WORST_CASE(?,O(n^6)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [A >= 1 + B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 0,0,E>, E, .= 0) (< 1,0,A>, 1, .= 1) (< 1,0,B>, B, .= 0) (< 1,0,C>, C, .= 0) (< 1,0,D>, D, .= 0) (< 1,0,E>, E, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, 1, .= 1) (< 2,0,D>, D, .= 0) (< 2,0,E>, E, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 3,0,E>, E, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, 1 + A, .+ 1) (< 4,0,E>, E, .= 0) (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 6,0,E>, 1, .= 1) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 7,0,E>, E, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 8,0,E>, E, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, C, .= 0) (< 9,0,D>, D, .= 0) (< 9,0,E>, E, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, 1 + D, .+ 1) (<11,0,E>, E, .= 0) (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, 1 + C, .+ 1) (<12,0,D>, D, .= 0) (<12,0,E>, E, .= 0) (<13,0,A>, A, .= 0) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [A >= 1 + B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 0,0,E>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 1,0,E>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 6,0,E>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) * Step 3: LeafRules WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (?,1) 3. evalfbb10in(A,B,C,D,E) -> evalfreturnin(A,B,C,D,E) [A >= 1 + B] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) 13. evalfreturnin(A,B,C,D,E) -> evalfstop(A,B,C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{13},4->{6,7},5->{2,3},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7} ,12->{4,5},13->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 3,0,A>, ?) (< 3,0,B>, B) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 3,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, B) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,13] * Step 4: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (?,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 2 + -1*x1 + x2 p(evalfbb3in) = 1 + -1*x1 + x2 p(evalfbb4in) = 1 + -1*x1 + x2 p(evalfbb5in) = 1 + -1*x1 + x2 p(evalfbb6in) = 1 + -1*x1 + x2 p(evalfbb7in) = 1 + -1*x1 + x2 p(evalfbb8in) = 1 + -1*x1 + x2 p(evalfentryin) = 1 + x2 p(evalfstart) = 1 + x2 The following rules are strictly oriented: [B >= A] ==> evalfbb10in(A,B,C,D,E) = 2 + -1*A + B > 1 + -1*A + B = evalfbb8in(A,B,1,D,E) The following rules are weakly oriented: True ==> evalfstart(A,B,C,D,E) = 1 + B >= 1 + B = evalfentryin(A,B,C,D,E) True ==> evalfentryin(A,B,C,D,E) = 1 + B >= 1 + B = evalfbb10in(1,B,C,D,E) [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb6in(A,B,C,1 + A,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb10in(1 + A,B,C,D,E) [B >= D] ==> evalfbb6in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb4in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 + -1*A + B >= 1 + -1*A + B = evalfbb8in(A,B,1 + C,D,E) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (?,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (?,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,12,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 1 The following rules are strictly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 1 > 0 = evalfbb10in(1 + A,B,C,D,E) The following rules are weakly oriented: [A >= C] ==> evalfbb8in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + A,E) [B >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 >= 1 = evalfbb8in(A,B,1 + C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) * Step 7: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (?,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,12,7,4,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + x1 + -1*x3 p(evalfbb3in) = 1 + x1 + -1*x3 p(evalfbb4in) = 1 + x1 + -1*x3 p(evalfbb5in) = 1 + x1 + -1*x3 p(evalfbb6in) = 1 + x1 + -1*x3 p(evalfbb7in) = 1 + x1 + -1*x3 p(evalfbb8in) = 2 + x1 + -1*x3 The following rules are strictly oriented: [A >= C] ==> evalfbb8in(A,B,C,D,E) = 2 + A + -1*C > 1 + A + -1*C = evalfbb6in(A,B,C,1 + A,E) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 2 + A + -1*C >= 2 + A + -1*C = evalfbb10in(1 + A,B,C,D,E) [B >= D] ==> evalfbb6in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb4in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb8in(A,B,1 + C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) * Step 8: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (?,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,5,12,7,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 1 p(evalfbb8in) = 0 The following rules are strictly oriented: True ==> evalfbb7in(A,B,C,D,E) = 1 > 0 = evalfbb8in(A,B,1 + C,D,E) The following rules are weakly oriented: [B >= A] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1,D,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(1 + A,B,C,D,E) [B >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb7in(A,B,C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) * Step 9: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (?,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [2,5,12,7,11,9,6,10,8], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbb5in) = 1 p(evalfbb6in) = 1 p(evalfbb7in) = 0 p(evalfbb8in) = 0 The following rules are strictly oriented: [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 1 > 0 = evalfbb7in(A,B,C,D,E) The following rules are weakly oriented: [B >= A] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1,D,E) [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(1 + A,B,C,D,E) [B >= D] ==> evalfbb6in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb3in(A,B,C,D,E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) True ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb6in(A,B,C,1 + D,E) True ==> evalfbb7in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1 + C,D,E) We use the following global sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) * Step 10: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D,E) -> evalfentryin(A,B,C,D,E) True (1,1) 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 0,0,E>, E) (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) + Applied Processor: ChainProcessor False [0,1,2,4,5,6,7,8,9,10,11,12] + Details: We chained rule 0 to obtain the rules [13] . * Step 11: UnreachableRules WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 1. evalfentryin(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,1) 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [1->{2},2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2}] Sizebounds: (< 1,0,A>, 1) (< 1,0,B>, B) (< 1,0,C>, C) (< 1,0,D>, D) (< 1,0,E>, E) (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 12: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 2. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,1,D,E) [B >= A] (1 + B,1) 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [2->{4,5},4->{6,7},5->{2},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{2}] Sizebounds: (< 2,0,A>, B) (< 2,0,B>, B) (< 2,0,C>, 1) (< 2,0,D>, ?) (< 2,0,E>, ?) (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) + Applied Processor: ChainProcessor False [2,4,5,6,7,8,9,10,11,12,13] + Details: We chained rule 2 to obtain the rules [14,15] . * Step 13: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 4. evalfbb8in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + A,E) [A >= C] (3 + 4*B + B^2,1) 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [4->{6,7},5->{14,15},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{4,5},13->{14,15},14->{6,7} ,15->{14,15}] Sizebounds: (< 4,0,A>, ?) (< 4,0,B>, B) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 4,0,E>, ?) (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) + Applied Processor: ChainProcessor False [4,5,6,7,8,9,10,11,12,13,14,15] + Details: We chained rule 4 to obtain the rules [16,17] . * Step 14: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 6. evalfbb6in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1) [B >= D] (?,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},6->{8,9},7->{12},8->{10},9->{11},10->{8,9},11->{6,7},12->{5,16,17},13->{14,15},14->{6,7} ,15->{14,15},16->{8,9},17->{12}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 6,0,A>, ?) (< 6,0,B>, B) (< 6,0,C>, ?) (< 6,0,D>, B) (< 6,0,E>, 1) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) + Applied Processor: ChainProcessor False [5,6,7,8,9,10,11,12,13,14,15,16,17] + Details: We chained rule 6 to obtain the rules [18,19] . * Step 15: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 7. evalfbb6in(A,B,C,D,E) -> evalfbb7in(A,B,C,D,E) [D >= 1 + B] (3 + 4*B + B^2,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},7->{12},8->{10},9->{11},10->{8,9},11->{7,18,19},12->{5,16,17},13->{14,15},14->{7,18,19} ,15->{14,15},16->{8,9},17->{12},18->{10},19->{11}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 7,0,A>, ?) (< 7,0,B>, B) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 7,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) + Applied Processor: ChainProcessor False [5,7,8,9,10,11,12,13,14,15,16,17,18,19] + Details: We chained rule 7 to obtain the rules [20] . * Step 16: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 8. evalfbb4in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,E) [D >= E] (?,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},8->{10},9->{11},10->{8,9},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15} ,16->{8,9},17->{12},18->{10},19->{11},20->{5,16,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 8,0,A>, ?) (< 8,0,B>, B) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 8,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) + Applied Processor: ChainProcessor False [5,8,9,10,11,12,13,14,15,16,17,18,19,20] + Details: We chained rule 8 to obtain the rules [21] . * Step 17: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 9. evalfbb4in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,E) [E >= 1 + D] (?,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},9->{11},10->{9,21},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{9 ,21},17->{12},18->{10},19->{11},20->{5,16,17},21->{9,21}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (< 9,0,A>, ?) (< 9,0,B>, B) (< 9,0,C>, ?) (< 9,0,D>, ?) (< 9,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) + Applied Processor: ChainProcessor False [5,9,10,11,12,13,14,15,16,17,18,19,20,21] + Details: We chained rule 9 to obtain the rules [22] . * Step 18: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 11. evalfbb5in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},10->{21,22},11->{18,19,20},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22} ,17->{12},18->{10},19->{11},20->{5,16,17},21->{21,22},22->{18,19,20}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<11,0,A>, ?) (<11,0,B>, B) (<11,0,C>, ?) (<11,0,D>, ?) (<11,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) + Applied Processor: ChainProcessor False [5,10,11,12,13,14,15,16,17,18,19,20,21,22] + Details: We chained rule 11 to obtain the rules [23,24,25] . * Step 19: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 12. evalfbb7in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) True (3 + 4*B + B^2,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},10->{21,22},12->{5,16,17},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22},17->{12},18->{10} ,19->{23,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<12,0,A>, ?) (<12,0,B>, B) (<12,0,C>, ?) (<12,0,D>, ?) (<12,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) + Applied Processor: ChainProcessor False [5,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25] + Details: We chained rule 12 to obtain the rules [26,27,28] . * Step 20: ChainProcessor WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 14. evalfbb10in(A,B,C,D,E) -> evalfbb6in(A,B,1,1 + A,E) [B >= A && A >= 1] (1 + B,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 27. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,1 + A,1) [A >= 1 + C && B >= 1 + A] (3 + 4*B + B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{14,15},10->{21,22},13->{14,15},14->{18,19,20},15->{14,15},16->{21,22},17->{26,27,28},18->{10},19->{23 ,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{14,15},27->{21 ,22},28->{26,27,28}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<14,0,A>, ?) (<14,0,B>, B) (<14,0,C>, ?) (<14,0,D>, ?) (<14,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) + Applied Processor: ChainProcessor False [5,10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28] + Details: We chained rule 14 to obtain the rules [29,30,31] . * Step 21: UnsatPaths WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 27. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,1 + A,1) [A >= 1 + C && B >= 1 + A] (3 + 4*B + B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 30. evalfbb10in(A,B,C,D,E) -> evalfbb5in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 >= 2 + A] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,30,31},10->{21,22},13->{15,29,30,31},15->{15,29,30,31},16->{21,22},17->{26,27,28},18->{10} ,19->{23,24,25},20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,30 ,31},27->{21,22},28->{26,27,28},29->{10},30->{23,24,25},31->{5,16,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,30) ,(13,15) ,(13,30) ,(15,30) ,(17,27) ,(26,30) ,(28,27) ,(30,23) ,(30,24) ,(30,25) ,(31,16)] * Step 22: UnreachableRules WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 27. evalfbb7in(A,B,C,D,E) -> evalfbb4in(A,B,1 + C,1 + A,1) [A >= 1 + C && B >= 1 + A] (3 + 4*B + B^2,3) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 30. evalfbb10in(A,B,C,D,E) -> evalfbb5in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 >= 2 + A] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},27->{21,22} ,28->{26,28},29->{10},30->{},31->{5,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<27,0,A>, ?) (<27,0,B>, B) (<27,0,C>, ?) (<27,0,D>, B) (<27,0,E>, 1) (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<30,0,A>, ?) (<30,0,B>, B) (<30,0,C>, ?) (<30,0,D>, ?) (<30,0,E>, ?) (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [27,30] * Step 23: LocalSizeboundsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, ?) (<15,0,B>, B) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, B) (<16,0,C>, ?) (<16,0,D>, B) (<16,0,E>, 1) (<17,0,A>, ?) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<28,0,A>, ?) (<28,0,B>, B) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, ?) (<29,0,B>, B) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<31,0,A>, ?) (<31,0,B>, B) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 5,0,A>, 1 + A, .+ 1) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 5,0,E>, E, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, C, .= 0) (<10,0,D>, D, .= 0) (<10,0,E>, 1 + E, .+ 1) (<13,0,A>, 1, .= 1) (<13,0,B>, B, .= 0) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<13,0,E>, E, .= 0) (<15,0,A>, 1 + A + B, .* 1) (<15,0,B>, B, .= 0) (<15,0,C>, 1, .= 1) (<15,0,D>, D, .= 0) (<15,0,E>, E, .= 0) (<16,0,A>, A, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, 1 + A, .+ 1) (<16,0,E>, 1, .= 1) (<17,0,A>, A, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, C, .= 0) (<17,0,D>, 1 + A + B, .* 1) (<17,0,E>, E, .= 0) (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, C, .= 0) (<18,0,D>, D, .= 0) (<18,0,E>, 1, .= 1) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, C, .= 0) (<19,0,D>, D, .= 0) (<19,0,E>, 1, .= 1) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 1 + C, .+ 1) (<20,0,D>, D, .= 0) (<20,0,E>, E, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, C, .= 0) (<21,0,D>, D, .= 0) (<21,0,E>, 1 + E, .+ 1) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, C, .= 0) (<22,0,D>, 1 + D, .+ 1) (<22,0,E>, E, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, C, .= 0) (<23,0,D>, 1 + B + D, .* 1) (<23,0,E>, 1, .= 1) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, C, .= 0) (<24,0,D>, 1 + B + D, .* 1) (<24,0,E>, 1, .= 1) (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, 1 + C, .+ 1) (<25,0,D>, 1 + D, .+ 1) (<25,0,E>, E, .= 0) (<26,0,A>, 1 + A, .+ 1) (<26,0,B>, B, .= 0) (<26,0,C>, 1 + C, .+ 1) (<26,0,D>, D, .= 0) (<26,0,E>, E, .= 0) (<28,0,A>, A, .= 0) (<28,0,B>, B, .= 0) (<28,0,C>, 1 + C, .+ 1) (<28,0,D>, 1 + A + B, .* 1) (<28,0,E>, E, .= 0) (<29,0,A>, A, .= 0) (<29,0,B>, B, .= 0) (<29,0,C>, 1, .= 1) (<29,0,D>, 1 + A, .+ 1) (<29,0,E>, 1, .= 1) (<31,0,A>, A, .= 0) (<31,0,B>, B, .= 0) (<31,0,C>, 2, .= 2) (<31,0,D>, 1 + A, .+ 1) (<31,0,E>, E, .= 0) * Step 24: SizeboundsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 5,0,E>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<10,0,E>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<13,0,E>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<15,0,E>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) (<16,0,E>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) (<17,0,D>, ?) (<17,0,E>, ?) (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<18,0,E>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<19,0,E>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<20,0,E>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<21,0,E>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<22,0,E>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<23,0,E>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<24,0,E>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) (<25,0,E>, ?) (<26,0,A>, ?) (<26,0,B>, ?) (<26,0,C>, ?) (<26,0,D>, ?) (<26,0,E>, ?) (<28,0,A>, ?) (<28,0,B>, ?) (<28,0,C>, ?) (<28,0,D>, ?) (<28,0,E>, ?) (<29,0,A>, ?) (<29,0,B>, ?) (<29,0,C>, ?) (<29,0,D>, ?) (<29,0,E>, ?) (<31,0,A>, ?) (<31,0,B>, ?) (<31,0,C>, ?) (<31,0,D>, ?) (<31,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, ?) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, ?) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, ?) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, ?) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, ?) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, ?) * Step 25: LocationConstraintsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, ?) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, ?) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, ?) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, ?) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, ?) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, ?) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 5 : True 10 : True 13 : True 15 : True 16 : True 17 : True 18 : [False] 19 : [False] 20 : [False] 21 : True 22 : True 23 : [B >= D] 24 : [B >= D] 25 : [B >= D] 26 : [A >= C] 28 : [A >= C] 29 : True 31 : True . * Step 26: SizeboundsProc WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, ?) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, ?) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, ?) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, ?) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, ?) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 27: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (?,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [20,22,10,18,23,19,24,29,15,26,17,25,31,28,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + -1*x1 + x2 p(evalfbb3in) = 2 p(evalfbb4in) = 2 p(evalfbb5in) = 2 p(evalfbb6in) = 2 p(evalfbb7in) = -1*x1 + x2 p(evalfbb8in) = 1 The following rules are strictly oriented: [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = 1 > -1*A + B = evalfbb7in(A,B,C,1 + A,E) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 2 > 1 = evalfbb8in(A,B,1 + C,D,E) [1 + D >= 1 + B] ==> evalfbb5in(A,B,C,D,E) = 2 > 1 = evalfbb8in(A,B,1 + C,1 + D,E) The following rules are weakly oriented: True ==> evalfbb3in(A,B,C,D,E) = 2 >= 2 = evalfbb4in(A,B,C,D,1 + E) [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B >= -1*A + B = evalfbb10in(1 + A,B,1,D,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 2 >= 2 = evalfbb3in(A,B,C,D,1) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 2 >= 2 = evalfbb5in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 2 >= 2 = evalfbb4in(A,B,C,D,1 + E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 2 >= 2 = evalfbb6in(A,B,C,1 + D,E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 2 >= 2 = evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 2 >= 2 = evalfbb5in(A,B,C,1 + D,1) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B >= 2 = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B >= 1 = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 28: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (?,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + -1*x1 p(evalfbb3in) = -1*x4 p(evalfbb4in) = -1*x4 p(evalfbb5in) = -1*x4 p(evalfbb6in) = -1*x4 p(evalfbb7in) = -1*x1 p(evalfbb8in) = -1*x1 The following rules are strictly oriented: [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A > -1*A = evalfbb10in(1 + A,B,1,D,E) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = -1*D > -1 + -1*D = evalfbb5in(A,B,C,1 + D,1) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = -1*D >= -1*D = evalfbb4in(A,B,C,D,1 + E) [A >= C && B >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1 + -1*A = evalfbb4in(A,B,C,1 + A,1) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,C,1 + A,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = -1*D >= -1*D = evalfbb3in(A,B,C,D,1) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = -1*D >= -1*D = evalfbb5in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = -1*D >= -1*D = evalfbb4in(A,B,C,D,1 + E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = -1*D >= -1 + -1*D = evalfbb6in(A,B,C,1 + D,E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = -1*D >= -1 + -1*D = evalfbb3in(A,B,C,1 + D,1) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= -1 + -1*A = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= -1*A = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 29: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (?,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + -1*x1 p(evalfbb3in) = 2 + -1*x4 p(evalfbb4in) = 1 + -1*x4 p(evalfbb5in) = 2 p(evalfbb6in) = 2 + -1*x4 p(evalfbb7in) = -1*x1 p(evalfbb8in) = -1*x1 The following rules are strictly oriented: [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A > -1*A = evalfbb10in(1 + A,B,1,D,E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 2 > 1 + -1*D = evalfbb3in(A,B,C,1 + D,1) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 2 + -1*D >= 1 + -1*D = evalfbb4in(A,B,C,D,1 + E) [A >= C && B >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb4in(A,B,C,1 + A,1) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,C,1 + A,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 2 + -1*D >= 2 + -1*D = evalfbb3in(A,B,C,D,1) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 2 + -1*D >= 2 = evalfbb5in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*D >= 1 + -1*D = evalfbb4in(A,B,C,D,1 + E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*D >= 1 + -1*D = evalfbb6in(A,B,C,1 + D,E) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 2 >= 2 = evalfbb5in(A,B,C,1 + D,1) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= 1 + -1*A = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= -1*A = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 30: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (?,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + -1*x1 p(evalfbb3in) = 2 + -1*x4 p(evalfbb4in) = 1 + -1*x4 p(evalfbb5in) = 1 p(evalfbb6in) = 2 + -1*x4 p(evalfbb7in) = -1*x1 p(evalfbb8in) = -1*x1 The following rules are strictly oriented: [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A > -1*A = evalfbb10in(1 + A,B,1,D,E) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 2 + -1*D > 1 = evalfbb5in(A,B,C,D,1) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 2 + -1*D >= 1 + -1*D = evalfbb4in(A,B,C,D,1 + E) [A >= C && B >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb4in(A,B,C,1 + A,1) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,C,1 + A,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 2 + -1*D >= 2 + -1*D = evalfbb3in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*D >= 1 + -1*D = evalfbb4in(A,B,C,D,1 + E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + -1*D >= 1 + -1*D = evalfbb6in(A,B,C,1 + D,E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 + -1*D = evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 1 >= 1 = evalfbb5in(A,B,C,1 + D,1) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = -1*A >= -1*A = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= 1 + -1*A = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A >= -1*A = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 31: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (?,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,22,10,18,23,19,24,29,15,26,17,31,28,16,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 1 + -1*x1 + x2 p(evalfbb3in) = 1 + x2 + -1*x4 p(evalfbb4in) = 1 + x2 + -1*x4 p(evalfbb5in) = 1 + x2 + -1*x4 p(evalfbb6in) = 2 + x2 + -1*x4 p(evalfbb7in) = -1*x1 + x2 p(evalfbb8in) = -1*x1 + x2 The following rules are strictly oriented: [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B > -1*A + B = evalfbb10in(1 + A,B,1,D,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 2 + B + -1*D > 1 + B + -1*D = evalfbb3in(A,B,C,D,1) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 2 + B + -1*D > 1 + B + -1*D = evalfbb5in(A,B,C,D,1) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 1 + B + -1*D > B + -1*D = evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 1 + B + -1*D > B + -1*D = evalfbb5in(A,B,C,1 + D,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B > -1*A + B = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 1 + -1*A + B > -1*A + B = evalfbb8in(A,B,2,1 + A,E) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb10in(1 + A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = 1 + B + -1*D >= 1 + B + -1*D = evalfbb4in(A,B,C,D,1 + E) [A >= C && B >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb4in(A,B,C,1 + A,1) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb7in(A,B,C,1 + A,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + B + -1*D >= 1 + B + -1*D = evalfbb4in(A,B,C,D,1 + E) [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 + B + -1*D >= 1 + B + -1*D = evalfbb6in(A,B,C,1 + D,E) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = -1*A + B >= -1*A + B = evalfbb7in(A,B,1 + C,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 32: KnowledgePropagation WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (?,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 33: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (?,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,20,22,18,23,19,24,29,15,26,17,25,31,28,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = 0 p(evalfbb3in) = 0 p(evalfbb4in) = 1 p(evalfbb5in) = 0 p(evalfbb6in) = 0 p(evalfbb7in) = 0 p(evalfbb8in) = 0 The following rules are strictly oriented: [E >= 1 + D] ==> evalfbb4in(A,B,C,D,E) = 1 > 0 = evalfbb6in(A,B,C,1 + D,E) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(1 + A,B,C,D,E) [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(1 + A,B,1,D,E) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = 0 >= 0 = evalfbb7in(A,B,C,1 + A,E) [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = 0 >= 0 = evalfbb3in(A,B,C,D,1) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = 0 >= 0 = evalfbb5in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1 + C,D,E) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 >= 1 = evalfbb4in(A,B,C,D,1 + E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = 0 >= 0 = evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = 0 >= 0 = evalfbb5in(A,B,C,1 + D,1) [1 + D >= 1 + B] ==> evalfbb5in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,1 + C,1 + D,E) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = 0 >= 0 = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = 0 >= 0 = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = 0 >= 0 = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 34: PolyRank WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (?,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (224 + 660*B + 734*B^2 + 378*B^3 + 90*B^4 + 8*B^5,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,20,10,18,23,19,24,29,15,26,17,25,31,28,16,21], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb10in) = x2 p(evalfbb3in) = x4 + -1*x5 p(evalfbb4in) = 1 + x4 + -1*x5 p(evalfbb5in) = x2 p(evalfbb6in) = x2 p(evalfbb7in) = x2 p(evalfbb8in) = x2 The following rules are strictly oriented: [B >= D && D >= 1] ==> evalfbb6in(A,B,C,D,E) = B > -1 + D = evalfbb3in(A,B,C,D,1) [D >= E] ==> evalfbb4in(A,B,C,D,E) = 1 + D + -1*E > D + -1*E = evalfbb4in(A,B,C,D,1 + E) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = B >= B = evalfbb10in(1 + A,B,C,D,E) True ==> evalfbb3in(A,B,C,D,E) = D + -1*E >= D + -1*E = evalfbb4in(A,B,C,D,1 + E) [B >= A && 1 >= 1 + A] ==> evalfbb10in(A,B,C,D,E) = B >= B = evalfbb10in(1 + A,B,1,D,E) [A >= C && B >= 1 + A] ==> evalfbb8in(A,B,C,D,E) = B >= 1 + A = evalfbb4in(A,B,C,1 + A,1) [A >= C && 1 + A >= 1 + B] ==> evalfbb8in(A,B,C,D,E) = B >= B = evalfbb7in(A,B,C,1 + A,E) [B >= D && 1 >= 1 + D] ==> evalfbb6in(A,B,C,D,E) = B >= B = evalfbb5in(A,B,C,D,1) [D >= 1 + B] ==> evalfbb6in(A,B,C,D,E) = B >= B = evalfbb8in(A,B,1 + C,D,E) [B >= 1 + D && 1 + D >= 1] ==> evalfbb5in(A,B,C,D,E) = B >= D = evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] ==> evalfbb5in(A,B,C,D,E) = B >= B = evalfbb5in(A,B,C,1 + D,1) [1 + D >= 1 + B] ==> evalfbb5in(A,B,C,D,E) = B >= B = evalfbb8in(A,B,1 + C,1 + D,E) [1 + C >= 1 + A] ==> evalfbb7in(A,B,C,D,E) = B >= B = evalfbb10in(1 + A,B,1 + C,D,E) [A >= 1 + C && 1 + A >= 1 + B] ==> evalfbb7in(A,B,C,D,E) = B >= B = evalfbb7in(A,B,1 + C,1 + A,E) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] ==> evalfbb10in(A,B,C,D,E) = B >= A = evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && 1 + A >= 1 + B] ==> evalfbb10in(A,B,C,D,E) = B >= B = evalfbb8in(A,B,2,1 + A,E) We use the following global sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) * Step 35: KnowledgePropagation WORST_CASE(?,O(n^6)) + Considered Problem: Rules: 5. evalfbb8in(A,B,C,D,E) -> evalfbb10in(1 + A,B,C,D,E) [C >= 1 + A] (1 + B,1) 10. evalfbb3in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) True (221 + 656*B + 733*B^2 + 378*B^3 + 90*B^4 + 8*B^5,1) 13. evalfstart(A,B,C,D,E) -> evalfbb10in(1,B,C,D,E) True (1,2) 15. evalfbb10in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1,D,E) [B >= A && 1 >= 1 + A] (1 + B,2) 16. evalfbb8in(A,B,C,D,E) -> evalfbb4in(A,B,C,1 + A,1) [A >= C && B >= 1 + A] (3 + 4*B + B^2,2) 17. evalfbb8in(A,B,C,D,E) -> evalfbb7in(A,B,C,1 + A,E) [A >= C && 1 + A >= 1 + B] (3 + 4*B + B^2,2) 18. evalfbb6in(A,B,C,D,E) -> evalfbb3in(A,B,C,D,1) [B >= D && D >= 1] (110 + 337*B + 381*B^2 + 196*B^3 + 46*B^4 + 4*B^5,2) 19. evalfbb6in(A,B,C,D,E) -> evalfbb5in(A,B,C,D,1) [B >= D && 1 >= 1 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,2) 20. evalfbb6in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,D,E) [D >= 1 + B] (3 + 4*B + B^2,2) 21. evalfbb4in(A,B,C,D,E) -> evalfbb4in(A,B,C,D,1 + E) [D >= E] (225*B + 660*B^2 + 734*B^3 + 378*B^4 + 90*B^5 + 8*B^6,2) 22. evalfbb4in(A,B,C,D,E) -> evalfbb6in(A,B,C,1 + D,E) [E >= 1 + D] (224 + 660*B + 734*B^2 + 378*B^3 + 90*B^4 + 8*B^5,2) 23. evalfbb5in(A,B,C,D,E) -> evalfbb3in(A,B,C,1 + D,1) [B >= 1 + D && 1 + D >= 1] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 24. evalfbb5in(A,B,C,D,E) -> evalfbb5in(A,B,C,1 + D,1) [B >= 1 + D && 1 >= 2 + D] (110 + 318*B + 352*B^2 + 182*B^3 + 44*B^4 + 4*B^5,3) 25. evalfbb5in(A,B,C,D,E) -> evalfbb8in(A,B,1 + C,1 + D,E) [1 + D >= 1 + B] (15 + 25*B + 13*B^2 + 2*B^3,3) 26. evalfbb7in(A,B,C,D,E) -> evalfbb10in(1 + A,B,1 + C,D,E) [1 + C >= 1 + A] (3 + 4*B + B^2,2) 28. evalfbb7in(A,B,C,D,E) -> evalfbb7in(A,B,1 + C,1 + A,E) [A >= 1 + C && 1 + A >= 1 + B] (3 + 4*B + B^2,3) 29. evalfbb10in(A,B,C,D,E) -> evalfbb3in(A,B,1,1 + A,1) [B >= A && A >= 1 && B >= 1 + A && 1 + A >= 1] (1 + B,4) 31. evalfbb10in(A,B,C,D,E) -> evalfbb8in(A,B,2,1 + A,E) [B >= A && A >= 1 && 1 + A >= 1 + B] (1 + B,4) Signature: {(evalfbb10in,5) ;(evalfbb3in,5) ;(evalfbb4in,5) ;(evalfbb5in,5) ;(evalfbb6in,5) ;(evalfbb7in,5) ;(evalfbb8in,5) ;(evalfentryin,5) ;(evalfreturnin,5) ;(evalfstart,5) ;(evalfstop,5)} Flow Graph: [5->{15,29,31},10->{21,22},13->{29,31},15->{15,29,31},16->{21,22},17->{26,28},18->{10},19->{23,24,25} ,20->{5,16,17},21->{21,22},22->{18,19,20},23->{10},24->{23,24,25},25->{5,16,17},26->{15,29,31},28->{26,28} ,29->{10},31->{5,17}] Sizebounds: (< 5,0,A>, 6 + 8*B + 2*B^2) (< 5,0,B>, B) (< 5,0,C>, ?) (< 5,0,D>, 7 + 8*B + 2*B^2) (< 5,0,E>, 8 + 8*B + 2*B^2 + E) (<10,0,A>, 6 + 8*B + 2*B^2) (<10,0,B>, B) (<10,0,C>, ?) (<10,0,D>, 7 + 8*B + 2*B^2) (<10,0,E>, 2) (<13,0,A>, 1) (<13,0,B>, B) (<13,0,C>, C) (<13,0,D>, D) (<13,0,E>, E) (<15,0,A>, 6 + 8*B + 2*B^2) (<15,0,B>, B) (<15,0,C>, 1) (<15,0,D>, 7 + 9*B + 2*B^2) (<15,0,E>, 8 + 8*B + 2*B^2 + E) (<16,0,A>, 6 + 8*B + 2*B^2) (<16,0,B>, B) (<16,0,C>, 6 + 8*B + 2*B^2) (<16,0,D>, 7 + 8*B + 2*B^2) (<16,0,E>, 1) (<17,0,A>, 6 + 8*B + 2*B^2) (<17,0,B>, B) (<17,0,C>, ?) (<17,0,D>, 7 + 9*B + 2*B^2) (<17,0,E>, 8 + 8*B + 2*B^2 + E) (<18,0,A>, 6 + 8*B + 2*B^2) (<18,0,B>, B) (<18,0,C>, ?) (<18,0,D>, B) (<18,0,E>, 1) (<19,0,A>, 6 + 8*B + 2*B^2) (<19,0,B>, B) (<19,0,C>, ?) (<19,0,D>, B) (<19,0,E>, 1) (<20,0,A>, 6 + 8*B + 2*B^2) (<20,0,B>, B) (<20,0,C>, ?) (<20,0,D>, 7 + 8*B + 2*B^2) (<20,0,E>, 8 + 8*B + 2*B^2) (<21,0,A>, 6 + 8*B + 2*B^2) (<21,0,B>, B) (<21,0,C>, ?) (<21,0,D>, 7 + 8*B + 2*B^2) (<21,0,E>, 8 + 8*B + 2*B^2) (<22,0,A>, 6 + 8*B + 2*B^2) (<22,0,B>, B) (<22,0,C>, ?) (<22,0,D>, 7 + 8*B + 2*B^2) (<22,0,E>, 8 + 8*B + 2*B^2) (<23,0,A>, 6 + 8*B + 2*B^2) (<23,0,B>, B) (<23,0,C>, ?) (<23,0,D>, B) (<23,0,E>, 1) (<24,0,A>, 6 + 8*B + 2*B^2) (<24,0,B>, B) (<24,0,C>, ?) (<24,0,D>, B) (<24,0,E>, 1) (<25,0,A>, 6 + 8*B + 2*B^2) (<25,0,B>, B) (<25,0,C>, ?) (<25,0,D>, 1 + B) (<25,0,E>, 1) (<26,0,A>, 6 + 8*B + 2*B^2) (<26,0,B>, B) (<26,0,C>, ?) (<26,0,D>, 7 + 9*B + 2*B^2) (<26,0,E>, 8 + 8*B + 2*B^2 + E) (<28,0,A>, 6 + 8*B + 2*B^2) (<28,0,B>, B) (<28,0,C>, 6 + 8*B + 2*B^2) (<28,0,D>, 7 + 9*B + 2*B^2) (<28,0,E>, 8 + 8*B + 2*B^2 + E) (<29,0,A>, 6 + 8*B + 2*B^2) (<29,0,B>, B) (<29,0,C>, 1) (<29,0,D>, 7 + 8*B + 2*B^2) (<29,0,E>, 1) (<31,0,A>, 6 + 8*B + 2*B^2) (<31,0,B>, B) (<31,0,C>, 2) (<31,0,D>, 7 + 8*B + 2*B^2) (<31,0,E>, 8 + 8*B + 2*B^2 + E) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^6))