WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 2. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb5in(A,B) [A >= B] (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (?,1) 9. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglereturnin(A,B) [A >= B] (?,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) 11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 1,0,A>, 0, .= 0) (< 1,0,B>, B, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 7,0,A>, 1 + A, .+ 1) (< 7,0,B>, B, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (<10,0,A>, 1 + A, .+ 1) (<10,0,B>, B, .= 0) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 2. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb5in(A,B) [A >= B] (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (?,1) 9. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglereturnin(A,B) [A >= B] (?,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) 11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<11,0,A>, ?) (<11,0,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 2,0,A>, B) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (< 9,0,A>, B) (< 9,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) (<11,0,A>, B) (<11,0,B>, B) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 2. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb5in(A,B) [A >= B] (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (?,1) 9. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglereturnin(A,B) [A >= B] (?,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) 11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{8,9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 2,0,A>, B) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (< 9,0,A>, B) (< 9,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) (<11,0,A>, B) (<11,0,B>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,8)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 2. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb5in(A,B) [A >= B] (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (?,1) 9. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglereturnin(A,B) [A >= B] (?,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) 11. evalSequentialSinglereturnin(A,B) -> evalSequentialSinglestop(A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{9},3->{4,5,6},4->{7},5->{7},6->{8,9},7->{2,3},8->{10},9->{11},10->{8,9},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 2,0,A>, B) (< 2,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (< 9,0,A>, B) (< 9,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) (<11,0,A>, B) (<11,0,B>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,9,11] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (?,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSequentialSinglebb1in) = 2 + -1*x1 + x2 p(evalSequentialSinglebb2in) = 2 + -1*x1 + x2 p(evalSequentialSinglebb4in) = 1 + -1*x1 + x2 p(evalSequentialSinglebb5in) = 2 + -1*x1 + x2 p(evalSequentialSinglebbin) = 1 + -1*x1 + x2 p(evalSequentialSingleentryin) = 2 + x2 p(evalSequentialSinglestart) = 2 + x2 The following rules are strictly oriented: [B >= 1 + A] ==> evalSequentialSinglebb5in(A,B) = 2 + -1*A + B > 1 + -1*A + B = evalSequentialSinglebb4in(A,B) The following rules are weakly oriented: True ==> evalSequentialSinglestart(A,B) = 2 + B >= 2 + B = evalSequentialSingleentryin(A,B) True ==> evalSequentialSingleentryin(A,B) = 2 + B >= 2 + B = evalSequentialSinglebb1in(0,B) [B >= 1 + A] ==> evalSequentialSinglebb1in(A,B) = 2 + -1*A + B >= 2 + -1*A + B = evalSequentialSinglebb2in(A,B) [0 >= 1 + C] ==> evalSequentialSinglebb2in(A,B) = 2 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebbin(A,B) [C >= 1] ==> evalSequentialSinglebb2in(A,B) = 2 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebbin(A,B) True ==> evalSequentialSinglebb2in(A,B) = 2 + -1*A + B >= 2 + -1*A + B = evalSequentialSinglebb5in(A,B) True ==> evalSequentialSinglebbin(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebb1in(1 + A,B) True ==> evalSequentialSinglebb4in(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebb5in(1 + A,B) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (?,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (2 + B,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (?,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (1,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (?,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (2 + B,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (2 + B,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSequentialSinglebb1in) = 1 p(evalSequentialSinglebb2in) = 1 p(evalSequentialSinglebb4in) = 0 p(evalSequentialSinglebb5in) = 0 p(evalSequentialSinglebbin) = 1 p(evalSequentialSingleentryin) = 1 p(evalSequentialSinglestart) = 1 The following rules are strictly oriented: True ==> evalSequentialSinglebb2in(A,B) = 1 > 0 = evalSequentialSinglebb5in(A,B) The following rules are weakly oriented: True ==> evalSequentialSinglestart(A,B) = 1 >= 1 = evalSequentialSingleentryin(A,B) True ==> evalSequentialSingleentryin(A,B) = 1 >= 1 = evalSequentialSinglebb1in(0,B) [B >= 1 + A] ==> evalSequentialSinglebb1in(A,B) = 1 >= 1 = evalSequentialSinglebb2in(A,B) [0 >= 1 + C] ==> evalSequentialSinglebb2in(A,B) = 1 >= 1 = evalSequentialSinglebbin(A,B) [C >= 1] ==> evalSequentialSinglebb2in(A,B) = 1 >= 1 = evalSequentialSinglebbin(A,B) True ==> evalSequentialSinglebbin(A,B) = 1 >= 1 = evalSequentialSinglebb1in(1 + A,B) [B >= 1 + A] ==> evalSequentialSinglebb5in(A,B) = 0 >= 0 = evalSequentialSinglebb4in(A,B) True ==> evalSequentialSinglebb4in(A,B) = 0 >= 0 = evalSequentialSinglebb5in(1 + A,B) * Step 8: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (1,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (?,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (1,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (2 + B,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (2 + B,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSequentialSinglebb1in) = 2 + -1*x1 + x2 p(evalSequentialSinglebb2in) = 1 + -1*x1 + x2 p(evalSequentialSinglebb4in) = -1*x1 + x2 p(evalSequentialSinglebb5in) = 1 + -1*x1 + x2 p(evalSequentialSinglebbin) = 1 + -1*x1 + x2 p(evalSequentialSingleentryin) = 2 + x2 p(evalSequentialSinglestart) = 2 + x2 The following rules are strictly oriented: [B >= 1 + A] ==> evalSequentialSinglebb1in(A,B) = 2 + -1*A + B > 1 + -1*A + B = evalSequentialSinglebb2in(A,B) [B >= 1 + A] ==> evalSequentialSinglebb5in(A,B) = 1 + -1*A + B > -1*A + B = evalSequentialSinglebb4in(A,B) The following rules are weakly oriented: True ==> evalSequentialSinglestart(A,B) = 2 + B >= 2 + B = evalSequentialSingleentryin(A,B) True ==> evalSequentialSingleentryin(A,B) = 2 + B >= 2 + B = evalSequentialSinglebb1in(0,B) [0 >= 1 + C] ==> evalSequentialSinglebb2in(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebbin(A,B) [C >= 1] ==> evalSequentialSinglebb2in(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebbin(A,B) True ==> evalSequentialSinglebb2in(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebb5in(A,B) True ==> evalSequentialSinglebbin(A,B) = 1 + -1*A + B >= 1 + -1*A + B = evalSequentialSinglebb1in(1 + A,B) True ==> evalSequentialSinglebb4in(A,B) = -1*A + B >= -1*A + B = evalSequentialSinglebb5in(1 + A,B) * Step 9: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (1,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (2 + B,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (?,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (?,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (1,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (?,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (2 + B,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (2 + B,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 10: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSequentialSinglestart(A,B) -> evalSequentialSingleentryin(A,B) True (1,1) 1. evalSequentialSingleentryin(A,B) -> evalSequentialSinglebb1in(0,B) True (1,1) 3. evalSequentialSinglebb1in(A,B) -> evalSequentialSinglebb2in(A,B) [B >= 1 + A] (2 + B,1) 4. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [0 >= 1 + C] (2 + B,1) 5. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebbin(A,B) [C >= 1] (2 + B,1) 6. evalSequentialSinglebb2in(A,B) -> evalSequentialSinglebb5in(A,B) True (1,1) 7. evalSequentialSinglebbin(A,B) -> evalSequentialSinglebb1in(1 + A,B) True (4 + 2*B,1) 8. evalSequentialSinglebb5in(A,B) -> evalSequentialSinglebb4in(A,B) [B >= 1 + A] (2 + B,1) 10. evalSequentialSinglebb4in(A,B) -> evalSequentialSinglebb5in(1 + A,B) True (2 + B,1) Signature: {(evalSequentialSinglebb1in,2) ;(evalSequentialSinglebb2in,2) ;(evalSequentialSinglebb4in,2) ;(evalSequentialSinglebb5in,2) ;(evalSequentialSinglebbin,2) ;(evalSequentialSingleentryin,2) ;(evalSequentialSinglereturnin,2) ;(evalSequentialSinglestart,2) ;(evalSequentialSinglestop,2)} Flow Graph: [0->{1},1->{3},3->{4,5,6},4->{7},5->{7},6->{8},7->{3},8->{10},10->{8}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 1,0,A>, 0) (< 1,0,B>, B) (< 3,0,A>, B) (< 3,0,B>, B) (< 4,0,A>, B) (< 4,0,B>, B) (< 5,0,A>, B) (< 5,0,B>, B) (< 6,0,A>, B) (< 6,0,B>, B) (< 7,0,A>, B) (< 7,0,B>, B) (< 8,0,A>, B) (< 8,0,B>, B) (<10,0,A>, B) (<10,0,B>, B) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^1))