WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,0,M,N) [1 >= A && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 5. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,H,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 6. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,J,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,L,M,N) [2 + H >= A && A >= 2 && A >= 1 + H && 1 + L = A && 2 + B = A && 1 + D = A && N = A && J = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [0->{},1->{4,5,6},2->{4,5,6},3->{7,8,9},4->{3},5->{4,5,6},6->{4,5,6},7->{},8->{4,5,6},9->{4,5,6},10->{0,1 ,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 0,0,F>, F, .= 0) (< 0,0,G>, G, .= 0) (< 0,0,H>, H, .= 0) (< 0,0,I>, I, .= 0) (< 0,0,J>, J, .= 0) (< 0,0,K>, K, .= 0) (< 0,0,L>, 0, .= 0) (< 0,0,M>, M, .= 0) (< 0,0,N>, N, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, 1, .= 1) (< 1,0,E>, E, .= 0) (< 1,0,F>, F, .= 0) (< 1,0,G>, G, .= 0) (< 1,0,H>, 0, .= 0) (< 1,0,I>, I, .= 0) (< 1,0,J>, 2, .= 2) (< 1,0,K>, K, .= 0) (< 1,0,L>, 0, .= 0) (< 1,0,M>, M, .= 0) (< 1,0,N>, N, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, 1, .= 1) (< 2,0,E>, E, .= 0) (< 2,0,F>, F, .= 0) (< 2,0,G>, G, .= 0) (< 2,0,H>, 1, .= 1) (< 2,0,I>, I, .= 0) (< 2,0,J>, 2, .= 2) (< 2,0,K>, K, .= 0) (< 2,0,L>, 0, .= 0) (< 2,0,M>, M, .= 0) (< 2,0,N>, N, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, L, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 3,0,F>, F, .= 0) (< 3,0,G>, G, .= 0) (< 3,0,H>, H, .= 0) (< 3,0,I>, I, .= 0) (< 3,0,J>, J, .= 0) (< 3,0,K>, K, .= 0) (< 3,0,L>, 1 + L, .+ 1) (< 3,0,M>, M, .= 0) (< 3,0,N>, N, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 4,0,E>, E, .= 0) (< 4,0,F>, ?, .?) (< 4,0,G>, G, .= 0) (< 4,0,H>, H, .= 0) (< 4,0,I>, I, .= 0) (< 4,0,J>, J, .= 0) (< 4,0,K>, K, .= 0) (< 4,0,L>, L, .= 0) (< 4,0,M>, M, .= 0) (< 4,0,N>, N, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, J, .= 0) (< 5,0,E>, E, .= 0) (< 5,0,F>, F, .= 0) (< 5,0,G>, G, .= 0) (< 5,0,H>, H, .= 0) (< 5,0,I>, I, .= 0) (< 5,0,J>, 1 + J, .+ 1) (< 5,0,K>, K, .= 0) (< 5,0,L>, L, .= 0) (< 5,0,M>, M, .= 0) (< 5,0,N>, N, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, J, .= 0) (< 6,0,E>, E, .= 0) (< 6,0,F>, F, .= 0) (< 6,0,G>, G, .= 0) (< 6,0,H>, J, .= 0) (< 6,0,I>, I, .= 0) (< 6,0,J>, 1 + J, .+ 1) (< 6,0,K>, K, .= 0) (< 6,0,L>, L, .= 0) (< 6,0,M>, M, .= 0) (< 6,0,N>, N, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 7,0,F>, F, .= 0) (< 7,0,G>, G, .= 0) (< 7,0,H>, H, .= 0) (< 7,0,I>, I, .= 0) (< 7,0,J>, J, .= 0) (< 7,0,K>, K, .= 0) (< 7,0,L>, L, .= 0) (< 7,0,M>, M, .= 0) (< 7,0,N>, N, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, 1 + L, .+ 1) (< 8,0,E>, E, .= 0) (< 8,0,F>, F, .= 0) (< 8,0,G>, G, .= 0) (< 8,0,H>, L, .= 0) (< 8,0,I>, I, .= 0) (< 8,0,J>, 2 + L, .+ 2) (< 8,0,K>, K, .= 0) (< 8,0,L>, L, .= 0) (< 8,0,M>, M, .= 0) (< 8,0,N>, N, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, 1 + L, .+ 1) (< 9,0,E>, E, .= 0) (< 9,0,F>, F, .= 0) (< 9,0,G>, G, .= 0) (< 9,0,H>, 1 + L, .+ 1) (< 9,0,I>, I, .= 0) (< 9,0,J>, 2 + L, .+ 2) (< 9,0,K>, K, .= 0) (< 9,0,L>, L, .= 0) (< 9,0,M>, M, .= 0) (< 9,0,N>, N, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, C, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, E, .= 0) (<10,0,E>, E, .= 0) (<10,0,F>, G, .= 0) (<10,0,G>, G, .= 0) (<10,0,H>, I, .= 0) (<10,0,I>, I, .= 0) (<10,0,J>, K, .= 0) (<10,0,K>, K, .= 0) (<10,0,L>, M, .= 0) (<10,0,M>, M, .= 0) (<10,0,N>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,0,M,N) [1 >= A && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 5. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,H,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 6. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,J,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,L,M,N) [2 + H >= A && A >= 2 && A >= 1 + H && 1 + L = A && 2 + B = A && 1 + D = A && N = A && J = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [0->{},1->{4,5,6},2->{4,5,6},3->{7,8,9},4->{3},5->{4,5,6},6->{4,5,6},7->{},8->{4,5,6},9->{4,5,6},10->{0,1 ,2}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 0,0,F>, ?) (< 0,0,G>, ?) (< 0,0,H>, ?) (< 0,0,I>, ?) (< 0,0,J>, ?) (< 0,0,K>, ?) (< 0,0,L>, ?) (< 0,0,M>, ?) (< 0,0,N>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 1,0,F>, ?) (< 1,0,G>, ?) (< 1,0,H>, ?) (< 1,0,I>, ?) (< 1,0,J>, ?) (< 1,0,K>, ?) (< 1,0,L>, ?) (< 1,0,M>, ?) (< 1,0,N>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 2,0,F>, ?) (< 2,0,G>, ?) (< 2,0,H>, ?) (< 2,0,I>, ?) (< 2,0,J>, ?) (< 2,0,K>, ?) (< 2,0,L>, ?) (< 2,0,M>, ?) (< 2,0,N>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 3,0,F>, ?) (< 3,0,G>, ?) (< 3,0,H>, ?) (< 3,0,I>, ?) (< 3,0,J>, ?) (< 3,0,K>, ?) (< 3,0,L>, ?) (< 3,0,M>, ?) (< 3,0,N>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 4,0,F>, ?) (< 4,0,G>, ?) (< 4,0,H>, ?) (< 4,0,I>, ?) (< 4,0,J>, ?) (< 4,0,K>, ?) (< 4,0,L>, ?) (< 4,0,M>, ?) (< 4,0,N>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 5,0,F>, ?) (< 5,0,G>, ?) (< 5,0,H>, ?) (< 5,0,I>, ?) (< 5,0,J>, ?) (< 5,0,K>, ?) (< 5,0,L>, ?) (< 5,0,M>, ?) (< 5,0,N>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 6,0,F>, ?) (< 6,0,G>, ?) (< 6,0,H>, ?) (< 6,0,I>, ?) (< 6,0,J>, ?) (< 6,0,K>, ?) (< 6,0,L>, ?) (< 6,0,M>, ?) (< 6,0,N>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 7,0,F>, ?) (< 7,0,G>, ?) (< 7,0,H>, ?) (< 7,0,I>, ?) (< 7,0,J>, ?) (< 7,0,K>, ?) (< 7,0,L>, ?) (< 7,0,M>, ?) (< 7,0,N>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 8,0,F>, ?) (< 8,0,G>, ?) (< 8,0,H>, ?) (< 8,0,I>, ?) (< 8,0,J>, ?) (< 8,0,K>, ?) (< 8,0,L>, ?) (< 8,0,M>, ?) (< 8,0,N>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (< 9,0,F>, ?) (< 9,0,G>, ?) (< 9,0,H>, ?) (< 9,0,I>, ?) (< 9,0,J>, ?) (< 9,0,K>, ?) (< 9,0,L>, ?) (< 9,0,M>, ?) (< 9,0,N>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<10,0,F>, ?) (<10,0,G>, ?) (<10,0,H>, ?) (<10,0,I>, ?) (<10,0,J>, ?) (<10,0,K>, ?) (<10,0,L>, ?) (<10,0,M>, ?) (<10,0,N>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, 0) (< 0,0,M>, M) (< 0,0,N>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, ?) (< 5,0,G>, G) (< 5,0,H>, ?) (< 5,0,I>, I) (< 5,0,J>, A) (< 5,0,K>, K) (< 5,0,L>, ?) (< 5,0,M>, M) (< 5,0,N>, A) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, E) (< 6,0,F>, ?) (< 6,0,G>, G) (< 6,0,H>, ?) (< 6,0,I>, I) (< 6,0,J>, A) (< 6,0,K>, K) (< 6,0,L>, ?) (< 6,0,M>, M) (< 6,0,N>, A) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, ?) (< 7,0,G>, G) (< 7,0,H>, ?) (< 7,0,I>, I) (< 7,0,J>, ?) (< 7,0,K>, K) (< 7,0,L>, ?) (< 7,0,M>, M) (< 7,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,0,M,N) [1 >= A && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 5. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,H,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 6. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,J,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,L,M,N) [2 + H >= A && A >= 2 && A >= 1 + H && 1 + L = A && 2 + B = A && 1 + D = A && N = A && J = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [0->{},1->{4,5,6},2->{4,5,6},3->{7,8,9},4->{3},5->{4,5,6},6->{4,5,6},7->{},8->{4,5,6},9->{4,5,6},10->{0,1 ,2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, 0) (< 0,0,M>, M) (< 0,0,N>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, ?) (< 5,0,G>, G) (< 5,0,H>, ?) (< 5,0,I>, I) (< 5,0,J>, A) (< 5,0,K>, K) (< 5,0,L>, ?) (< 5,0,M>, M) (< 5,0,N>, A) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, E) (< 6,0,F>, ?) (< 6,0,G>, G) (< 6,0,H>, ?) (< 6,0,I>, I) (< 6,0,J>, A) (< 6,0,K>, K) (< 6,0,L>, ?) (< 6,0,M>, M) (< 6,0,N>, A) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, ?) (< 7,0,G>, G) (< 7,0,H>, ?) (< 7,0,I>, I) (< 7,0,J>, ?) (< 7,0,K>, K) (< 7,0,L>, ?) (< 7,0,M>, M) (< 7,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,0,M,N) [1 >= A && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 5. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,H,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 6. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,J,E,F,G,J,I,1 + J,K,L,M,N) [A >= 1 + J && D >= H && D >= 1 && A >= J && J >= 1 + D && 1 + H >= D && 1 + L = D && N = A] (?,1) 7. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> stop(A,B,C,D,E,F,G,H,I,J,K,L,M,N) [2 + H >= A && A >= 2 && A >= 1 + H && 1 + L = A && 2 + B = A && 1 + D = A && N = A && J = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [0->{},1->{4,5,6},2->{4,5,6},3->{7,8,9},4->{3},5->{},6->{},7->{},8->{4,5,6},9->{4,5,6},10->{0,1,2}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, C) (< 0,0,C>, C) (< 0,0,D>, E) (< 0,0,E>, E) (< 0,0,F>, G) (< 0,0,G>, G) (< 0,0,H>, I) (< 0,0,I>, I) (< 0,0,J>, K) (< 0,0,K>, K) (< 0,0,L>, 0) (< 0,0,M>, M) (< 0,0,N>, A) (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 5,0,A>, A) (< 5,0,B>, ?) (< 5,0,C>, C) (< 5,0,D>, ?) (< 5,0,E>, E) (< 5,0,F>, ?) (< 5,0,G>, G) (< 5,0,H>, ?) (< 5,0,I>, I) (< 5,0,J>, A) (< 5,0,K>, K) (< 5,0,L>, ?) (< 5,0,M>, M) (< 5,0,N>, A) (< 6,0,A>, A) (< 6,0,B>, ?) (< 6,0,C>, C) (< 6,0,D>, ?) (< 6,0,E>, E) (< 6,0,F>, ?) (< 6,0,G>, G) (< 6,0,H>, ?) (< 6,0,I>, I) (< 6,0,J>, A) (< 6,0,K>, K) (< 6,0,L>, ?) (< 6,0,M>, M) (< 6,0,N>, A) (< 7,0,A>, A) (< 7,0,B>, ?) (< 7,0,C>, C) (< 7,0,D>, ?) (< 7,0,E>, E) (< 7,0,F>, ?) (< 7,0,G>, G) (< 7,0,H>, ?) (< 7,0,I>, I) (< 7,0,J>, ?) (< 7,0,K>, K) (< 7,0,L>, ?) (< 7,0,M>, M) (< 7,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [0,5,6,7] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [1->{4},2->{4},3->{8,9},4->{3},8->{4},9->{4},10->{1,2}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl13) = 1 + x1 + -1*x12 p(lbl53) = x1 + -1*x12 p(lbl91) = x1 + -1*x12 p(start) = x1 p(start0) = x1 The following rules are strictly oriented: [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] ==> lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = 1 + A + -1*L > A + -1*L = lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) The following rules are weakly oriented: [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = A >= A = lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = A >= A = lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] ==> lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = A + -1*L >= A + -1*L = lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] ==> lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = A + -1*L >= A + -1*L = lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] ==> lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = 1 + A + -1*L >= A + -1*L = lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) True ==> start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = A >= A = start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (?,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (A,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [1->{4},2->{4},3->{8,9},4->{3},8->{4},9->{4},10->{1,2}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (?,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (A,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [1->{4},2->{4},3->{8,9},4->{3},8->{4},9->{4},10->{1,2}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(lbl13) = -2 + x1 + -1*x2 p(lbl53) = -2 + x10 + -1*x12 p(lbl91) = -2 + x1 + -1*x12 p(start) = 1 p(start0) = 2 The following rules are strictly oriented: [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = 1 > 0 = lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] ==> start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = 1 > 0 = lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] ==> lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = -2 + A + -1*B > 0 = lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] ==> lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = -2 + A + -1*B > 0 = lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) True ==> start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = 2 > 1 = start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) The following rules are weakly oriented: [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] ==> lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = -2 + A + -1*L >= -2 + A + -1*L = lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] ==> lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) = -2 + J + -1*L >= -2 + A + -1*L = lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (?,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (?,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (2,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (A,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [1->{4},2->{4},3->{8,9},4->{3},8->{4},9->{4},10->{1,2}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,0,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 2. start(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1,E,F,G,1,I,2,K,0,M,N) [A >= 2 && B = C && D = E && F = G && H = I && J = K && L = M && N = A] (1,1) 3. lbl91(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl13(A,L,C,D,E,F,G,H,I,J,K,1 + L,M,N) [D >= H && D >= 1 && 1 + H >= D && A >= 1 + D && N = A && 1 + L = D && J = A] (4 + A,1) 4. lbl53(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl91(A,B,C,D,E,O,G,H,I,J,K,L,M,N) [D >= H && D >= 1 && A >= 1 + D && 1 + H >= D && J = A && 1 + L = D && N = A] (4 + A,1) 8. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (2,1) 9. lbl13(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> lbl53(A,B,C,1 + L,E,F,G,1 + L,I,2 + L,K,L,M,N) [A >= 3 + B && A >= 2 + B && H >= B && B >= 0 && 1 + B >= H && L = 1 + B && D = 1 + B && N = A && J = A] (A,1) 10. start0(A,B,C,D,E,F,G,H,I,J,K,L,M,N) -> start(A,C,C,E,E,G,G,I,I,K,K,M,M,A) True (1,1) Signature: {(lbl13,14);(lbl53,14);(lbl91,14);(start,14);(start0,14);(stop,14)} Flow Graph: [1->{4},2->{4},3->{8,9},4->{3},8->{4},9->{4},10->{1,2}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, C) (< 1,0,C>, C) (< 1,0,D>, 1) (< 1,0,E>, E) (< 1,0,F>, G) (< 1,0,G>, G) (< 1,0,H>, 0) (< 1,0,I>, I) (< 1,0,J>, 2) (< 1,0,K>, K) (< 1,0,L>, 0) (< 1,0,M>, M) (< 1,0,N>, A) (< 2,0,A>, A) (< 2,0,B>, C) (< 2,0,C>, C) (< 2,0,D>, 1) (< 2,0,E>, E) (< 2,0,F>, G) (< 2,0,G>, G) (< 2,0,H>, 1) (< 2,0,I>, I) (< 2,0,J>, 2) (< 2,0,K>, K) (< 2,0,L>, 0) (< 2,0,M>, M) (< 2,0,N>, A) (< 3,0,A>, A) (< 3,0,B>, ?) (< 3,0,C>, C) (< 3,0,D>, ?) (< 3,0,E>, E) (< 3,0,F>, ?) (< 3,0,G>, G) (< 3,0,H>, ?) (< 3,0,I>, I) (< 3,0,J>, ?) (< 3,0,K>, K) (< 3,0,L>, ?) (< 3,0,M>, M) (< 3,0,N>, A) (< 4,0,A>, A) (< 4,0,B>, ?) (< 4,0,C>, C) (< 4,0,D>, ?) (< 4,0,E>, E) (< 4,0,F>, ?) (< 4,0,G>, G) (< 4,0,H>, ?) (< 4,0,I>, I) (< 4,0,J>, ?) (< 4,0,K>, K) (< 4,0,L>, ?) (< 4,0,M>, M) (< 4,0,N>, A) (< 8,0,A>, A) (< 8,0,B>, ?) (< 8,0,C>, C) (< 8,0,D>, ?) (< 8,0,E>, E) (< 8,0,F>, ?) (< 8,0,G>, G) (< 8,0,H>, ?) (< 8,0,I>, I) (< 8,0,J>, ?) (< 8,0,K>, K) (< 8,0,L>, ?) (< 8,0,M>, M) (< 8,0,N>, A) (< 9,0,A>, A) (< 9,0,B>, ?) (< 9,0,C>, C) (< 9,0,D>, ?) (< 9,0,E>, E) (< 9,0,F>, ?) (< 9,0,G>, G) (< 9,0,H>, ?) (< 9,0,I>, I) (< 9,0,J>, ?) (< 9,0,K>, K) (< 9,0,L>, ?) (< 9,0,M>, M) (< 9,0,N>, A) (<10,0,A>, A) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, E) (<10,0,E>, E) (<10,0,F>, G) (<10,0,G>, G) (<10,0,H>, I) (<10,0,I>, I) (<10,0,J>, K) (<10,0,K>, K) (<10,0,L>, M) (<10,0,M>, M) (<10,0,N>, A) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))