WORST_CASE(?,O(n^6))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True         (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True         (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)      [B >= A]     (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)   [A >= 1 + B] (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)
          13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True         (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>,     A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) (< 0,0,E>,     E, .= 0) 
          (< 1,0,A>,     1, .= 1) (< 1,0,B>, B, .= 0) (< 1,0,C>,     C, .= 0) (< 1,0,D>,     D, .= 0) (< 1,0,E>,     E, .= 0) 
          (< 2,0,A>,     A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     1, .= 1) (< 2,0,D>,     D, .= 0) (< 2,0,E>,     E, .= 0) 
          (< 3,0,A>,     A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) (< 3,0,E>,     E, .= 0) 
          (< 4,0,A>,     A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>, 1 + A, .+ 1) (< 4,0,E>,     E, .= 0) 
          (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     D, .= 0) (< 5,0,E>,     E, .= 0) 
          (< 6,0,A>,     A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     D, .= 0) (< 6,0,E>,     1, .= 1) 
          (< 7,0,A>,     A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>,     D, .= 0) (< 7,0,E>,     E, .= 0) 
          (< 8,0,A>,     A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,D>,     D, .= 0) (< 8,0,E>,     E, .= 0) 
          (< 9,0,A>,     A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>,     C, .= 0) (< 9,0,D>,     D, .= 0) (< 9,0,E>,     E, .= 0) 
          (<10,0,A>,     A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,     D, .= 0) (<10,0,E>, 1 + E, .+ 1) 
          (<11,0,A>,     A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>,     E, .= 0) 
          (<12,0,A>,     A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, 1 + C, .+ 1) (<12,0,D>,     D, .= 0) (<12,0,E>,     E, .= 0) 
          (<13,0,A>,     A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>,     C, .= 0) (<13,0,D>,     D, .= 0) (<13,0,E>,     E, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True         (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True         (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)      [B >= A]     (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)   [A >= 1 + B] (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)
          13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True         (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)    -> evalfentryin(A,B,C,D,E)    True         (1,1)
          1.  evalfentryin(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True         (?,1)
          2.  evalfbb10in(A,B,C,D,E)   -> evalfbb8in(A,B,1,D,E)      [B >= A]     (?,1)
          3.  evalfbb10in(A,B,C,D,E)   -> evalfreturnin(A,B,C,D,E)   [A >= 1 + B] (?,1)
          4.  evalfbb8in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)
          5.  evalfbb8in(A,B,C,D,E)    -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)
          6.  evalfbb6in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)    -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)
          8.  evalfbb4in(A,B,C,D,E)    -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)
          9.  evalfbb4in(A,B,C,D,E)    -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)
          10. evalfbb3in(A,B,C,D,E)    -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)
          11. evalfbb5in(A,B,C,D,E)    -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)
          12. evalfbb7in(A,B,C,D,E)    -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)
          13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E)       True         (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7}
          ,12->{4,5},13->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,13]
* Step 4: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (?,1)
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (?,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
           p(evalfbb10in) = 2 + -1*x1 + x2
            p(evalfbb3in) = 1 + -1*x1 + x2
            p(evalfbb4in) = 1 + -1*x1 + x2
            p(evalfbb5in) = 1 + -1*x1 + x2
            p(evalfbb6in) = 1 + -1*x1 + x2
            p(evalfbb7in) = 1 + -1*x1 + x2
            p(evalfbb8in) = 1 + -1*x1 + x2
          p(evalfentryin) = 1 + x2        
            p(evalfstart) = 1 + x2        
        
        The following rules are strictly oriented:
                        [B >= A] ==>                      
          evalfbb10in(A,B,C,D,E)   = 2 + -1*A + B         
                                   > 1 + -1*A + B         
                                   = evalfbb8in(A,B,1,D,E)
        
        
        The following rules are weakly oriented:
                             True ==>                           
            evalfstart(A,B,C,D,E)   = 1 + B                     
                                   >= 1 + B                     
                                    = evalfentryin(A,B,C,D,E)   
        
                             True ==>                           
          evalfentryin(A,B,C,D,E)   = 1 + B                     
                                   >= 1 + B                     
                                    = evalfbb10in(1,B,C,D,E)    
        
                         [A >= C] ==>                           
            evalfbb8in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb6in(A,B,C,1 + A,E) 
        
                     [C >= 1 + A] ==>                           
            evalfbb8in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb10in(1 + A,B,C,D,E)
        
                         [B >= D] ==>                           
            evalfbb6in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb4in(A,B,C,D,1)     
        
                     [D >= 1 + B] ==>                           
            evalfbb6in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb7in(A,B,C,D,E)     
        
                         [D >= E] ==>                           
            evalfbb4in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb3in(A,B,C,D,E)     
        
                     [E >= 1 + D] ==>                           
            evalfbb4in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb5in(A,B,C,D,E)     
        
                             True ==>                           
            evalfbb3in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb4in(A,B,C,D,1 + E) 
        
                             True ==>                           
            evalfbb5in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb6in(A,B,C,1 + D,E) 
        
                             True ==>                           
            evalfbb7in(A,B,C,D,E)   = 1 + -1*A + B              
                                   >= 1 + -1*A + B              
                                    = evalfbb8in(A,B,1 + C,D,E) 
        
        
* Step 5: KnowledgePropagation WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (?,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 6: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1)    
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,12,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 1
        
        The following rules are strictly oriented:
                   [C >= 1 + A] ==>                           
          evalfbb8in(A,B,C,D,E)   = 1                         
                                  > 0                         
                                  = evalfbb10in(1 + A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                       [A >= C] ==>                          
          evalfbb8in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb6in(A,B,C,1 + A,E)
        
                       [B >= D] ==>                          
          evalfbb6in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb4in(A,B,C,D,1)    
        
                   [D >= 1 + B] ==>                          
          evalfbb6in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb7in(A,B,C,D,E)    
        
                       [D >= E] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb3in(A,B,C,D,E)    
        
                   [E >= 1 + D] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb5in(A,B,C,D,E)    
        
                           True ==>                          
          evalfbb3in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb4in(A,B,C,D,1 + E)
        
                           True ==>                          
          evalfbb5in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb6in(A,B,C,1 + D,E)
        
                           True ==>                          
          evalfbb7in(A,B,C,D,E)   = 1                        
                                 >= 1                        
                                  = evalfbb8in(A,B,1 + C,D,E)
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
        (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)    
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)    
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (?,1)    
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)    
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)    
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)    
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)    
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)    
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)    
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)    
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,12,7,4,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + x1 + -1*x3
           p(evalfbb3in) = 1 + x1 + -1*x3
           p(evalfbb4in) = 1 + x1 + -1*x3
           p(evalfbb5in) = 1 + x1 + -1*x3
           p(evalfbb6in) = 1 + x1 + -1*x3
           p(evalfbb7in) = 1 + x1 + -1*x3
           p(evalfbb8in) = 2 + x1 + -1*x3
        
        The following rules are strictly oriented:
                       [A >= C] ==>                          
          evalfbb8in(A,B,C,D,E)   = 2 + A + -1*C             
                                  > 1 + A + -1*C             
                                  = evalfbb6in(A,B,C,1 + A,E)
        
        
        The following rules are weakly oriented:
                   [C >= 1 + A] ==>                           
          evalfbb8in(A,B,C,D,E)   = 2 + A + -1*C              
                                 >= 2 + A + -1*C              
                                  = evalfbb10in(1 + A,B,C,D,E)
        
                       [B >= D] ==>                           
          evalfbb6in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb4in(A,B,C,D,1)     
        
                   [D >= 1 + B] ==>                           
          evalfbb6in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb7in(A,B,C,D,E)     
        
                       [D >= E] ==>                           
          evalfbb4in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb3in(A,B,C,D,E)     
        
                   [E >= 1 + D] ==>                           
          evalfbb4in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb5in(A,B,C,D,E)     
        
                           True ==>                           
          evalfbb3in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb4in(A,B,C,D,1 + E) 
        
                           True ==>                           
          evalfbb5in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb6in(A,B,C,1 + D,E) 
        
                           True ==>                           
          evalfbb7in(A,B,C,D,E)   = 1 + A + -1*C              
                                 >= 1 + A + -1*C              
                                  = evalfbb8in(A,B,1 + C,D,E) 
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
        (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)            
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)            
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)            
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (?,1)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,5,12,7,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 1
           p(evalfbb8in) = 0
        
        The following rules are strictly oriented:
                           True ==>                          
          evalfbb7in(A,B,C,D,E)   = 1                        
                                  > 0                        
                                  = evalfbb8in(A,B,1 + C,D,E)
        
        
        The following rules are weakly oriented:
                        [B >= A] ==>                           
          evalfbb10in(A,B,C,D,E)   = 0                         
                                  >= 0                         
                                   = evalfbb8in(A,B,1,D,E)     
        
                    [C >= 1 + A] ==>                           
           evalfbb8in(A,B,C,D,E)   = 0                         
                                  >= 0                         
                                   = evalfbb10in(1 + A,B,C,D,E)
        
                        [B >= D] ==>                           
           evalfbb6in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb4in(A,B,C,D,1)     
        
                    [D >= 1 + B] ==>                           
           evalfbb6in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb7in(A,B,C,D,E)     
        
                        [D >= E] ==>                           
           evalfbb4in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb3in(A,B,C,D,E)     
        
                    [E >= 1 + D] ==>                           
           evalfbb4in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb5in(A,B,C,D,E)     
        
                            True ==>                           
           evalfbb3in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb4in(A,B,C,D,1 + E) 
        
                            True ==>                           
           evalfbb5in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb6in(A,B,C,1 + D,E) 
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
        (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
* Step 9: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)            
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (?,1)            
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)            
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (3 + 4*B + B^2,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [2,5,12,7,11,9,6,10,8], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 1
           p(evalfbb4in) = 1
           p(evalfbb5in) = 1
           p(evalfbb6in) = 1
           p(evalfbb7in) = 0
           p(evalfbb8in) = 0
        
        The following rules are strictly oriented:
                   [D >= 1 + B] ==>                      
          evalfbb6in(A,B,C,D,E)   = 1                    
                                  > 0                    
                                  = evalfbb7in(A,B,C,D,E)
        
        
        The following rules are weakly oriented:
                        [B >= A] ==>                           
          evalfbb10in(A,B,C,D,E)   = 0                         
                                  >= 0                         
                                   = evalfbb8in(A,B,1,D,E)     
        
                    [C >= 1 + A] ==>                           
           evalfbb8in(A,B,C,D,E)   = 0                         
                                  >= 0                         
                                   = evalfbb10in(1 + A,B,C,D,E)
        
                        [B >= D] ==>                           
           evalfbb6in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb4in(A,B,C,D,1)     
        
                        [D >= E] ==>                           
           evalfbb4in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb3in(A,B,C,D,E)     
        
                    [E >= 1 + D] ==>                           
           evalfbb4in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb5in(A,B,C,D,E)     
        
                            True ==>                           
           evalfbb3in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb4in(A,B,C,D,1 + E) 
        
                            True ==>                           
           evalfbb5in(A,B,C,D,E)   = 1                         
                                  >= 1                         
                                   = evalfbb6in(A,B,C,1 + D,E) 
        
                            True ==>                           
           evalfbb7in(A,B,C,D,E)   = 0                         
                                  >= 0                         
                                   = evalfbb8in(A,B,1 + C,D,E) 
        
        We use the following global sizebounds:
        (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
        (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
        (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
        (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
        (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
        (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
        (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
        (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
        (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
        (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
        (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
        (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
* Step 10: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D,E)   -> evalfentryin(A,B,C,D,E)    True         (1,1)            
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)            
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)            
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (3 + 4*B + B^2,1)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) 
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5,6,7,8,9,10,11,12]
    + Details:
        We chained rule 0 to obtain the rules [13] .
* Step 11: UnreachableRules WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          1.  evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E)     True         (1,1)            
          2.  evalfbb10in(A,B,C,D,E)  -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)        
          4.  evalfbb8in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)   -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)            
          7.  evalfbb6in(A,B,C,D,E)   -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)   -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)            
          9.  evalfbb4in(A,B,C,D,E)   -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)            
          10. evalfbb3in(A,B,C,D,E)   -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)            
          11. evalfbb5in(A,B,C,D,E)   -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)            
          12. evalfbb7in(A,B,C,D,E)   -> evalfbb8in(A,B,1 + C,D,E)  True         (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)   -> evalfbb10in(1,B,C,D,E)     True         (1,2)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2}]
        Sizebounds:
          (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) 
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 12: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          2.  evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E)      [B >= A]     (1 + B,1)        
          4.  evalfbb8in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]     (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)      [B >= D]     (?,1)            
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B] (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)      [D >= E]     (?,1)            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D] (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True         (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True         (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True         (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True         (1,2)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2}]
        Sizebounds:
          (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
    + Applied Processor:
        ChainProcessor False [2,4,5,6,7,8,9,10,11,12,13]
    + Details:
        We chained rule 2 to obtain the rules [14,15] .
* Step 13: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          4.  evalfbb8in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + A,E)  [A >= C]               (3 + 4*B + B^2,1)
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]           (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)      [B >= D]               (?,1)            
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B]           (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)      [D >= E]               (?,1)            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D]           (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                   (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                   (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                   (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                   (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]     (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [4->{6,7},5->{14,15},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{14,15},14->{6,7}
          ,15->{14,15}]
        Sizebounds:
          (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [4,5,6,7,8,9,10,11,12,13,14,15]
    + Details:
        We chained rule 4 to obtain the rules [16,17] .
* Step 14: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]               (1 + B,1)        
          6.  evalfbb6in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1)      [B >= D]                   (?,1)            
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B]               (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)      [D >= E]                   (?,1)            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D]               (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                       (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)  [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)  [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{5,16,17},13->{14,15},14->{6,7}
          ,15->{14,15},16->{8,9},17->{12}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,6,7,8,9,10,11,12,13,14,15,16,17]
    + Details:
        We chained rule 6 to obtain the rules [18,19] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]               (1 + B,1)        
          7.  evalfbb6in(A,B,C,D,E)  -> evalfbb7in(A,B,C,D,E)      [D >= 1 + B]               (3 + 4*B + B^2,1)
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)      [D >= E]                   (?,1)            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D]               (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                       (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)  [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)  [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)      [B >= D && D >= 1]         (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)      [B >= D && 1 >= 1 + D]     (?,2)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},7->{12},8->{10},9->{11},10->{8,9},11->{7,18,19},12->{5,16,17},13->{14,15},14->{7,18,19}
          ,15->{14,15},16->{8,9},17->{12},18->{10},19->{11}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,7,8,9,10,11,12,13,14,15,16,17,18,19]
    + Details:
        We chained rule 7 to obtain the rules [20] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]               (1 + B,1)        
          8.  evalfbb4in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,E)      [D >= E]                   (?,1)            
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D]               (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                       (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)  [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)  [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)      [B >= D && D >= 1]         (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)      [B >= D && 1 >= 1 + D]     (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  [D >= 1 + B]               (3 + 4*B + B^2,2)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},8->{10},9->{11},10->{8,9},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15}
          ,16->{8,9},17->{12},18->{10},19->{11},20->{5,16,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,8,9,10,11,12,13,14,15,16,17,18,19,20]
    + Details:
        We chained rule 8 to obtain the rules [21] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]               (1 + B,1)        
          9.  evalfbb4in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,E)      [E >= 1 + D]               (?,1)            
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                       (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)  [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)  [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)      [B >= D && D >= 1]         (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)      [B >= D && 1 >= 1 + D]     (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  [D >= 1 + B]               (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  [D >= E]                   (?,2)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},9->{11},10->{9,21},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{9
          ,21},17->{12},18->{10},19->{11},20->{5,16,17},21->{9,21}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,9,10,11,12,13,14,15,16,17,18,19,20,21]
    + Details:
        We chained rule 9 to obtain the rules [22] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A]               (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  True                       (?,1)            
          11. evalfbb5in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)     True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)  [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)  [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)  [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)      [B >= D && D >= 1]         (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)      [B >= D && 1 >= 1 + D]     (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)  [D >= 1 + B]               (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)  [D >= E]                   (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)  [E >= 1 + D]               (?,2)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},10->{21,22},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22}
          ,17->{12},18->{10},19->{11},20->{5,16,17},21->{21,22},22->{18,19,20}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,10,11,12,13,14,15,16,17,18,19,20,21,22]
    + Details:
        We chained rule 11 to obtain the rules [23,24,25] .
* Step 19: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)    [C >= 1 + A]               (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)     True                       (?,1)            
          12. evalfbb7in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)     True                       (3 + 4*B + B^2,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)        True                       (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)     [B >= A && A >= 1]         (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)    [B >= A && 1 >= 1 + A]     (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)     [A >= C && B >= 1 + A]     (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)     [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)         [B >= D && D >= 1]         (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)         [B >= D && 1 >= 1 + D]     (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)     [D >= 1 + B]               (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)     [D >= E]                   (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)     [E >= 1 + D]               (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)     [B >= 1 + D && 1 + D >= 1] (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)     [B >= 1 + D && 1 >= 2 + D] (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B]           (?,3)            
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},10->{21,22},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22},17->{12},18->{10}
          ,19->{23,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25]
    + Details:
        We chained rule 12 to obtain the rules [26,27,28] .
* Step 20: ChainProcessor WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                           (1,2)            
          14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E)      [B >= A && A >= 1]             (1 + B,2)        
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]               (3 + 4*B + B^2,2)
          27. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,1 + A,1)  [A >= 1 + C && B >= 1 + A]     (3 + 4*B + B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3)
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{14,15},10->{21,22},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22},17->{26,27,28},18->{10},19->{23
          ,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{14,15},27->{21
          ,22},28->{26,27,28}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
    + Applied Processor:
        ChainProcessor False [5,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]
    + Details:
        We chained rule 14 to obtain the rules [29,30,31] .
* Step 21: UnsatPaths WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          27. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,1 + A,1)  [A >= 1 + C && B >= 1 + A]                     (3 + 4*B + B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          30. evalfbb10in(A,B,C,D,E) -> evalfbb5in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 >= 2 + A] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,30,31},10->{21,22},13->{15,29,30,31},15->{15,29,30,31},16->{21,22},17->{26,27,28},18->{10}
          ,19->{23,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,30
          ,31},27->{21,22},28->{26,27,28},29->{10},30->{23,24,25},31->{5,16,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(5,30)
                                                             ,(13,15)
                                                             ,(13,30)
                                                             ,(15,30)
                                                             ,(17,27)
                                                             ,(26,30)
                                                             ,(28,27)
                                                             ,(30,23)
                                                             ,(30,24)
                                                             ,(30,25)
                                                             ,(31,16)]
* Step 22: UnreachableRules WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          27. evalfbb7in(A,B,C,D,E)  -> evalfbb4in(A,B,1 + C,1 + A,1)  [A >= 1 + C && B >= 1 + A]                     (3 + 4*B + B^2,3)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          30. evalfbb10in(A,B,C,D,E) -> evalfbb5in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 >= 2 + A] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},27->{21,22}
          ,28->{26,28},29->{10},30->{},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [27,30]
* Step 23: LocalSizeboundsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) 
          (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) 
          (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 5,0,A>,     1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,         D, .= 0) (< 5,0,E>,     E, .= 0) 
          (<10,0,A>,         A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,     C, .= 0) (<10,0,D>,         D, .= 0) (<10,0,E>, 1 + E, .+ 1) 
          (<13,0,A>,         1, .= 1) (<13,0,B>, B, .= 0) (<13,0,C>,     C, .= 0) (<13,0,D>,         D, .= 0) (<13,0,E>,     E, .= 0) 
          (<15,0,A>, 1 + A + B, .* 1) (<15,0,B>, B, .= 0) (<15,0,C>,     1, .= 1) (<15,0,D>,         D, .= 0) (<15,0,E>,     E, .= 0) 
          (<16,0,A>,         A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>,     C, .= 0) (<16,0,D>,     1 + A, .+ 1) (<16,0,E>,     1, .= 1) 
          (<17,0,A>,         A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>,     C, .= 0) (<17,0,D>, 1 + A + B, .* 1) (<17,0,E>,     E, .= 0) 
          (<18,0,A>,         A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>,     C, .= 0) (<18,0,D>,         D, .= 0) (<18,0,E>,     1, .= 1) 
          (<19,0,A>,         A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>,     C, .= 0) (<19,0,D>,         D, .= 0) (<19,0,E>,     1, .= 1) 
          (<20,0,A>,         A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 1 + C, .+ 1) (<20,0,D>,         D, .= 0) (<20,0,E>,     E, .= 0) 
          (<21,0,A>,         A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>,     C, .= 0) (<21,0,D>,         D, .= 0) (<21,0,E>, 1 + E, .+ 1) 
          (<22,0,A>,         A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>,     C, .= 0) (<22,0,D>,     1 + D, .+ 1) (<22,0,E>,     E, .= 0) 
          (<23,0,A>,         A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>,     C, .= 0) (<23,0,D>, 1 + B + D, .* 1) (<23,0,E>,     1, .= 1) 
          (<24,0,A>,         A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>,     C, .= 0) (<24,0,D>, 1 + B + D, .* 1) (<24,0,E>,     1, .= 1) 
          (<25,0,A>,         A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, 1 + C, .+ 1) (<25,0,D>,     1 + D, .+ 1) (<25,0,E>,     E, .= 0) 
          (<26,0,A>,     1 + A, .+ 1) (<26,0,B>, B, .= 0) (<26,0,C>, 1 + C, .+ 1) (<26,0,D>,         D, .= 0) (<26,0,E>,     E, .= 0) 
          (<28,0,A>,         A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, 1 + C, .+ 1) (<28,0,D>, 1 + A + B, .* 1) (<28,0,E>,     E, .= 0) 
          (<29,0,A>,         A, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>,     1, .= 1) (<29,0,D>,     1 + A, .+ 1) (<29,0,E>,     1, .= 1) 
          (<31,0,A>,         A, .= 0) (<31,0,B>, B, .= 0) (<31,0,C>,     2, .= 2) (<31,0,D>,     1 + A, .+ 1) (<31,0,E>,     E, .= 0) 
* Step 24: SizeboundsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) 
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) 
          (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) 
          (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) 
          (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) 
          (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>,               ?) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,               2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,               E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>,               ?) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,               1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>,               ?) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,               1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,               1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,               1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,               1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,               1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>,               ?) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>,               ?) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,               1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>,               ?) 
* Step 25: LocationConstraintsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>,               ?) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,               2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,               E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>,               ?) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,               1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>,               ?) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,               1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,               1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,               1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,               1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,               1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>,               ?) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>,               ?) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,               1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>,               ?) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  5 :  True 10 :  True 13 :  True 15 :  True 16 :  True 17 :  True 18 :  [False] 19 :  [False] 20 :  [False] 21 :  True 22 :  True 23 :  [B >= D] 24 :  [B >= D] 25 :  [B >= D] 26 :  [A >= C] 28 :  [A >= C] 29 :  True 31 :  True .
* Step 26: SizeboundsProc WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>,               ?) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,               2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,               E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>,               ?) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,               1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>,               ?) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,               1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,               1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,               1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,               1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,               1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>,               ?) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>,               ?) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,               1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>,               ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 27: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)        
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)            
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)            
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)        
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)            
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)            
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)            
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)            
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)            
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)            
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (?,3)            
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)        
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)        
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [20,22,10,18,23,19,24,29,15,26,17,25,31,28,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + -1*x1 + x2
           p(evalfbb3in) = 2             
           p(evalfbb4in) = 2             
           p(evalfbb5in) = 2             
           p(evalfbb6in) = 2             
           p(evalfbb7in) = -1*x1 + x2    
           p(evalfbb8in) = 1             
        
        The following rules are strictly oriented:
        [A >= C && 1 + A >= 1 + B] ==>                              
             evalfbb8in(A,B,C,D,E)   = 1                            
                                     > -1*A + B                     
                                     = evalfbb7in(A,B,C,1 + A,E)    
        
                      [D >= 1 + B] ==>                              
             evalfbb6in(A,B,C,D,E)   = 2                            
                                     > 1                            
                                     = evalfbb8in(A,B,1 + C,D,E)    
        
                  [1 + D >= 1 + B] ==>                              
             evalfbb5in(A,B,C,D,E)   = 2                            
                                     > 1                            
                                     = evalfbb8in(A,B,1 + C,1 + D,E)
        
        
        The following rules are weakly oriented:
                                                  True ==>                               
                                 evalfbb3in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                [B >= A && 1 >= 1 + A] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B                  
                                                        >= -1*A + B                      
                                                         = evalfbb10in(1 + A,B,1,D,E)    
        
                                    [B >= D && D >= 1] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb3in(A,B,C,D,1)         
        
                                [B >= D && 1 >= 1 + D] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb5in(A,B,C,D,1)         
        
                                              [D >= E] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                          [E >= 1 + D] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb6in(A,B,C,1 + D,E)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb3in(A,B,C,1 + D,1)     
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb5in(A,B,C,1 + D,1)     
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A + B                      
                                                        >= -1*A + B                      
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A + B                      
                                                        >= -1*A + B                      
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B                  
                                                        >= 2                             
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B                  
                                                        >= 1                             
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 28: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                     
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)                         
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                         
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                     
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)             
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)             
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)                         
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)                         
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)             
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                         
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                         
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)                         
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (?,3)                         
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)             
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)             
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                     
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                     
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + -1*x1
           p(evalfbb3in) = -1*x4    
           p(evalfbb4in) = -1*x4    
           p(evalfbb5in) = -1*x4    
           p(evalfbb6in) = -1*x4    
           p(evalfbb7in) = -1*x1    
           p(evalfbb8in) = -1*x1    
        
        The following rules are strictly oriented:
            [B >= A && 1 >= 1 + A] ==>                           
            evalfbb10in(A,B,C,D,E)   = 1 + -1*A                  
                                     > -1*A                      
                                     = evalfbb10in(1 + A,B,1,D,E)
        
        [B >= 1 + D && 1 >= 2 + D] ==>                           
             evalfbb5in(A,B,C,D,E)   = -1*D                      
                                     > -1 + -1*D                 
                                     = evalfbb5in(A,B,C,1 + D,1) 
        
        
        The following rules are weakly oriented:
                                          [C >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                                  True ==>                               
                                 evalfbb3in(A,B,C,D,E)   = -1*D                          
                                                        >= -1*D                          
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                [A >= C && B >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1 + -1*A                     
                                                         = evalfbb4in(A,B,C,1 + A,1)     
        
                            [A >= C && 1 + A >= 1 + B] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                                    [B >= D && D >= 1] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = -1*D                          
                                                        >= -1*D                          
                                                         = evalfbb3in(A,B,C,D,1)         
        
                                [B >= D && 1 >= 1 + D] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = -1*D                          
                                                        >= -1*D                          
                                                         = evalfbb5in(A,B,C,D,1)         
        
                                              [D >= E] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = -1*D                          
                                                        >= -1*D                          
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                          [E >= 1 + D] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = -1*D                          
                                                        >= -1 + -1*D                     
                                                         = evalfbb6in(A,B,C,1 + D,E)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = -1*D                          
                                                        >= -1 + -1*D                     
                                                         = evalfbb3in(A,B,C,1 + D,1)     
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= -1 + -1*A                     
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= -1*A                          
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 29: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)                                               
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)                                               
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)                                               
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                                               
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (?,3)                                               
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + -1*x1
           p(evalfbb3in) = 2 + -1*x4
           p(evalfbb4in) = 1 + -1*x4
           p(evalfbb5in) = 2        
           p(evalfbb6in) = 2 + -1*x4
           p(evalfbb7in) = -1*x1    
           p(evalfbb8in) = -1*x1    
        
        The following rules are strictly oriented:
            [B >= A && 1 >= 1 + A] ==>                           
            evalfbb10in(A,B,C,D,E)   = 1 + -1*A                  
                                     > -1*A                      
                                     = evalfbb10in(1 + A,B,1,D,E)
        
        [B >= 1 + D && 1 + D >= 1] ==>                           
             evalfbb5in(A,B,C,D,E)   = 2                         
                                     > 1 + -1*D                  
                                     = evalfbb3in(A,B,C,1 + D,1) 
        
        
        The following rules are weakly oriented:
                                          [C >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                                  True ==>                               
                                 evalfbb3in(A,B,C,D,E)   = 2 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                [A >= C && B >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb4in(A,B,C,1 + A,1)     
        
                            [A >= C && 1 + A >= 1 + B] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                                    [B >= D && D >= 1] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 2 + -1*D                      
                                                        >= 2 + -1*D                      
                                                         = evalfbb3in(A,B,C,D,1)         
        
                                [B >= D && 1 >= 1 + D] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 2 + -1*D                      
                                                        >= 2                             
                                                         = evalfbb5in(A,B,C,D,1)         
        
                                              [D >= E] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 1 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                          [E >= 1 + D] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 1 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb6in(A,B,C,1 + D,E)     
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 2                             
                                                        >= 2                             
                                                         = evalfbb5in(A,B,C,1 + D,1)     
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= 1 + -1*A                      
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= -1*A                          
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 30: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)                                               
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)                                               
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (?,2)                                               
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                                               
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + -1*x1
           p(evalfbb3in) = 2 + -1*x4
           p(evalfbb4in) = 1 + -1*x4
           p(evalfbb5in) = 1        
           p(evalfbb6in) = 2 + -1*x4
           p(evalfbb7in) = -1*x1    
           p(evalfbb8in) = -1*x1    
        
        The following rules are strictly oriented:
          [B >= A && 1 >= 1 + A] ==>                           
          evalfbb10in(A,B,C,D,E)   = 1 + -1*A                  
                                   > -1*A                      
                                   = evalfbb10in(1 + A,B,1,D,E)
        
          [B >= D && 1 >= 1 + D] ==>                           
           evalfbb6in(A,B,C,D,E)   = 2 + -1*D                  
                                   > 1                         
                                   = evalfbb5in(A,B,C,D,1)     
        
        
        The following rules are weakly oriented:
                                          [C >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                                  True ==>                               
                                 evalfbb3in(A,B,C,D,E)   = 2 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                [A >= C && B >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb4in(A,B,C,1 + A,1)     
        
                            [A >= C && 1 + A >= 1 + B] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                                    [B >= D && D >= 1] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 2 + -1*D                      
                                                        >= 2 + -1*D                      
                                                         = evalfbb3in(A,B,C,D,1)         
        
                                              [D >= E] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 1 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                          [E >= 1 + D] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 1 + -1*D                      
                                                        >= 1 + -1*D                      
                                                         = evalfbb6in(A,B,C,1 + D,E)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 1                             
                                                        >= 1 + -1*D                      
                                                         = evalfbb3in(A,B,C,1 + D,1)     
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 1                             
                                                        >= 1                             
                                                         = evalfbb5in(A,B,C,1 + D,1)     
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = -1*A                          
                                                        >= -1*A                          
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= 1 + -1*A                      
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A                      
                                                        >= -1*A                          
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 31: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)                                               
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (?,2)                                               
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2)
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                                               
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 1 + -1*x1 + x2
           p(evalfbb3in) = 1 + x2 + -1*x4
           p(evalfbb4in) = 1 + x2 + -1*x4
           p(evalfbb5in) = 1 + x2 + -1*x4
           p(evalfbb6in) = 2 + x2 + -1*x4
           p(evalfbb7in) = -1*x1 + x2    
           p(evalfbb8in) = -1*x1 + x2    
        
        The following rules are strictly oriented:
                                [B >= A && 1 >= 1 + A] ==>                           
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B              
                                                         > -1*A + B                  
                                                         = evalfbb10in(1 + A,B,1,D,E)
        
                                    [B >= D && D >= 1] ==>                           
                                 evalfbb6in(A,B,C,D,E)   = 2 + B + -1*D              
                                                         > 1 + B + -1*D              
                                                         = evalfbb3in(A,B,C,D,1)     
        
                                [B >= D && 1 >= 1 + D] ==>                           
                                 evalfbb6in(A,B,C,D,E)   = 2 + B + -1*D              
                                                         > 1 + B + -1*D              
                                                         = evalfbb5in(A,B,C,D,1)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                           
                                 evalfbb5in(A,B,C,D,E)   = 1 + B + -1*D              
                                                         > B + -1*D                  
                                                         = evalfbb3in(A,B,C,1 + D,1) 
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                           
                                 evalfbb5in(A,B,C,D,E)   = 1 + B + -1*D              
                                                         > B + -1*D                  
                                                         = evalfbb5in(A,B,C,1 + D,1) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                           
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B              
                                                         > -1*A + B                  
                                                         = evalfbb3in(A,B,1,1 + A,1) 
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                           
                                evalfbb10in(A,B,C,D,E)   = 1 + -1*A + B              
                                                         > -1*A + B                  
                                                         = evalfbb8in(A,B,2,1 + A,E) 
        
        
        The following rules are weakly oriented:
                          [C >= 1 + A] ==>                               
                 evalfbb8in(A,B,C,D,E)   = -1*A + B                      
                                        >= -1*A + B                      
                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                  True ==>                               
                 evalfbb3in(A,B,C,D,E)   = 1 + B + -1*D                  
                                        >= 1 + B + -1*D                  
                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                [A >= C && B >= 1 + A] ==>                               
                 evalfbb8in(A,B,C,D,E)   = -1*A + B                      
                                        >= -1*A + B                      
                                         = evalfbb4in(A,B,C,1 + A,1)     
        
            [A >= C && 1 + A >= 1 + B] ==>                               
                 evalfbb8in(A,B,C,D,E)   = -1*A + B                      
                                        >= -1*A + B                      
                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                              [D >= E] ==>                               
                 evalfbb4in(A,B,C,D,E)   = 1 + B + -1*D                  
                                        >= 1 + B + -1*D                  
                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                          [E >= 1 + D] ==>                               
                 evalfbb4in(A,B,C,D,E)   = 1 + B + -1*D                  
                                        >= 1 + B + -1*D                  
                                         = evalfbb6in(A,B,C,1 + D,E)     
        
                      [1 + C >= 1 + A] ==>                               
                 evalfbb7in(A,B,C,D,E)   = -1*A + B                      
                                        >= -1*A + B                      
                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                 evalfbb7in(A,B,C,D,E)   = -1*A + B                      
                                        >= -1*A + B                      
                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 32: KnowledgePropagation WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (?,1)                                               
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2)
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2)
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                                               
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 33: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2)
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2)
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (?,2)                                               
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,20,22,18,23,19,24,29,15,26,17,25,31,28,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = 0
           p(evalfbb3in) = 0
           p(evalfbb4in) = 1
           p(evalfbb5in) = 0
           p(evalfbb6in) = 0
           p(evalfbb7in) = 0
           p(evalfbb8in) = 0
        
        The following rules are strictly oriented:
                   [E >= 1 + D] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1                        
                                  > 0                        
                                  = evalfbb6in(A,B,C,1 + D,E)
        
        
        The following rules are weakly oriented:
                                          [C >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                [B >= A && 1 >= 1 + A] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb10in(1 + A,B,1,D,E)    
        
                            [A >= C && 1 + A >= 1 + B] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                                    [B >= D && D >= 1] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb3in(A,B,C,D,1)         
        
                                [B >= D && 1 >= 1 + D] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb5in(A,B,C,D,1)         
        
                                          [D >= 1 + B] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb8in(A,B,1 + C,D,E)     
        
                                              [D >= E] ==>                               
                                 evalfbb4in(A,B,C,D,E)   = 1                             
                                                        >= 1                             
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb3in(A,B,C,1 + D,1)     
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb5in(A,B,C,1 + D,1)     
        
                                      [1 + D >= 1 + B] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb8in(A,B,1 + C,1 + D,E) 
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = 0                             
                                                        >= 0                             
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 34: PolyRank WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                           
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1)
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                               
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                           
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                   
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                   
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2)
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2)
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                   
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (?,2)                                               
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (224 + 660*B + 734*B^2 + 378*B^3 + 90*B^4 + 8*B^5,2)
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                      
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                   
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                   
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                           
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                           
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [5,20,10,18,23,19,24,29,15,26,17,25,31,28,16,21], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb10in) = x2            
           p(evalfbb3in) = x4 + -1*x5    
           p(evalfbb4in) = 1 + x4 + -1*x5
           p(evalfbb5in) = x2            
           p(evalfbb6in) = x2            
           p(evalfbb7in) = x2            
           p(evalfbb8in) = x2            
        
        The following rules are strictly oriented:
             [B >= D && D >= 1] ==>                          
          evalfbb6in(A,B,C,D,E)   = B                        
                                  > -1 + D                   
                                  = evalfbb3in(A,B,C,D,1)    
        
                       [D >= E] ==>                          
          evalfbb4in(A,B,C,D,E)   = 1 + D + -1*E             
                                  > D + -1*E                 
                                  = evalfbb4in(A,B,C,D,1 + E)
        
        
        The following rules are weakly oriented:
                                          [C >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb10in(1 + A,B,C,D,E)    
        
                                                  True ==>                               
                                 evalfbb3in(A,B,C,D,E)   = D + -1*E                      
                                                        >= D + -1*E                      
                                                         = evalfbb4in(A,B,C,D,1 + E)     
        
                                [B >= A && 1 >= 1 + A] ==>                               
                                evalfbb10in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb10in(1 + A,B,1,D,E)    
        
                                [A >= C && B >= 1 + A] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = B                             
                                                        >= 1 + A                         
                                                         = evalfbb4in(A,B,C,1 + A,1)     
        
                            [A >= C && 1 + A >= 1 + B] ==>                               
                                 evalfbb8in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb7in(A,B,C,1 + A,E)     
        
                                [B >= D && 1 >= 1 + D] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb5in(A,B,C,D,1)         
        
                                          [D >= 1 + B] ==>                               
                                 evalfbb6in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb8in(A,B,1 + C,D,E)     
        
                            [B >= 1 + D && 1 + D >= 1] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = B                             
                                                        >= D                             
                                                         = evalfbb3in(A,B,C,1 + D,1)     
        
                            [B >= 1 + D && 1 >= 2 + D] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb5in(A,B,C,1 + D,1)     
        
                                      [1 + D >= 1 + B] ==>                               
                                 evalfbb5in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb8in(A,B,1 + C,1 + D,E) 
        
                                      [1 + C >= 1 + A] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb10in(1 + A,B,1 + C,D,E)
        
                        [A >= 1 + C && 1 + A >= 1 + B] ==>                               
                                 evalfbb7in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb7in(A,B,1 + C,1 + A,E) 
        
        [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==>                               
                                evalfbb10in(A,B,C,D,E)   = B                             
                                                        >= A                             
                                                         = evalfbb3in(A,B,1,1 + A,1)     
        
                  [B >= A && A >= 1 && 1 + A >= 1 + B] ==>                               
                                evalfbb10in(A,B,C,D,E)   = B                             
                                                        >= B                             
                                                         = evalfbb8in(A,B,2,1 + A,E)     
        
        We use the following global sizebounds:
        (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
        (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
        (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
        (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
        (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
        (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
        (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
        (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
        (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
        (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
        (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
        (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
        (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
        (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
* Step 35: KnowledgePropagation WORST_CASE(?,O(n^6))
    + Considered Problem:
        Rules:
          5.  evalfbb8in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,C,D,E)     [C >= 1 + A]                                   (1 + B,1)                                               
          10. evalfbb3in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      True                                           (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1)    
          13. evalfstart(A,B,C,D,E)  -> evalfbb10in(1,B,C,D,E)         True                                           (1,2)                                                   
          15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E)     [B >= A && 1 >= 1 + A]                         (1 + B,2)                                               
          16. evalfbb8in(A,B,C,D,E)  -> evalfbb4in(A,B,C,1 + A,1)      [A >= C && B >= 1 + A]                         (3 + 4*B + B^2,2)                                       
          17. evalfbb8in(A,B,C,D,E)  -> evalfbb7in(A,B,C,1 + A,E)      [A >= C && 1 + A >= 1 + B]                     (3 + 4*B + B^2,2)                                       
          18. evalfbb6in(A,B,C,D,E)  -> evalfbb3in(A,B,C,D,1)          [B >= D && D >= 1]                             (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2)    
          19. evalfbb6in(A,B,C,D,E)  -> evalfbb5in(A,B,C,D,1)          [B >= D && 1 >= 1 + D]                         (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2)    
          20. evalfbb6in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,D,E)      [D >= 1 + B]                                   (3 + 4*B + B^2,2)                                       
          21. evalfbb4in(A,B,C,D,E)  -> evalfbb4in(A,B,C,D,1 + E)      [D >= E]                                       (225*B + 660*B^2 + 734*B^3 + 378*B^4 + 90*B^5 + 8*B^6,2)
          22. evalfbb4in(A,B,C,D,E)  -> evalfbb6in(A,B,C,1 + D,E)      [E >= 1 + D]                                   (224 + 660*B + 734*B^2 + 378*B^3 + 90*B^4 + 8*B^5,2)    
          23. evalfbb5in(A,B,C,D,E)  -> evalfbb3in(A,B,C,1 + D,1)      [B >= 1 + D && 1 + D >= 1]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)    
          24. evalfbb5in(A,B,C,D,E)  -> evalfbb5in(A,B,C,1 + D,1)      [B >= 1 + D && 1 >= 2 + D]                     (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3)    
          25. evalfbb5in(A,B,C,D,E)  -> evalfbb8in(A,B,1 + C,1 + D,E)  [1 + D >= 1 + B]                               (15 + 25*B + 13*B^2 + 2*B^3,3)                          
          26. evalfbb7in(A,B,C,D,E)  -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A]                               (3 + 4*B + B^2,2)                                       
          28. evalfbb7in(A,B,C,D,E)  -> evalfbb7in(A,B,1 + C,1 + A,E)  [A >= 1 + C && 1 + A >= 1 + B]                 (3 + 4*B + B^2,3)                                       
          29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1)      [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4)                                               
          31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E)      [B >= A && A >= 1 && 1 + A >= 1 + B]           (1 + B,4)                                               
        Signature:
          {(evalfbb10in,5)
          ;(evalfbb3in,5)
          ;(evalfbb4in,5)
          ;(evalfbb5in,5)
          ;(evalfbb6in,5)
          ;(evalfbb7in,5)
          ;(evalfbb8in,5)
          ;(evalfentryin,5)
          ;(evalfreturnin,5)
          ;(evalfstart,5)
          ;(evalfstop,5)}
        Flow Graph:
          [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25}
          ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28}
          ,29->{10},31->{5,17}]
        Sizebounds:
          (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>,               ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>,               ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>,                   2) 
          (<13,0,A>,               1) (<13,0,B>, B) (<13,0,C>,               C) (<13,0,D>,               D) (<13,0,E>,                   E) 
          (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>,               1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>,                   1) 
          (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>,               ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>,               ?) (<18,0,D>,               B) (<18,0,E>,                   1) 
          (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>,               ?) (<19,0,D>,               B) (<19,0,E>,                   1) 
          (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>,               ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>,     8 + 8*B + 2*B^2) 
          (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>,               ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>,     8 + 8*B + 2*B^2) 
          (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>,               ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>,     8 + 8*B + 2*B^2) 
          (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>,               ?) (<23,0,D>,               B) (<23,0,E>,                   1) 
          (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>,               ?) (<24,0,D>,               B) (<24,0,E>,                   1) 
          (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>,               ?) (<25,0,D>,           1 + B) (<25,0,E>,                   1) 
          (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>,               ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) 
          (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>,               1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>,                   1) 
          (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>,               2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^6))