WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)    -> evalSequentialSingleentryin(A,B)   True         (1,1)
          1.  evalSequentialSingleentryin(A,B)  -> evalSequentialSinglebb1in(0,B)     True         (?,1)
          2.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb5in(A,B)     [A >= B]     (?,1)
          3.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)
          4.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)
          5.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)
          6.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebb5in(A,B)     True         (?,1)
          7.  evalSequentialSinglebbin(A,B)     -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)
          8.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (?,1)
          9.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglereturnin(A,B)  [A >= B]     (?,1)
          10. evalSequentialSinglebb4in(A,B)    -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)
          11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B)      True         (?,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>, B, .= 0) 
          (< 1,0,A>,     0, .= 0) (< 1,0,B>, B, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>, B, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>, B, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>, B, .= 0) 
          (< 5,0,A>,     A, .= 0) (< 5,0,B>, B, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>, B, .= 0) 
          (< 7,0,A>, 1 + A, .+ 1) (< 7,0,B>, B, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>, B, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>, B, .= 0) 
          (<10,0,A>, 1 + A, .+ 1) (<10,0,B>, B, .= 0) 
          (<11,0,A>,     A, .= 0) (<11,0,B>, B, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)    -> evalSequentialSingleentryin(A,B)   True         (1,1)
          1.  evalSequentialSingleentryin(A,B)  -> evalSequentialSinglebb1in(0,B)     True         (?,1)
          2.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb5in(A,B)     [A >= B]     (?,1)
          3.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)
          4.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)
          5.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)
          6.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebb5in(A,B)     True         (?,1)
          7.  evalSequentialSinglebbin(A,B)     -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)
          8.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (?,1)
          9.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglereturnin(A,B)  [A >= B]     (?,1)
          10. evalSequentialSinglebb4in(A,B)    -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)
          11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B)      True         (?,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 2,0,A>, B) (< 2,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (< 9,0,A>, B) (< 9,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
          (<11,0,A>, B) (<11,0,B>, B) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)    -> evalSequentialSingleentryin(A,B)   True         (1,1)
          1.  evalSequentialSingleentryin(A,B)  -> evalSequentialSinglebb1in(0,B)     True         (?,1)
          2.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb5in(A,B)     [A >= B]     (?,1)
          3.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)
          4.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)
          5.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)
          6.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebb5in(A,B)     True         (?,1)
          7.  evalSequentialSinglebbin(A,B)     -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)
          8.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (?,1)
          9.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglereturnin(A,B)  [A >= B]     (?,1)
          10. evalSequentialSinglebb4in(A,B)    -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)
          11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B)      True         (?,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 2,0,A>, B) (< 2,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (< 9,0,A>, B) (< 9,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
          (<11,0,A>, B) (<11,0,B>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(2,8)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)    -> evalSequentialSingleentryin(A,B)   True         (1,1)
          1.  evalSequentialSingleentryin(A,B)  -> evalSequentialSinglebb1in(0,B)     True         (?,1)
          2.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb5in(A,B)     [A >= B]     (?,1)
          3.  evalSequentialSinglebb1in(A,B)    -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)
          4.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)
          5.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)
          6.  evalSequentialSinglebb2in(A,B)    -> evalSequentialSinglebb5in(A,B)     True         (?,1)
          7.  evalSequentialSinglebbin(A,B)     -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)
          8.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (?,1)
          9.  evalSequentialSinglebb5in(A,B)    -> evalSequentialSinglereturnin(A,B)  [A >= B]     (?,1)
          10. evalSequentialSinglebb4in(A,B)    -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)
          11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B)      True         (?,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{2,3},2->{9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 2,0,A>, B) (< 2,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (< 9,0,A>, B) (< 9,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
          (<11,0,A>, B) (<11,0,B>, B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,9,11]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (?,1)
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (?,1)
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (?,1)
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalSequentialSinglebb1in) = 2 + -1*x1 + x2
            p(evalSequentialSinglebb2in) = 2 + -1*x1 + x2
            p(evalSequentialSinglebb4in) = 1 + -1*x1 + x2
            p(evalSequentialSinglebb5in) = 2 + -1*x1 + x2
             p(evalSequentialSinglebbin) = 1 + -1*x1 + x2
          p(evalSequentialSingleentryin) = 2 + x2        
            p(evalSequentialSinglestart) = 2 + x2        
        
        The following rules are strictly oriented:
                            [B >= 1 + A] ==>                               
          evalSequentialSinglebb5in(A,B)   = 2 + -1*A + B                  
                                           > 1 + -1*A + B                  
                                           = evalSequentialSinglebb4in(A,B)
        
        
        The following rules are weakly oriented:
                                      True ==>                                   
            evalSequentialSinglestart(A,B)   = 2 + B                             
                                            >= 2 + B                             
                                             = evalSequentialSingleentryin(A,B)  
        
                                      True ==>                                   
          evalSequentialSingleentryin(A,B)   = 2 + B                             
                                            >= 2 + B                             
                                             = evalSequentialSinglebb1in(0,B)    
        
                              [B >= 1 + A] ==>                                   
            evalSequentialSinglebb1in(A,B)   = 2 + -1*A + B                      
                                            >= 2 + -1*A + B                      
                                             = evalSequentialSinglebb2in(A,B)    
        
                              [0 >= 1 + C] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 2 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebbin(A,B)     
        
                                  [C >= 1] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 2 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebbin(A,B)     
        
                                      True ==>                                   
            evalSequentialSinglebb2in(A,B)   = 2 + -1*A + B                      
                                            >= 2 + -1*A + B                      
                                             = evalSequentialSinglebb5in(A,B)    
        
                                      True ==>                                   
             evalSequentialSinglebbin(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebb1in(1 + A,B)
        
                                      True ==>                                   
            evalSequentialSinglebb4in(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebb5in(1 + A,B)
        
        
* Step 6: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)    
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (?,1)    
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)    
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)    
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)    
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (?,1)    
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)    
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (2 + B,1)
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (?,1)    
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 7: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)    
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (1,1)    
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)    
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)    
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)    
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (?,1)    
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)    
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (2 + B,1)
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (2 + B,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalSequentialSinglebb1in) = 1
            p(evalSequentialSinglebb2in) = 1
            p(evalSequentialSinglebb4in) = 0
            p(evalSequentialSinglebb5in) = 0
             p(evalSequentialSinglebbin) = 1
          p(evalSequentialSingleentryin) = 1
            p(evalSequentialSinglestart) = 1
        
        The following rules are strictly oriented:
                                    True ==>                               
          evalSequentialSinglebb2in(A,B)   = 1                             
                                           > 0                             
                                           = evalSequentialSinglebb5in(A,B)
        
        
        The following rules are weakly oriented:
                                      True ==>                                   
            evalSequentialSinglestart(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSingleentryin(A,B)  
        
                                      True ==>                                   
          evalSequentialSingleentryin(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSinglebb1in(0,B)    
        
                              [B >= 1 + A] ==>                                   
            evalSequentialSinglebb1in(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSinglebb2in(A,B)    
        
                              [0 >= 1 + C] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSinglebbin(A,B)     
        
                                  [C >= 1] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSinglebbin(A,B)     
        
                                      True ==>                                   
             evalSequentialSinglebbin(A,B)   = 1                                 
                                            >= 1                                 
                                             = evalSequentialSinglebb1in(1 + A,B)
        
                              [B >= 1 + A] ==>                                   
            evalSequentialSinglebb5in(A,B)   = 0                                 
                                            >= 0                                 
                                             = evalSequentialSinglebb4in(A,B)    
        
                                      True ==>                                   
            evalSequentialSinglebb4in(A,B)   = 0                                 
                                            >= 0                                 
                                             = evalSequentialSinglebb5in(1 + A,B)
        
        
* Step 8: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)    
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (1,1)    
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (?,1)    
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)    
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)    
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (1,1)    
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)    
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (2 + B,1)
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (2 + B,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalSequentialSinglebb1in) = 2 + -1*x1 + x2
            p(evalSequentialSinglebb2in) = 1 + -1*x1 + x2
            p(evalSequentialSinglebb4in) = -1*x1 + x2    
            p(evalSequentialSinglebb5in) = 1 + -1*x1 + x2
             p(evalSequentialSinglebbin) = 1 + -1*x1 + x2
          p(evalSequentialSingleentryin) = 2 + x2        
            p(evalSequentialSinglestart) = 2 + x2        
        
        The following rules are strictly oriented:
                            [B >= 1 + A] ==>                               
          evalSequentialSinglebb1in(A,B)   = 2 + -1*A + B                  
                                           > 1 + -1*A + B                  
                                           = evalSequentialSinglebb2in(A,B)
        
                            [B >= 1 + A] ==>                               
          evalSequentialSinglebb5in(A,B)   = 1 + -1*A + B                  
                                           > -1*A + B                      
                                           = evalSequentialSinglebb4in(A,B)
        
        
        The following rules are weakly oriented:
                                      True ==>                                   
            evalSequentialSinglestart(A,B)   = 2 + B                             
                                            >= 2 + B                             
                                             = evalSequentialSingleentryin(A,B)  
        
                                      True ==>                                   
          evalSequentialSingleentryin(A,B)   = 2 + B                             
                                            >= 2 + B                             
                                             = evalSequentialSinglebb1in(0,B)    
        
                              [0 >= 1 + C] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebbin(A,B)     
        
                                  [C >= 1] ==>                                   
            evalSequentialSinglebb2in(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebbin(A,B)     
        
                                      True ==>                                   
            evalSequentialSinglebb2in(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebb5in(A,B)    
        
                                      True ==>                                   
             evalSequentialSinglebbin(A,B)   = 1 + -1*A + B                      
                                            >= 1 + -1*A + B                      
                                             = evalSequentialSinglebb1in(1 + A,B)
        
                                      True ==>                                   
            evalSequentialSinglebb4in(A,B)   = -1*A + B                          
                                            >= -1*A + B                          
                                             = evalSequentialSinglebb5in(1 + A,B)
        
        
* Step 9: KnowledgePropagation WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)    
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (1,1)    
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (2 + B,1)
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (?,1)    
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (?,1)    
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (1,1)    
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (?,1)    
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (2 + B,1)
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (2 + B,1)
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0.  evalSequentialSinglestart(A,B)   -> evalSequentialSingleentryin(A,B)   True         (1,1)      
          1.  evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B)     True         (1,1)      
          3.  evalSequentialSinglebb1in(A,B)   -> evalSequentialSinglebb2in(A,B)     [B >= 1 + A] (2 + B,1)  
          4.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [0 >= 1 + C] (2 + B,1)  
          5.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebbin(A,B)      [C >= 1]     (2 + B,1)  
          6.  evalSequentialSinglebb2in(A,B)   -> evalSequentialSinglebb5in(A,B)     True         (1,1)      
          7.  evalSequentialSinglebbin(A,B)    -> evalSequentialSinglebb1in(1 + A,B) True         (4 + 2*B,1)
          8.  evalSequentialSinglebb5in(A,B)   -> evalSequentialSinglebb4in(A,B)     [B >= 1 + A] (2 + B,1)  
          10. evalSequentialSinglebb4in(A,B)   -> evalSequentialSinglebb5in(1 + A,B) True         (2 + B,1)  
        Signature:
          {(evalSequentialSinglebb1in,2)
          ;(evalSequentialSinglebb2in,2)
          ;(evalSequentialSinglebb4in,2)
          ;(evalSequentialSinglebb5in,2)
          ;(evalSequentialSinglebbin,2)
          ;(evalSequentialSingleentryin,2)
          ;(evalSequentialSinglereturnin,2)
          ;(evalSequentialSinglestart,2)
          ;(evalSequentialSinglestop,2)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) 
          (< 1,0,A>, 0) (< 1,0,B>, B) 
          (< 3,0,A>, B) (< 3,0,B>, B) 
          (< 4,0,A>, B) (< 4,0,B>, B) 
          (< 5,0,A>, B) (< 5,0,B>, B) 
          (< 6,0,A>, B) (< 6,0,B>, B) 
          (< 7,0,A>, B) (< 7,0,B>, B) 
          (< 8,0,A>, B) (< 8,0,B>, B) 
          (<10,0,A>, B) (<10,0,B>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))