WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultipleDepstart(A,B,C,D)    -> evalSimpleMultipleDepentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleDepentryin(A,B,C,D)  -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepreturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
          8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>,     A, .= 0) (<0,0,B>,     B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) 
          (<1,0,A>,     0, .= 0) (<1,0,B>,     0, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) 
          (<2,0,A>,     A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) 
          (<3,0,A>,     A, .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) 
          (<4,0,A>,     A, .= 0) (<4,0,B>,     B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) 
          (<5,0,A>,     A, .= 0) (<5,0,B>,     B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) 
          (<6,0,A>, 1 + A, .+ 1) (<6,0,B>,     B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) 
          (<7,0,A>,     0, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) 
          (<8,0,A>,     A, .= 0) (<8,0,B>,     B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultipleDepstart(A,B,C,D)    -> evalSimpleMultipleDepentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleDepentryin(A,B,C,D)  -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepreturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
          8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<3,0,A>, D) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, D) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultipleDepstart(A,B,C,D)    -> evalSimpleMultipleDepentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleDepentryin(A,B,C,D)  -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          3. evalSimpleMultipleDepbb3in(A,B,C,D)    -> evalSimpleMultipleDepreturnin(A,B,C,D)  [B >= C]     (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)     -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)    -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
          8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D)      True         (?,1)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<3,0,A>, D) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, D) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,8]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultipleDepstart(A,B,C,D)   -> evalSimpleMultipleDepentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (?,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)   -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalSimpleMultipleDepbb1in) = 1
            p(evalSimpleMultipleDepbb2in) = 1
            p(evalSimpleMultipleDepbb3in) = 1
             p(evalSimpleMultipleDepbbin) = 1
          p(evalSimpleMultipleDepentryin) = 2
            p(evalSimpleMultipleDepstart) = 2
        
        The following rules are strictly oriented:
                                           True ==>                                    
          evalSimpleMultipleDepentryin(A,B,C,D)   = 2                                  
                                                  > 1                                  
                                                  = evalSimpleMultipleDepbb3in(0,0,C,D)
        
        
        The following rules are weakly oriented:
                                         True ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = 2                                      
                                               >= 2                                      
                                                = evalSimpleMultipleDepentryin(A,B,C,D)  
        
                                 [C >= 1 + B] ==>                                        
          evalSimpleMultipleDepbb3in(A,B,C,D)   = 1                                      
                                               >= 1                                      
                                                = evalSimpleMultipleDepbbin(A,B,C,D)     
        
                                 [D >= 1 + A] ==>                                        
           evalSimpleMultipleDepbbin(A,B,C,D)   = 1                                      
                                               >= 1                                      
                                                = evalSimpleMultipleDepbb1in(A,B,C,D)    
        
                                     [A >= D] ==>                                        
           evalSimpleMultipleDepbbin(A,B,C,D)   = 1                                      
                                               >= 1                                      
                                                = evalSimpleMultipleDepbb2in(A,B,C,D)    
        
                                         True ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = 1                                      
                                               >= 1                                      
                                                = evalSimpleMultipleDepbb3in(1 + A,B,C,D)
        
                                         True ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = 1                                      
                                               >= 1                                      
                                                = evalSimpleMultipleDepbb3in(0,1 + B,C,D)
        
        
* Step 5: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalSimpleMultipleDepstart(A,B,C,D)   -> evalSimpleMultipleDepentryin(A,B,C,D)   True         (1,1)
          1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (2,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)   -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) 
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [0,1,2,4,5,6,7]
    + Details:
        We chained rule 0 to obtain the rules [8] .
* Step 6: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (2,1)
          2. evalSimpleMultipleDepbb3in(A,B,C,D)   -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)    -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D)   -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
          8. evalSimpleMultipleDepstart(A,B,C,D)   -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (1,2)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2},8->{2}]
        Sizebounds:
          (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) 
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, 0) (<8,0,B>, 0) (<8,0,C>, C) (<8,0,D>, D) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 7: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D)      [C >= 1 + B] (?,1)
          4. evalSimpleMultipleDepbbin(A,B,C,D)  -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A] (?,1)
          5. evalSimpleMultipleDepbbin(A,B,C,D)  -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]     (?,1)
          6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True         (?,1)
          7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True         (?,1)
          8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True         (1,2)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [2->{4,5},4->{6},5->{7},6->{2},7->{2},8->{2}]
        Sizebounds:
          (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) 
          (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) 
          (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) 
          (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) 
          (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) 
          (<8,0,A>, 0) (<8,0,B>, 0) (<8,0,C>, C) (<8,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [2,4,5,6,7,8]
    + Details:
        We chained rule 2 to obtain the rules [9,10] .
* Step 8: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          4.  evalSimpleMultipleDepbbin(A,B,C,D)  -> evalSimpleMultipleDepbb1in(A,B,C,D)     [D >= 1 + A]               (?,1)
          5.  evalSimpleMultipleDepbbin(A,B,C,D)  -> evalSimpleMultipleDepbb2in(A,B,C,D)     [A >= D]                   (?,1)
          6.  evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True                       (?,1)
          7.  evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True                       (?,1)
          8.  evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True                       (1,2)
          9.  evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D)     [C >= 1 + B && D >= 1 + A] (?,2)
          10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D)     [C >= 1 + B && A >= D]     (?,2)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [4->{6},5->{7},6->{9,10},7->{9,10},8->{9,10},9->{6},10->{7}]
        Sizebounds:
          (< 4,0,A>, D) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, D) 
          (< 5,0,A>, D) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, D) 
          (< 6,0,A>, D) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, D) 
          (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) 
          (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) 
          (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) 
          (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [4,5]
* Step 9: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          6.  evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True                       (?,1)
          7.  evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True                       (?,1)
          8.  evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True                       (1,2)
          9.  evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D)     [C >= 1 + B && D >= 1 + A] (?,2)
          10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D)     [C >= 1 + B && A >= D]     (?,2)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [6->{9,10},7->{9,10},8->{9,10},9->{6},10->{7}]
        Sizebounds:
          (< 6,0,A>, D) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, D) 
          (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) 
          (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) 
          (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) 
          (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [6,7,8,9,10]
    + Details:
        We chained rule 6 to obtain the rules [11,12] .
* Step 10: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          7.  evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True                       (?,1)
          8.  evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True                       (1,2)
          9.  evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D)     [C >= 1 + B && D >= 1 + A] (?,2)
          10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D)     [C >= 1 + B && A >= D]     (?,2)
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [7->{9,10},8->{9,10},9->{11,12},10->{7},11->{11,12},12->{7}]
        Sizebounds:
          (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) 
          (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) 
          (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) 
          (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) 
          (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11,12]
    + Details:
        We chained rule 7 to obtain the rules [13,14] .
* Step 11: ChainProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          8.  evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D)     True                       (1,2)
          9.  evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D)     [C >= 1 + B && D >= 1 + A] (?,2)
          10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D)     [C >= 1 + B && A >= D]     (?,2)
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [8->{9,10},9->{11,12},10->{13,14},11->{11,12},12->{13,14},13->{11,12},14->{13,14}]
        Sizebounds:
          (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) 
          (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) 
          (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) 
          (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13,14]
    + Details:
        We chained rule 8 to obtain the rules [15,16] .
* Step 12: UnreachableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          9.  evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D)     [C >= 1 + B && D >= 1 + A] (?,2)
          10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D)     [C >= 1 + B && A >= D]     (?,2)
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [9->{11,12},10->{13,14},11->{11,12},12->{13,14},13->{11,12},14->{13,14},15->{11,12},16->{13,14}]
        Sizebounds:
          (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) 
          (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) 
          (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [9,10]
* Step 13: UnsatPaths WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{13,14},15->{11,12},16->{13,14}]
        Sizebounds:
          (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(14,13),(16,13)]
* Step 14: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<11,0,A>, 1 + A, .+ 1) (<11,0,B>,     B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) 
          (<12,0,A>, 1 + A, .+ 1) (<12,0,B>,     B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) 
          (<13,0,A>,     0, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) 
          (<14,0,A>,     0, .= 0) (<14,0,B>, 1 + B, .+ 1) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) 
          (<15,0,A>,     0, .= 0) (<15,0,B>,     0, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) 
          (<16,0,A>,     0, .= 0) (<16,0,B>,     0, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) 
* Step 15: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) 
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) 
          (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) 
          (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
* Step 16: LocationConstraintsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  11 :  [C >= 1] 12 :  [C >= 1] 13 :  [C >= 1
                                                                                   && C >= 1 + B] 14 :  [C >= 1] 15 :  True 16 :  True .
* Step 17: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (?,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalSimpleMultipleDepbb1in) = -1 + -1*x2 + x3
          p(evalSimpleMultipleDepbb2in) = -1 + -1*x2 + x3
          p(evalSimpleMultipleDepstart) = x3             
        
        The following rules are strictly oriented:
                       [C >= 2 + B && 0 >= D] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1 + -1*B + C                          
                                                > -2 + -1*B + C                          
                                                = evalSimpleMultipleDepbb2in(0,1 + B,C,D)
        
                           [C >= 1 && D >= 1] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                                > -1 + C                                 
                                                = evalSimpleMultipleDepbb1in(0,0,C,D)    
        
                           [C >= 1 && 0 >= D] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                                > -1 + C                                 
                                                = evalSimpleMultipleDepbb2in(0,0,C,D)    
        
        
        The following rules are weakly oriented:
                   [C >= 1 + B && D >= 2 + A] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1 + -1*B + C                          
                                               >= -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb1in(1 + A,B,C,D)
        
                   [C >= 1 + B && 1 + A >= D] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1 + -1*B + C                          
                                               >= -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb2in(1 + A,B,C,D)
        
                       [C >= 2 + B && D >= 1] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1 + -1*B + C                          
                                               >= -2 + -1*B + C                          
                                                = evalSimpleMultipleDepbb1in(0,1 + B,C,D)
        
        
* Step 18: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (?,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (C,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalSimpleMultipleDepbb1in) = -1*x2 + x3
          p(evalSimpleMultipleDepbb2in) = -1*x2 + x3
          p(evalSimpleMultipleDepstart) = x3        
        
        The following rules are strictly oriented:
                       [C >= 2 + B && D >= 1] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1*B + C                               
                                                > -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb1in(0,1 + B,C,D)
        
                       [C >= 2 + B && 0 >= D] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1*B + C                               
                                                > -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb2in(0,1 + B,C,D)
        
        
        The following rules are weakly oriented:
                   [C >= 1 + B && D >= 2 + A] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1*B + C                               
                                               >= -1*B + C                               
                                                = evalSimpleMultipleDepbb1in(1 + A,B,C,D)
        
                   [C >= 1 + B && 1 + A >= D] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1*B + C                               
                                               >= -1*B + C                               
                                                = evalSimpleMultipleDepbb2in(1 + A,B,C,D)
        
                           [C >= 1 && D >= 1] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                               >= C                                      
                                                = evalSimpleMultipleDepbb1in(0,0,C,D)    
        
                           [C >= 1 && 0 >= D] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                               >= C                                      
                                                = evalSimpleMultipleDepbb2in(0,0,C,D)    
        
        
* Step 19: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (C,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (C,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalSimpleMultipleDepbb1in) = -1*x2 + x3     
          p(evalSimpleMultipleDepbb2in) = -1 + -1*x2 + x3
          p(evalSimpleMultipleDepstart) = x3             
        
        The following rules are strictly oriented:
                   [C >= 1 + B && 1 + A >= D] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1*B + C                               
                                                > -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb2in(1 + A,B,C,D)
        
                       [C >= 2 + B && 0 >= D] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1 + -1*B + C                          
                                                > -2 + -1*B + C                          
                                                = evalSimpleMultipleDepbb2in(0,1 + B,C,D)
        
                           [C >= 1 && 0 >= D] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                                > -1 + C                                 
                                                = evalSimpleMultipleDepbb2in(0,0,C,D)    
        
        
        The following rules are weakly oriented:
                   [C >= 1 + B && D >= 2 + A] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1*B + C                               
                                               >= -1*B + C                               
                                                = evalSimpleMultipleDepbb1in(1 + A,B,C,D)
        
                       [C >= 2 + B && D >= 1] ==>                                        
          evalSimpleMultipleDepbb2in(A,B,C,D)   = -1 + -1*B + C                          
                                               >= -1 + -1*B + C                          
                                                = evalSimpleMultipleDepbb1in(0,1 + B,C,D)
        
                           [C >= 1 && D >= 1] ==>                                        
          evalSimpleMultipleDepstart(A,B,C,D)   = C                                      
                                               >= C                                      
                                                = evalSimpleMultipleDepbb1in(0,0,C,D)    
        
        
* Step 20: LoopRecurrenceProcessor WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (C,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (C,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        LoopRecurrenceProcessor [14]
    + Details:
        Applying the recurrence pattern linear * f to the expression C-B yields the solution -1*B + C .
* Step 21: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3)
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (C,3)
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (C,3)
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [11], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalSimpleMultipleDepbb1in) = -1 + -1*x1 + x4
        
        The following rules are strictly oriented:
                   [C >= 1 + B && D >= 2 + A] ==>                                        
          evalSimpleMultipleDepbb1in(A,B,C,D)   = -1 + -1*A + D                          
                                                > -2 + -1*A + D                          
                                                = evalSimpleMultipleDepbb1in(1 + A,B,C,D)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
        (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
        (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
        (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
        (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
        (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
* Step 22: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (1 + C + C*D + D,3)
          12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3)              
          13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1]     (C,3)              
          14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D]     (C,3)              
          15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D)     [C >= 1 && D >= 1]         (1,4)              
          16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D)     [C >= 1 && 0 >= D]         (1,4)              
        Signature:
          {(evalSimpleMultipleDepbb1in,4)
          ;(evalSimpleMultipleDepbb2in,4)
          ;(evalSimpleMultipleDepbb3in,4)
          ;(evalSimpleMultipleDepbbin,4)
          ;(evalSimpleMultipleDepentryin,4)
          ;(evalSimpleMultipleDepreturnin,4)
          ;(evalSimpleMultipleDepstart,4)
          ;(evalSimpleMultipleDepstop,4)}
        Flow Graph:
          [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}]
        Sizebounds:
          (<11,0,A>,     D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) 
          (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) 
          (<13,0,A>,     0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) 
          (<14,0,A>,     0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) 
          (<15,0,A>,     0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) 
          (<16,0,A>,     0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))