WORST_CASE(?,O(n^3)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 3. d(A,B,C,D,E,F,G,H) -> halt(A,B,C,D,E,F,G,H) [A >= 1 && C = A && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (?,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<0,0,E>, E, .= 0) (<0,0,F>, F, .= 0) (<0,0,G>, G, .= 0) (<0,0,H>, H, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, 1, .= 1) (<1,0,D>, D, .= 0) (<1,0,E>, E, .= 0) (<1,0,F>, F, .= 0) (<1,0,G>, G, .= 0) (<1,0,H>, H, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<2,0,E>, E, .= 0) (<2,0,F>, F, .= 0) (<2,0,G>, 2 + C, .+ 2) (<2,0,H>, H, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<3,0,E>, E, .= 0) (<3,0,F>, F, .= 0) (<3,0,G>, G, .= 0) (<3,0,H>, H, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, 2 + C, .+ 2) (<4,0,D>, D, .= 0) (<4,0,E>, E, .= 0) (<4,0,F>, F, .= 0) (<4,0,G>, G, .= 0) (<4,0,H>, H, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<5,0,E>, B, .= 0) (<5,0,F>, F, .= 0) (<5,0,G>, G, .= 0) (<5,0,H>, H, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<6,0,E>, 1 + E, .+ 1) (<6,0,F>, F, .= 0) (<6,0,G>, G, .= 0) (<6,0,H>, H, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<7,0,E>, E, .= 0) (<7,0,F>, F, .= 0) (<7,0,G>, 1 + G, .+ 1) (<7,0,H>, H, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, A, .= 0) (<8,0,C>, D, .= 0) (<8,0,D>, D, .= 0) (<8,0,E>, F, .= 0) (<8,0,F>, F, .= 0) (<8,0,G>, H, .= 0) (<8,0,H>, H, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 3. d(A,B,C,D,E,F,G,H) -> halt(A,B,C,D,E,F,G,H) [A >= 1 && C = A && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (?,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<0,0,E>, ?) (<0,0,F>, ?) (<0,0,G>, ?) (<0,0,H>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<1,0,E>, ?) (<1,0,F>, ?) (<1,0,G>, ?) (<1,0,H>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<2,0,E>, ?) (<2,0,F>, ?) (<2,0,G>, ?) (<2,0,H>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<3,0,E>, ?) (<3,0,F>, ?) (<3,0,G>, ?) (<3,0,H>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<4,0,E>, ?) (<4,0,F>, ?) (<4,0,G>, ?) (<4,0,H>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<5,0,E>, ?) (<5,0,F>, ?) (<5,0,G>, ?) (<5,0,H>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<6,0,E>, ?) (<6,0,F>, ?) (<6,0,G>, ?) (<6,0,H>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<7,0,E>, ?) (<7,0,F>, ?) (<7,0,G>, ?) (<7,0,H>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) (<8,0,E>, ?) (<8,0,F>, ?) (<8,0,G>, ?) (<8,0,H>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) * Step 3: UnsatPaths WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 3. d(A,B,C,D,E,F,G,H) -> halt(A,B,C,D,E,F,G,H) [A >= 1 && C = A && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (?,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{},4->{2,3},5->{6,7},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,4),(5,7)] * Step 4: LeafRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 3. d(A,B,C,D,E,F,G,H) -> halt(A,B,C,D,E,F,G,H) [A >= 1 && C = A && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (?,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2,3},2->{5},3->{},4->{2,3},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<3,0,A>, A) (<3,0,B>, A) (<3,0,C>, 1 + A) (<3,0,D>, D) (<3,0,E>, ?) (<3,0,F>, F) (<3,0,G>, 3 + A + H) (<3,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3] * Step 5: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (?,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(a) = x1 p(b) = 1 + x1 + -1*x3 p(c) = 1 + x1 + -1*x3 p(d) = 1 + x1 + -1*x3 p(start) = x1 p(start0) = x1 The following rules are strictly oriented: [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] ==> b(A,B,C,D,E,F,G,H) = 1 + A + -1*C > A + -1*C = d(A,B,1 + C,D,E,F,G,H) The following rules are weakly oriented: [A >= 1 && B = A && C = D && E = F && G = H] ==> start(A,B,C,D,E,F,G,H) = A >= A = a(A,B,C,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] ==> a(A,B,C,D,E,F,G,H) = A >= A = d(A,B,1,D,E,F,G,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] ==> d(A,B,C,D,E,F,G,H) = 1 + A + -1*C >= 1 + A + -1*C = b(A,B,C,D,E,F,1 + C,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==> b(A,B,C,D,E,F,G,H) = 1 + A + -1*C >= 1 + A + -1*C = c(A,B,C,D,B,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==> c(A,B,C,D,E,F,G,H) = 1 + A + -1*C >= 1 + A + -1*C = c(A,B,C,D,-1 + E,F,G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] ==> c(A,B,C,D,E,F,G,H) = 1 + A + -1*C >= 1 + A + -1*C = b(A,B,C,D,E,F,1 + G,H) True ==> start0(A,B,C,D,E,F,G,H) = A >= A = start(A,A,D,D,F,F,H,H) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (?,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (?,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (?,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (A,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (1,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (1,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (1 + A,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (A,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (?,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [7,6,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(b) = 1 + x1 + -1*x7 p(c) = 1 + x1 + -1*x7 The following rules are strictly oriented: [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] ==> c(A,B,C,D,E,F,G,H) = 1 + A + -1*G > A + -1*G = b(A,B,C,D,E,F,1 + G,H) The following rules are weakly oriented: [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==> b(A,B,C,D,E,F,G,H) = 1 + A + -1*G >= 1 + A + -1*G = c(A,B,C,D,B,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==> c(A,B,C,D,E,F,G,H) = 1 + A + -1*G >= 1 + A + -1*G = c(A,B,C,D,-1 + E,F,G,H) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) * Step 8: KnowledgePropagation WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (1,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (1,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (1 + A,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (A,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (?,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (4 + 6*A + 2*A^2,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 9: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (1,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (1,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (1 + A,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (A,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (5 + 7*A + 2*A^2,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (?,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (4 + 6*A + 2*A^2,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [4,6,5], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(b) = x2 p(c) = 1 + -1*x3 + x5 p(d) = x2 The following rules are strictly oriented: [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] ==> c(A,B,C,D,E,F,G,H) = 1 + -1*C + E > -1*C + E = c(A,B,C,D,-1 + E,F,G,H) The following rules are weakly oriented: [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] ==> b(A,B,C,D,E,F,G,H) = B >= B = d(A,B,1 + C,D,E,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] ==> b(A,B,C,D,E,F,G,H) = B >= 1 + B + -1*C = c(A,B,C,D,B,F,G,H) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) * Step 10: KnowledgePropagation WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. start(A,B,C,D,E,F,G,H) -> a(A,B,C,D,E,F,G,H) [A >= 1 && B = A && C = D && E = F && G = H] (1,1) 1. a(A,B,C,D,E,F,G,H) -> d(A,B,1,D,E,F,G,H) [A >= 1 && G = H && E = F && C = D && B = A] (1,1) 2. d(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + C,H) [A >= 1 + C && A >= C && A >= 1 && C >= 1 && B = A] (1 + A,1) 4. b(A,B,C,D,E,F,G,H) -> d(A,B,1 + C,D,E,F,G,H) [A >= 1 + C && C >= 1 && A >= C && G = 1 + A && B = A] (A,1) 5. b(A,B,C,D,E,F,G,H) -> c(A,B,C,D,B,F,G,H) [A >= G && 1 + A >= G && A >= 1 + C && C >= 1 && G >= 1 + C && B = A] (5 + 7*A + 2*A^2,1) 6. c(A,B,C,D,E,F,G,H) -> c(A,B,C,D,-1 + E,F,G,H) [E >= 1 + C && A >= E && A >= G && C >= 1 && E >= C && G >= 1 + C && B = A] (5*A + 7*A^2 + 2*A^3,1) 7. c(A,B,C,D,E,F,G,H) -> b(A,B,C,D,E,F,1 + G,H) [A >= E && A >= G && E >= 1 && G >= 1 + E && C = E && B = A] (4 + 6*A + 2*A^2,1) 8. start0(A,B,C,D,E,F,G,H) -> start(A,A,D,D,F,F,H,H) True (1,1) Signature: {(a,8);(b,8);(c,8);(d,8);(halt,8);(start,8);(start0,8)} Flow Graph: [0->{1},1->{2},2->{5},4->{2},5->{6},6->{6,7},7->{4,5},8->{0}] Sizebounds: (<0,0,A>, A) (<0,0,B>, A) (<0,0,C>, D) (<0,0,D>, D) (<0,0,E>, F) (<0,0,F>, F) (<0,0,G>, H) (<0,0,H>, H) (<1,0,A>, A) (<1,0,B>, A) (<1,0,C>, 1) (<1,0,D>, D) (<1,0,E>, F) (<1,0,F>, F) (<1,0,G>, H) (<1,0,H>, H) (<2,0,A>, A) (<2,0,B>, A) (<2,0,C>, A) (<2,0,D>, D) (<2,0,E>, ?) (<2,0,F>, F) (<2,0,G>, 3 + A) (<2,0,H>, H) (<4,0,A>, A) (<4,0,B>, A) (<4,0,C>, A) (<4,0,D>, D) (<4,0,E>, ?) (<4,0,F>, F) (<4,0,G>, 3 + A) (<4,0,H>, H) (<5,0,A>, A) (<5,0,B>, A) (<5,0,C>, A) (<5,0,D>, D) (<5,0,E>, A) (<5,0,F>, F) (<5,0,G>, A) (<5,0,H>, H) (<6,0,A>, A) (<6,0,B>, A) (<6,0,C>, A) (<6,0,D>, D) (<6,0,E>, A) (<6,0,F>, F) (<6,0,G>, A) (<6,0,H>, H) (<7,0,A>, A) (<7,0,B>, A) (<7,0,C>, A) (<7,0,D>, D) (<7,0,E>, A) (<7,0,F>, F) (<7,0,G>, 1 + A) (<7,0,H>, H) (<8,0,A>, A) (<8,0,B>, A) (<8,0,C>, D) (<8,0,D>, D) (<8,0,E>, F) (<8,0,F>, F) (<8,0,G>, H) (<8,0,H>, H) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^3))