WORST_CASE(?,O(n^3))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          3. d(A,B,C,D,E,F,G,H)      -> halt(A,B,C,D,E,F,G,H)   [A >= 1 && C = A && B = A]                                                  (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (?,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>,     C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>,     E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>,     G, .= 0) (<0,0,H>, H, .= 0) 
          (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>,     1, .= 1) (<1,0,D>, D, .= 0) (<1,0,E>,     E, .= 0) (<1,0,F>, F, .= 0) (<1,0,G>,     G, .= 0) (<1,0,H>, H, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>,     C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>,     E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 2 + C, .+ 2) (<2,0,H>, H, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>,     C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>,     E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>,     G, .= 0) (<3,0,H>, H, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, 2 + C, .+ 2) (<4,0,D>, D, .= 0) (<4,0,E>,     E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>,     G, .= 0) (<4,0,H>, H, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>,     C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>,     B, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>,     G, .= 0) (<5,0,H>, H, .= 0) 
          (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>,     C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, 1 + E, .+ 1) (<6,0,F>, F, .= 0) (<6,0,G>,     G, .= 0) (<6,0,H>, H, .= 0) 
          (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>,     C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>,     E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>, 1 + G, .+ 1) (<7,0,H>, H, .= 0) 
          (<8,0,A>, A, .= 0) (<8,0,B>, A, .= 0) (<8,0,C>,     D, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>,     F, .= 0) (<8,0,F>, F, .= 0) (<8,0,G>,     H, .= 0) (<8,0,H>, H, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          3. d(A,B,C,D,E,F,G,H)      -> halt(A,B,C,D,E,F,G,H)   [A >= 1 && C = A && B = A]                                                  (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (?,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>,     D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,         H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>,     1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,         H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>,     A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>,     3 + A) (<2,0,H>, H) 
          (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>,     A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>,     3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>,     A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,         A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>,     A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,         A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>,     A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>,     1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>,     D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,         H) (<8,0,H>, H) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          3. d(A,B,C,D,E,F,G,H)      -> halt(A,B,C,D,E,F,G,H)   [A >= 1 && C = A && B = A]                                                  (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (?,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>,     D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,         H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>,     1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,         H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>,     A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>,     3 + A) (<2,0,H>, H) 
          (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>,     A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>,     3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>,     A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,         A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>,     A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,         A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>,     A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>,     1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>,     D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,         H) (<8,0,H>, H) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,4),(5,7)]
* Step 4: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          3. d(A,B,C,D,E,F,G,H)      -> halt(A,B,C,D,E,F,G,H)   [A >= 1 && C = A && B = A]                                                  (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (?,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2,3},2->{5},3->{},4->{2,3},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>,     D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,         H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>,     1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,         H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>,     A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>,     3 + A) (<2,0,H>, H) 
          (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>,     A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>,     3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>,     A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,         A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>,     A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,         A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>,     A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>,     1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>,     D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,         H) (<8,0,H>, H) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3]
* Step 5: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (?,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
               p(a) = x1            
               p(b) = 1 + x1 + -1*x3
               p(c) = 1 + x1 + -1*x3
               p(d) = 1 + x1 + -1*x3
           p(start) = x1            
          p(start0) = x1            
        
        The following rules are strictly oriented:
        [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] ==>                       
                                            b(A,B,C,D,E,F,G,H)   = 1 + A + -1*C          
                                                                 > A + -1*C              
                                                                 = d(A,B,1 + C,D,E,F,G,H)
        
        
        The following rules are weakly oriented:
                                       [A >= 1 && B = A && C = D && E = F && G = H] ==>                        
                                                             start(A,B,C,D,E,F,G,H)   = A                      
                                                                                     >= A                      
                                                                                      = a(A,B,C,D,E,F,G,H)     
        
                                       [A >= 1 && G = H && E = F && C = D && B = A] ==>                        
                                                                 a(A,B,C,D,E,F,G,H)   = A                      
                                                                                     >= A                      
                                                                                      = d(A,B,1,D,E,F,G,H)     
        
                                [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] ==>                        
                                                                 d(A,B,C,D,E,F,G,H)   = 1 + A + -1*C           
                                                                                     >= 1 + A + -1*C           
                                                                                      = b(A,B,C,D,E,F,1 + C,H) 
        
              [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==>                        
                                                                 b(A,B,C,D,E,F,G,H)   = 1 + A + -1*C           
                                                                                     >= 1 + A + -1*C           
                                                                                      = c(A,B,C,D,B,F,G,H)     
        
        [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==>                        
                                                                 c(A,B,C,D,E,F,G,H)   = 1 + A + -1*C           
                                                                                     >= 1 + A + -1*C           
                                                                                      = c(A,B,C,D,-1 + E,F,G,H)
        
                       [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] ==>                        
                                                                 c(A,B,C,D,E,F,G,H)   = 1 + A + -1*C           
                                                                                     >= 1 + A + -1*C           
                                                                                      = b(A,B,C,D,E,F,1 + G,H) 
        
                                                                               True ==>                        
                                                            start0(A,B,C,D,E,F,G,H)   = A                      
                                                                                     >= A                      
                                                                                      = start(A,A,D,D,F,F,H,H) 
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (?,1)
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (?,1)
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (?,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (A,1)
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (1,1)    
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (1,1)    
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (1 + A,1)
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (A,1)    
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)    
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)    
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (?,1)    
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)    
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,6,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(b) = 1 + x1 + -1*x7
          p(c) = 1 + x1 + -1*x7
        
        The following rules are strictly oriented:
        [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] ==>                       
                                                  c(A,B,C,D,E,F,G,H)   = 1 + A + -1*G          
                                                                       > A + -1*G              
                                                                       = b(A,B,C,D,E,F,1 + G,H)
        
        
        The following rules are weakly oriented:
              [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==>                        
                                                                 b(A,B,C,D,E,F,G,H)   = 1 + A + -1*G           
                                                                                     >= 1 + A + -1*G           
                                                                                      = c(A,B,C,D,B,F,G,H)     
        
        [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==>                        
                                                                 c(A,B,C,D,E,F,G,H)   = 1 + A + -1*G           
                                                                                     >= 1 + A + -1*G           
                                                                                      = c(A,B,C,D,-1 + E,F,G,H)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
        (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
        (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
        (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
        (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
        (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
        (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
        (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
* Step 8: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (1,1)              
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (1,1)              
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (1 + A,1)          
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (A,1)              
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (?,1)              
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)              
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (4 + 6*A + 2*A^2,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)              
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 9: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (1,1)              
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (1,1)              
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (1 + A,1)          
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (A,1)              
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (5 + 7*A + 2*A^2,1)
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1)              
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (4 + 6*A + 2*A^2,1)
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)              
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [4,6,5], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(b) = x2            
          p(c) = 1 + -1*x3 + x5
          p(d) = x2            
        
        The following rules are strictly oriented:
        [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==>                        
                                                                 c(A,B,C,D,E,F,G,H)   = 1 + -1*C + E           
                                                                                      > -1*C + E               
                                                                                      = c(A,B,C,D,-1 + E,F,G,H)
        
        
        The following rules are weakly oriented:
                       [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] ==>                       
                                                           b(A,B,C,D,E,F,G,H)   = B                     
                                                                               >= B                     
                                                                                = d(A,B,1 + C,D,E,F,G,H)
        
        [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==>                       
                                                           b(A,B,C,D,E,F,G,H)   = B                     
                                                                               >= 1 + B + -1*C          
                                                                                = c(A,B,C,D,B,F,G,H)    
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
        (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
        (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
        (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
        (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
        (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
        (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
        (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
* Step 10: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0. start(A,B,C,D,E,F,G,H)  -> a(A,B,C,D,E,F,G,H)      [A >= 1 && B = A && C = D && E = F && G = H]                                (1,1)                  
          1. a(A,B,C,D,E,F,G,H)      -> d(A,B,1,D,E,F,G,H)      [A >= 1 && G = H && E = F && C = D && B = A]                                (1,1)                  
          2. d(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + C,H)  [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A]                         (1 + A,1)              
          4. b(A,B,C,D,E,F,G,H)      -> d(A,B,1 + C,D,E,F,G,H)  [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A]                      (A,1)                  
          5. b(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,B,F,G,H)      [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A]       (5 + 7*A + 2*A^2,1)    
          6. c(A,B,C,D,E,F,G,H)      -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (5*A + 7*A^2 + 2*A^3,1)
          7. c(A,B,C,D,E,F,G,H)      -> b(A,B,C,D,E,F,1 + G,H)  [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A]                (4 + 6*A + 2*A^2,1)    
          8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H)  True                                                                        (1,1)                  
        Signature:
          {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)}
        Flow Graph:
          [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>,     H) (<0,0,H>, H) 
          (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>,     H) (<1,0,H>, H) 
          (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) 
          (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) 
          (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>,     A) (<5,0,H>, H) 
          (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>,     A) (<6,0,H>, H) 
          (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) 
          (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>,     H) (<8,0,H>, H) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^3))