< 8,0,G>, G) (< 8,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<14,0,A>, A) (<14,0,B>, 91) (<14,0,C>, C) (<14,0,D>, 1) (<14,0,E>, E) (<14,0,F>, 101) (<14,0,G>, G) (<14,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<18,0,A>, A) (<18,0,B>, C) (<18,0,C>, C) (<18,0,D>, E) (<18,0,E>, E) (<18,0,F>, G) (<18,0,G>, G) (<18,0,H>, A) + Applied Processor: ChainProcessor False [0,1,2,8,9,10,11,12,14,15,16,17,18] + Details: We chained rule 8 to obtain the rules [19] . * Step 5: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 14. lbl111(A,B,C,D,E,F,G,H) -> lbl161(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 && D = 2 && H = 100 && B = C && A = 100] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,14,15,16,17},2->{},9->{9,10,11,19},10->{9,10,11,19},11->{9,10,11,19},12->{12,14,15,16,17} ,14->{2},15->{9,10,11,19},16->{9,10,11,19},17->{9,10,11,19},18->{0,1},19->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 2,0,A>, A) (< 2,0,B>, 91) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, 101) (< 2,0,G>, G) (< 2,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<14,0,A>, A) (<14,0,B>, 91) (<14,0,C>, C) (<14,0,D>, 1) (<14,0,E>, E) (<14,0,F>, 101) (<14,0,G>, G) (<14,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<18,0,A>, A) (<18,0,B>, C) (<18,0,C>, C) (<18,0,D>, E) (<18,0,E>, E) (<18,0,F>, G) (<18,0,G>, G) (<18,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) + Applied Processor: ChainProcessor False [0,1,2,9,10,11,12,14,15,16,17,18,19] + Details: We chained rule 14 to obtain the rules [20] . * Step 6: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 2. lbl161(A,B,C,D,E,F,G,H) -> stop(A,B,C,D,E,F,G,H) [89 >= A && D = 1 && H = A && F = 101 && B = 91] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 20. lbl111(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 (?,2) && D = 2 && H = 100 && B = C && A = 100 && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,15,16,17,20},2->{},9->{9,10,11,19},10->{9,10,11,19},11->{9,10,11,19},12->{12,15,16,17,20} ,15->{9,10,11,19},16->{9,10,11,19},17->{9,10,11,19},18->{0,1},19->{},20->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 2,0,A>, A) (< 2,0,B>, 91) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, 101) (< 2,0,G>, G) (< 2,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<18,0,A>, A) (<18,0,B>, C) (<18,0,C>, C) (<18,0,D>, E) (<18,0,E>, E) (<18,0,F>, G) (<18,0,G>, G) (<18,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<20,0,A>, A) (<20,0,B>, 91) (<20,0,C>, C) (<20,0,D>, 1) (<20,0,E>, E) (<20,0,F>, 101) (<20,0,G>, G) (<20,0,H>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [2] * Step 7: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 18. start0(A,B,C,D,E,F,G,H) -> start(A,C,C,E,E,G,G,A) True (1,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 20. lbl111(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 (?,2) && D = 2 && H = 100 && B = C && A = 100 && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,15,16,17,20},9->{9,10,11,19},10->{9,10,11,19},11->{9,10,11,19},12->{12,15,16,17,20},15->{9 ,10,11,19},16->{9,10,11,19},17->{9,10,11,19},18->{0,1},19->{},20->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<18,0,A>, A) (<18,0,B>, C) (<18,0,C>, C) (<18,0,D>, E) (<18,0,E>, E) (<18,0,F>, G) (<18,0,G>, G) (<18,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<20,0,A>, A) (<20,0,B>, 91) (<20,0,C>, C) (<20,0,D>, 1) (<20,0,E>, E) (<20,0,F>, 101) (<20,0,G>, G) (<20,0,H>, A) + Applied Processor: ChainProcessor False [0,1,9,10,11,12,15,16,17,18,19,20] + Details: We chained rule 18 to obtain the rules [21,22] . * Step 8: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> stop(A,-10 + H,C,1,E,H,G,H) [A >= 101 && B = C && D = E && F = G && H = A] (?,1) 1. start(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,2,E,11 + H,G,H) [100 >= A && B = C && D = E && F = G && H = A] (?,1) 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 20. lbl111(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 (?,2) && D = 2 && H = 100 && B = C && A = 100 && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [0->{},1->{12,15,16,17,20},9->{9,10,11,19},10->{9,10,11,19},11->{9,10,11,19},12->{12,15,16,17,20},15->{9 ,10,11,19},16->{9,10,11,19},17->{9,10,11,19},19->{},20->{},21->{},22->{12,15,16,17,20}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, 10 + A) (< 0,0,C>, C) (< 0,0,D>, 1) (< 0,0,E>, E) (< 0,0,F>, A) (< 0,0,G>, G) (< 0,0,H>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 2) (< 1,0,E>, E) (< 1,0,F>, 11 + A) (< 1,0,G>, G) (< 1,0,H>, A) (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<20,0,A>, A) (<20,0,B>, 91) (<20,0,C>, C) (<20,0,D>, 1) (<20,0,E>, E) (<20,0,F>, 101) (<20,0,G>, G) (<20,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0,1] * Step 9: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 20. lbl111(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 (?,2) && D = 2 && H = 100 && B = C && A = 100 && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11,19},10->{9,10,11,19},11->{9,10,11,19},12->{12,15,16,17,20},15->{9,10,11,19},16->{9,10,11,19} ,17->{9,10,11,19},19->{},20->{},21->{},22->{12,15,16,17,20}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<20,0,A>, A) (<20,0,B>, 91) (<20,0,C>, C) (<20,0,D>, 1) (<20,0,E>, E) (<20,0,F>, 101) (<20,0,G>, G) (<20,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(9,19) ,(11,11) ,(11,19) ,(12,20) ,(15,19) ,(16,19) ,(17,11) ,(17,19) ,(22,15) ,(22,17) ,(22,20)] * Step 10: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 20. lbl111(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [F = 111 (?,2) && D = 2 && H = 100 && B = C && A = 100 && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11,19},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},19->{} ,20->{},21->{},22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<20,0,A>, A) (<20,0,B>, 91) (<20,0,C>, C) (<20,0,D>, 1) (<20,0,E>, E) (<20,0,F>, 101) (<20,0,G>, G) (<20,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [20] * Step 11: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 19. lbl221(A,B,C,D,E,F,G,H) -> stop(A,-20 + F,C,-1 + D,E,-10 + F,G,H) [99 >= A (?,2) && 89 >= A && F = 111 && D = 2 && H = A && B = C && 89 >= A && -1 + D = 1 && H = A && -10 + F = 101 && -20 + F = 91] 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11,19},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},19->{} ,21->{},22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<19,0,A>, A) (<19,0,B>, 91) (<19,0,C>, C) (<19,0,D>, 1) (<19,0,E>, E) (<19,0,F>, 101) (<19,0,G>, G) (<19,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [19] * Step 12: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (< 9,0,F>, 111, .= 111) (< 9,0,G>, G, .= 0) (< 9,0,H>, H, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, 111, .= 111) (<10,0,G>, G, .= 0) (<10,0,H>, H, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>, E, .= 0) (<11,0,F>, 102, .= 102) (<11,0,G>, G, .= 0) (<11,0,H>, H, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, 1 + D, .+ 1) (<12,0,E>, E, .= 0) (<12,0,F>, 11 + F, .+ 11) (<12,0,G>, G, .= 0) (<12,0,H>, H, .= 0) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<15,0,F>, 111, .= 111) (<15,0,G>, G, .= 0) (<15,0,H>, H, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) (<16,0,E>, E, .= 0) (<16,0,F>, 111, .= 111) (<16,0,G>, G, .= 0) (<16,0,H>, H, .= 0) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, 2 + D, .+ 2) (<17,0,E>, E, .= 0) (<17,0,F>, 102, .= 102) (<17,0,G>, G, .= 0) (<17,0,H>, H, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, 10 + A, .+ 10) (<21,0,C>, C, .= 0) (<21,0,D>, 1, .= 1) (<21,0,E>, E, .= 0) (<21,0,F>, A, .= 0) (<21,0,G>, G, .= 0) (<21,0,H>, A, .= 0) (<22,0,A>, A, .= 0) (<22,0,B>, C, .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, 2, .= 2) (<22,0,E>, E, .= 0) (<22,0,F>, 11 + A, .+ 11) (<22,0,G>, G, .= 0) (<22,0,H>, A, .= 0) * Step 13: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<11,0,F>, ?) (<11,0,G>, ?) (<11,0,H>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<12,0,F>, ?) (<12,0,G>, ?) (<12,0,H>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<15,0,F>, ?) (<15,0,G>, ?) (<15,0,H>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<16,0,F>, ?) (<16,0,G>, ?) (<16,0,H>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<17,0,F>, ?) (<17,0,G>, ?) (<17,0,H>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<21,0,F>, ?) (<21,0,G>, ?) (<21,0,H>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<22,0,F>, ?) (<22,0,G>, ?) (<22,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) * Step 14: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 9 : [100 >= A] 10 : [100 >= A] 11 : [100 >= A] 12 : [100 >= A && 100 >= A] 15 : [False] 16 : [100 >= A] 17 : [False] 21 : True 22 : True . * Step 15: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (?,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(lbl111) = 1 p(lbl221) = 0 p(start0) = 1 p(stop) = 1 The following rules are strictly oriented: [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) The following rules are weakly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,B,C,1 + D,E,11 + F,G,H) [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,C,C,2,E,11 + A,G,A) * Step 16: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(lbl111) = 1 p(lbl221) = 0 p(start0) = 1 p(stop) = 1 The following rules are strictly oriented: [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) The following rules are weakly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,B,C,1 + D,E,11 + F,G,H) [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,C,C,2,E,11 + A,G,A) * Step 17: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (?,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Constant} + Details: We apply a polynomial interpretation of shape constant: p(lbl111) = 1 p(lbl221) = 0 p(start0) = 1 p(stop) = 1 The following rules are strictly oriented: [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 1 > 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) The following rules are weakly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 0 >= 0 = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,B,C,1 + D,E,11 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 1 >= 1 = lbl111(A,C,C,2,E,11 + A,G,A) * Step 18: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (?,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (?,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 815 + -8*x1 + -11*x4 p(lbl221) = 658 + 77*x4 + -8*x6 p(start0) = 793 + -8*x1 p(stop) = 793*x4 + -8*x8 The following rules are strictly oriented: [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 658 + 77*D + -8*F > 653 + 77*D + -8*F = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 815 + -8*A + -11*D > 804 + -8*A + -11*D = lbl111(A,B,C,1 + D,E,11 + F,G,H) [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 815 + -8*A + -11*D > 650 + 77*D + -8*F = lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 815 + -8*A + -11*D > 650 + 77*D + -8*F = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 815 + -8*A + -11*D > 653 + 77*D + -8*F = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) The following rules are weakly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 658 + 77*D + -8*F >= 650 + 77*D + -8*F = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 658 + 77*D + -8*F >= 650 + 77*D + -8*F = lbl221(A,B,C,D,E,1 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 793 + -8*A >= 793 + -8*A = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 793 + -8*A >= 793 + -8*A = lbl111(A,C,C,2,E,11 + A,G,A) * Step 19: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (793 + 8*A,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (793 + 8*A,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 606 + -5*x1 + -1*x6 p(lbl221) = 287 + -5*x1 + 11*x4 + -1*x6 + 3*x8 p(start0) = 595 + -6*x1 p(stop) = 595*x4 + -6*x8 The following rules are strictly oriented: [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 287 + -5*A + 11*D + -1*F + 3*H > 286 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 287 + -5*A + 11*D + -1*F + 3*H > 285 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 606 + -5*A + -1*F > 595 + -5*A + -1*F = lbl111(A,B,C,1 + D,E,11 + F,G,H) [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 606 + -5*A + -1*F > 286 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 606 + -5*A + -1*F > 286 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 606 + -5*A + -1*F > 285 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) The following rules are weakly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 287 + -5*A + 11*D + -1*F + 3*H >= 286 + -5*A + 11*D + -1*F + 3*H = lbl221(A,B,C,D,E,1 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 595 + -6*A >= 595 + -6*A = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 595 + -6*A >= 595 + -6*A = lbl111(A,C,C,2,E,11 + A,G,A) * Step 20: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (?,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (595 + 6*A,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (595 + 6*A,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (595 + 6*A,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl111) = 211 + -1*x1 + -1*x6 p(lbl221) = 89 + 11*x4 + -1*x6 p(start0) = 200 + -2*x1 p(stop) = 200*x4 + -2*x8 The following rules are strictly oriented: [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 89 + 11*D + -1*F > 88 + 11*D + -1*F = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 89 + 11*D + -1*F > 88 + 11*D + -1*F = lbl221(A,B,C,D,E,1 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] ==> lbl111(A,B,C,D,E,F,G,H) = 211 + -1*A + -1*F > 200 + -1*A + -1*F = lbl111(A,B,C,1 + D,E,11 + F,G,H) The following rules are weakly oriented: [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] ==> lbl221(A,B,C,D,E,F,G,H) = 89 + 11*D + -1*F >= 87 + 11*D + -1*F = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [A + 11*D >= 112 ==> && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 211 + -1*A + -1*F >= 88 + 11*D + -1*F = lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 ==> && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] lbl111(A,B,C,D,E,F,G,H) = 211 + -1*A + -1*F >= 88 + 11*D + -1*F = lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] ==> lbl111(A,B,C,D,E,F,G,H) = 211 + -1*A + -1*F >= 87 + 11*D + -1*F = lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [A >= 101 && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 200 + -2*A >= 200 + -2*A = stop(A,-10 + A,C,1,E,A,G,A) [100 >= A && C = C && E = E && G = G && A = A] ==> start0(A,B,C,D,E,F,G,H) = 200 + -2*A >= 200 + -2*A = lbl111(A,C,C,2,E,11 + A,G,A) * Step 21: CombineProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 3 && 110 >= F && D >= 2 && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (200 + 2*A,1) 10. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [D >= 2 && 110 >= F && F >= 102 && 111 >= F && 10 + F >= A + 11*D && 89 >= A && H = A && B = C] (200 + 2*A,1) 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (595 + 6*A,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (200 + 2*A,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [9->{9,10,11},10->{9,10,11},11->{9,10},12->{12,15,16,17},15->{9,10,11},16->{9,10,11},17->{9,10},21->{} ,22->{12,16}] Sizebounds: (< 9,0,A>, A) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, 121) (< 9,0,E>, E) (< 9,0,F>, 111) (< 9,0,G>, G) (< 9,0,H>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, 121) (<10,0,E>, E) (<10,0,F>, 111) (<10,0,G>, G) (<10,0,H>, A) (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) + Applied Processor: CombineProcessor [9,10,11,12,15,16,17,21,22] + Details: We combined rules [9,10] to obtain the rule 23 . * Step 22: CombineProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (595 + 6*A,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (200 + 2*A,1) 15. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 3 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 16. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [A + 11*D >= 112 (1,1) && D >= 2 && 121 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) 23. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [(D >= 2 || D >= 3) (400 + 4*A,2) && (D >= 2 || 110 >= F) && (D >= 2 || D >= 2) && (D >= 2 || F >= 102) && (D >= 2 || 111 >= F) && (D >= 2 || 10 + F >= A + 11*D) && (D >= 2 || 89 >= A) && (D >= 2 || H = A) && (D >= 2 || B = C) && (110 >= F || D >= 3) && (110 >= F || 110 >= F) && (110 >= F || D >= 2) && (110 >= F || F >= 102) && (110 >= F || 111 >= F) && (110 >= F || 10 + F >= A + 11*D) && (110 >= F || 89 >= A) && (110 >= F || H = A) && (110 >= F || B = C) && (F >= 102 || D >= 3) && (F >= 102 || 110 >= F) && (F >= 102 || D >= 2) && (F >= 102 || F >= 102) && (F >= 102 || 111 >= F) && (F >= 102 || 10 + F >= A + 11*D) && (F >= 102 || 89 >= A) && (F >= 102 || H = A) && (F >= 102 || B = C) && (111 >= F || D >= 3) && (111 >= F || 110 >= F) && (111 >= F || D >= 2) && (111 >= F || F >= 102) && (111 >= F || 111 >= F) && (111 >= F || 10 + F >= A + 11*D) && (111 >= F || 89 >= A) && (111 >= F || H = A) && (111 >= F || B = C) && (10 + F >= A + 11*D || D >= 3) && (10 + F >= A + 11*D || 110 >= F) && (10 + F >= A + 11*D || D >= 2) && (10 + F >= A + 11*D || F >= 102) && (10 + F >= A + 11*D || 111 >= F) && (10 + F >= A + 11*D || 10 + F >= A + 11*D) && (10 + F >= A + 11*D || 89 >= A) && (10 + F >= A + 11*D || H = A) && (10 + F >= A + 11*D || B = C) && (89 >= A || D >= 3) && (89 >= A || 110 >= F) && (89 >= A || D >= 2) && (89 >= A || F >= 102) && (89 >= A || 111 >= F) && (89 >= A || 10 + F >= A + 11*D) && (89 >= A || 89 >= A) && (89 >= A || H = A) && (89 >= A || B = C) && (H = A || D >= 3) && (H = A || 110 >= F) && (H = A || D >= 2) && (H = A || F >= 102) && (H = A || 111 >= F) && (H = A || 10 + F >= A + 11*D) && (H = A || 89 >= A) && (H = A || H = A) && (H = A || B = C) && (B = C || D >= 3) && (B = C || 110 >= F) && (B = C || D >= 2) && (B = C || F >= 102) && (B = C || 111 >= F) && (B = C || 10 + F >= A + 11*D) && (B = C || 89 >= A) && (B = C || H = A) && (B = C || B = C)] Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [11->{11,23},12->{12,15,16,17},15->{11,23},16->{11,23},17->{11,23},21->{},22->{12,15,16,17},23->{11,23}] Sizebounds: (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<15,0,A>, A) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, 112) (<15,0,E>, E) (<15,0,F>, 111) (<15,0,G>, G) (<15,0,H>, A) (<16,0,A>, A) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, 112) (<16,0,E>, E) (<16,0,F>, 111) (<16,0,G>, G) (<16,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) (<23,0,A>, A) (<23,0,B>, C) (<23,0,C>, C) (<23,0,D>, 121) (<23,0,E>, E) (<23,0,F>, 111) (<23,0,G>, G) (<23,0,H>, A) + Applied Processor: CombineProcessor [11,12,15,16,17,21,22,23] + Details: We combined rules [15,16] to obtain the rule 24 . * Step 23: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 11. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && D >= 2 && 121 >= A + 11*D && 89 >= A && F = 111 && H = A && B = C] (595 + 6*A,1) 12. lbl111(A,B,C,D,E,F,G,H) -> lbl111(A,B,C,1 + D,E,11 + F,G,H) [111 >= A + 11*D && 122 >= A + 11*D && 11*D >= 22 && H = A && B = C && 11 + F = A + 11*D] (200 + 2*A,1) 17. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,-1 + D,E,-9 + F,G,H) [D >= 3 && 11*D >= 22 && F = 111 && 11*D + H = 122 && B = C && A + 11*D = 122] (1,1) 21. start0(A,B,C,D,E,F,G,H) -> stop(A,-10 + A,C,1,E,A,G,A) [A >= 101 && C = C && E = E && G = G && A = A] (1,2) 22. start0(A,B,C,D,E,F,G,H) -> lbl111(A,C,C,2,E,11 + A,G,A) [100 >= A && C = C && E = E && G = G && A = A] (1,2) 23. lbl221(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [(D >= 2 || D >= 3) (400 + 4*A,2) && (D >= 2 || 110 >= F) && (D >= 2 || D >= 2) && (D >= 2 || F >= 102) && (D >= 2 || 111 >= F) && (D >= 2 || 10 + F >= A + 11*D) && (D >= 2 || 89 >= A) && (D >= 2 || H = A) && (D >= 2 || B = C) && (110 >= F || D >= 3) && (110 >= F || 110 >= F) && (110 >= F || D >= 2) && (110 >= F || F >= 102) && (110 >= F || 111 >= F) && (110 >= F || 10 + F >= A + 11*D) && (110 >= F || 89 >= A) && (110 >= F || H = A) && (110 >= F || B = C) && (F >= 102 || D >= 3) && (F >= 102 || 110 >= F) && (F >= 102 || D >= 2) && (F >= 102 || F >= 102) && (F >= 102 || 111 >= F) && (F >= 102 || 10 + F >= A + 11*D) && (F >= 102 || 89 >= A) && (F >= 102 || H = A) && (F >= 102 || B = C) && (111 >= F || D >= 3) && (111 >= F || 110 >= F) && (111 >= F || D >= 2) && (111 >= F || F >= 102) && (111 >= F || 111 >= F) && (111 >= F || 10 + F >= A + 11*D) && (111 >= F || 89 >= A) && (111 >= F || H = A) && (111 >= F || B = C) && (10 + F >= A + 11*D || D >= 3) && (10 + F >= A + 11*D || 110 >= F) && (10 + F >= A + 11*D || D >= 2) && (10 + F >= A + 11*D || F >= 102) && (10 + F >= A + 11*D || 111 >= F) && (10 + F >= A + 11*D || 10 + F >= A + 11*D) && (10 + F >= A + 11*D || 89 >= A) && (10 + F >= A + 11*D || H = A) && (10 + F >= A + 11*D || B = C) && (89 >= A || D >= 3) && (89 >= A || 110 >= F) && (89 >= A || D >= 2) && (89 >= A || F >= 102) && (89 >= A || 111 >= F) && (89 >= A || 10 + F >= A + 11*D) && (89 >= A || 89 >= A) && (89 >= A || H = A) && (89 >= A || B = C) && (H = A || D >= 3) && (H = A || 110 >= F) && (H = A || D >= 2) && (H = A || F >= 102) && (H = A || 111 >= F) && (H = A || 10 + F >= A + 11*D) && (H = A || 89 >= A) && (H = A || H = A) && (H = A || B = C) && (B = C || D >= 3) && (B = C || 110 >= F) && (B = C || D >= 2) && (B = C || F >= 102) && (B = C || 111 >= F) && (B = C || 10 + F >= A + 11*D) && (B = C || 89 >= A) && (B = C || H = A) && (B = C || B = C)] 24. lbl111(A,B,C,D,E,F,G,H) -> lbl221(A,B,C,D,E,1 + F,G,H) [(A + 11*D >= 112 || A + 11*D >= 112) (2,2) && (A + 11*D >= 112 || D >= 3) && (A + 11*D >= 112 || 121 >= A + 11*D) && (A + 11*D >= 112 || 122 >= A + 11*D) && (A + 11*D >= 112 || 11*D >= 22) && (A + 11*D >= 112 || H = A) && (A + 11*D >= 112 || B = C) && (A + 11*D >= 112 || 11 + F = A + 11*D) && (D >= 2 || A + 11*D >= 112) && (D >= 2 || D >= 3) && (D >= 2 || 121 >= A + 11*D) && (D >= 2 || 122 >= A + 11*D) && (D >= 2 || 11*D >= 22) && (D >= 2 || H = A) && (D >= 2 || B = C) && (D >= 2 || 11 + F = A + 11*D) && (121 >= A + 11*D || A + 11*D >= 112) && (121 >= A + 11*D || D >= 3) && (121 >= A + 11*D || 121 >= A + 11*D) && (121 >= A + 11*D || 122 >= A + 11*D) && (121 >= A + 11*D || 11*D >= 22) && (121 >= A + 11*D || H = A) && (121 >= A + 11*D || B = C) && (121 >= A + 11*D || 11 + F = A + 11*D) && (122 >= A + 11*D || A + 11*D >= 112) && (122 >= A + 11*D || D >= 3) && (122 >= A + 11*D || 121 >= A + 11*D) && (122 >= A + 11*D || 122 >= A + 11*D) && (122 >= A + 11*D || 11*D >= 22) && (122 >= A + 11*D || H = A) && (122 >= A + 11*D || B = C) && (122 >= A + 11*D || 11 + F = A + 11*D) && (11*D >= 22 || A + 11*D >= 112) && (11*D >= 22 || D >= 3) && (11*D >= 22 || 121 >= A + 11*D) && (11*D >= 22 || 122 >= A + 11*D) && (11*D >= 22 || 11*D >= 22) && (11*D >= 22 || H = A) && (11*D >= 22 || B = C) && (11*D >= 22 || 11 + F = A + 11*D) && (H = A || A + 11*D >= 112) && (H = A || D >= 3) && (H = A || 121 >= A + 11*D) && (H = A || 122 >= A + 11*D) && (H = A || 11*D >= 22) && (H = A || H = A) && (H = A || B = C) && (H = A || 11 + F = A + 11*D) && (B = C || A + 11*D >= 112) && (B = C || D >= 3) && (B = C || 121 >= A + 11*D) && (B = C || 122 >= A + 11*D) && (B = C || 11*D >= 22) && (B = C || H = A) && (B = C || B = C) && (B = C || 11 + F = A + 11*D) && (11 + F = A + 11*D || A + 11*D >= 112) && (11 + F = A + 11*D || D >= 3) && (11 + F = A + 11*D || 121 >= A + 11*D) && (11 + F = A + 11*D || 122 >= A + 11*D) && (11 + F = A + 11*D || 11*D >= 22) && (11 + F = A + 11*D || H = A) && (11 + F = A + 11*D || B = C) && (11 + F = A + 11*D || 11 + F = A + 11*D)] Signature: {(lbl111,8);(lbl161,8);(lbl221,8);(start,8);(start0,8);(stop,8)} Flow Graph: [11->{11,23},12->{12,17,24},17->{11,23},21->{},22->{12,17,24},23->{11,23},24->{11,23}] Sizebounds: (<11,0,A>, A) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, 120) (<11,0,E>, E) (<11,0,F>, 102) (<11,0,G>, G) (<11,0,H>, A) (<12,0,A>, A) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, 112) (<12,0,E>, E) (<12,0,F>, 111) (<12,0,G>, G) (<12,0,H>, A) (<17,0,A>, A) (<17,0,B>, C) (<17,0,C>, C) (<17,0,D>, 114) (<17,0,E>, E) (<17,0,F>, 102) (<17,0,G>, G) (<17,0,H>, A) (<21,0,A>, A) (<21,0,B>, 10 + A) (<21,0,C>, C) (<21,0,D>, 1) (<21,0,E>, E) (<21,0,F>, A) (<21,0,G>, G) (<21,0,H>, A) (<22,0,A>, A) (<22,0,B>, C) (<22,0,C>, C) (<22,0,D>, 2) (<22,0,E>, E) (<22,0,F>, 11 + A) (<22,0,G>, G) (<22,0,H>, A) (<23,0,A>, A) (<23,0,B>, C) (<23,0,C>, C) (<23,0,D>, 121) (<23,0,E>, E) (<23,0,F>, 111) (<23,0,G>, G) (<23,0,H>, A) (<24,0,A>, A) (<24,0,B>, C) (<24,0,C>, C) (<24,0,D>, 112) (<24,0,E>, E) (<24,0,F>, 111) (<24,0,G>, G) (<24,0,H>, A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))