WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (?,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepreturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<0,0,D>, D, .= 0) (<1,0,A>, 0, .= 0) (<1,0,B>, 0, .= 0) (<1,0,C>, C, .= 0) (<1,0,D>, D, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<2,0,D>, D, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<3,0,D>, D, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<4,0,D>, D, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<5,0,D>, D, .= 0) (<6,0,A>, 1 + A, .+ 1) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<6,0,D>, D, .= 0) (<7,0,A>, 0, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<7,0,D>, D, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) (<8,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (?,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepreturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<0,0,D>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<1,0,D>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,0,D>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<3,0,D>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<4,0,D>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,0,D>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<6,0,D>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<7,0,D>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<8,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<3,0,A>, D) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, D) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (?,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 3. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepreturnin(A,B,C,D) [B >= C] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepreturnin(A,B,C,D) -> evalSimpleMultipleDepstop(A,B,C,D) True (?,1) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<3,0,A>, D) (<3,0,B>, C) (<3,0,C>, C) (<3,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, D) (<8,0,B>, C) (<8,0,C>, C) (<8,0,D>, D) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,8] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (?,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultipleDepbb1in) = 1 p(evalSimpleMultipleDepbb2in) = 1 p(evalSimpleMultipleDepbb3in) = 1 p(evalSimpleMultipleDepbbin) = 1 p(evalSimpleMultipleDepentryin) = 2 p(evalSimpleMultipleDepstart) = 2 The following rules are strictly oriented: True ==> evalSimpleMultipleDepentryin(A,B,C,D) = 2 > 1 = evalSimpleMultipleDepbb3in(0,0,C,D) The following rules are weakly oriented: True ==> evalSimpleMultipleDepstart(A,B,C,D) = 2 >= 2 = evalSimpleMultipleDepentryin(A,B,C,D) [C >= 1 + B] ==> evalSimpleMultipleDepbb3in(A,B,C,D) = 1 >= 1 = evalSimpleMultipleDepbbin(A,B,C,D) [D >= 1 + A] ==> evalSimpleMultipleDepbbin(A,B,C,D) = 1 >= 1 = evalSimpleMultipleDepbb1in(A,B,C,D) [A >= D] ==> evalSimpleMultipleDepbbin(A,B,C,D) = 1 >= 1 = evalSimpleMultipleDepbb2in(A,B,C,D) True ==> evalSimpleMultipleDepbb1in(A,B,C,D) = 1 >= 1 = evalSimpleMultipleDepbb3in(1 + A,B,C,D) True ==> evalSimpleMultipleDepbb2in(A,B,C,D) = 1 >= 1 = evalSimpleMultipleDepbb3in(0,1 + B,C,D) * Step 5: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (2,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<0,0,D>, D) (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) + Applied Processor: ChainProcessor False [0,1,2,4,5,6,7] + Details: We chained rule 0 to obtain the rules [8] . * Step 6: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 1. evalSimpleMultipleDepentryin(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (2,1) 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [1->{2},2->{4,5},4->{6},5->{7},6->{2},7->{2},8->{2}] Sizebounds: (<1,0,A>, 0) (<1,0,B>, 0) (<1,0,C>, C) (<1,0,D>, D) (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, 0) (<8,0,B>, 0) (<8,0,C>, C) (<8,0,D>, D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 7: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 2. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbbin(A,B,C,D) [C >= 1 + B] (?,1) 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [2->{4,5},4->{6},5->{7},6->{2},7->{2},8->{2}] Sizebounds: (<2,0,A>, D) (<2,0,B>, C) (<2,0,C>, C) (<2,0,D>, D) (<4,0,A>, D) (<4,0,B>, C) (<4,0,C>, C) (<4,0,D>, D) (<5,0,A>, D) (<5,0,B>, C) (<5,0,C>, C) (<5,0,D>, D) (<6,0,A>, D) (<6,0,B>, C) (<6,0,C>, C) (<6,0,D>, D) (<7,0,A>, 0) (<7,0,B>, C) (<7,0,C>, C) (<7,0,D>, D) (<8,0,A>, 0) (<8,0,B>, 0) (<8,0,C>, C) (<8,0,D>, D) + Applied Processor: ChainProcessor False [2,4,5,6,7,8] + Details: We chained rule 2 to obtain the rules [9,10] . * Step 8: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 4. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [D >= 1 + A] (?,1) 5. evalSimpleMultipleDepbbin(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [A >= D] (?,1) 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) 9. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [C >= 1 + B && D >= 1 + A] (?,2) 10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [C >= 1 + B && A >= D] (?,2) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [4->{6},5->{7},6->{9,10},7->{9,10},8->{9,10},9->{6},10->{7}] Sizebounds: (< 4,0,A>, D) (< 4,0,B>, C) (< 4,0,C>, C) (< 4,0,D>, D) (< 5,0,A>, D) (< 5,0,B>, C) (< 5,0,C>, C) (< 5,0,D>, D) (< 6,0,A>, D) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, D) (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [4,5] * Step 9: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 6. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb3in(1 + A,B,C,D) True (?,1) 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) 9. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [C >= 1 + B && D >= 1 + A] (?,2) 10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [C >= 1 + B && A >= D] (?,2) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [6->{9,10},7->{9,10},8->{9,10},9->{6},10->{7}] Sizebounds: (< 6,0,A>, D) (< 6,0,B>, C) (< 6,0,C>, C) (< 6,0,D>, D) (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) + Applied Processor: ChainProcessor False [6,7,8,9,10] + Details: We chained rule 6 to obtain the rules [11,12] . * Step 10: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 7. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,1 + B,C,D) True (?,1) 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) 9. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [C >= 1 + B && D >= 1 + A] (?,2) 10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [C >= 1 + B && A >= D] (?,2) 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [7->{9,10},8->{9,10},9->{11,12},10->{7},11->{11,12},12->{7}] Sizebounds: (< 7,0,A>, 0) (< 7,0,B>, C) (< 7,0,C>, C) (< 7,0,D>, D) (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) + Applied Processor: ChainProcessor False [7,8,9,10,11,12] + Details: We chained rule 7 to obtain the rules [13,14] . * Step 11: ChainProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 8. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb3in(0,0,C,D) True (1,2) 9. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [C >= 1 + B && D >= 1 + A] (?,2) 10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [C >= 1 + B && A >= D] (?,2) 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [8->{9,10},9->{11,12},10->{13,14},11->{11,12},12->{13,14},13->{11,12},14->{13,14}] Sizebounds: (< 8,0,A>, 0) (< 8,0,B>, 0) (< 8,0,C>, C) (< 8,0,D>, D) (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) + Applied Processor: ChainProcessor False [8,9,10,11,12,13,14] + Details: We chained rule 8 to obtain the rules [15,16] . * Step 12: UnreachableRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 9. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb1in(A,B,C,D) [C >= 1 + B && D >= 1 + A] (?,2) 10. evalSimpleMultipleDepbb3in(A,B,C,D) -> evalSimpleMultipleDepbb2in(A,B,C,D) [C >= 1 + B && A >= D] (?,2) 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [9->{11,12},10->{13,14},11->{11,12},12->{13,14},13->{11,12},14->{13,14},15->{11,12},16->{13,14}] Sizebounds: (< 9,0,A>, D) (< 9,0,B>, C) (< 9,0,C>, C) (< 9,0,D>, D) (<10,0,A>, D) (<10,0,B>, C) (<10,0,C>, C) (<10,0,D>, D) (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [9,10] * Step 13: UnsatPaths WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{13,14},15->{11,12},16->{13,14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(14,13),(16,13)] * Step 14: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, D) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, D) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, D) (<15,0,B>, C) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, D) (<16,0,B>, C) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<11,0,A>, 1 + A, .+ 1) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) (<12,0,A>, 1 + A, .+ 1) (<12,0,B>, B, .= 0) (<12,0,C>, C, .= 0) (<12,0,D>, D, .= 0) (<13,0,A>, 0, .= 0) (<13,0,B>, 1 + B, .+ 1) (<13,0,C>, C, .= 0) (<13,0,D>, D, .= 0) (<14,0,A>, 0, .= 0) (<14,0,B>, 1 + B, .+ 1) (<14,0,C>, C, .= 0) (<14,0,D>, D, .= 0) (<15,0,A>, 0, .= 0) (<15,0,B>, 0, .= 0) (<15,0,C>, C, .= 0) (<15,0,D>, D, .= 0) (<16,0,A>, 0, .= 0) (<16,0,B>, 0, .= 0) (<16,0,C>, C, .= 0) (<16,0,D>, D, .= 0) * Step 15: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<12,0,D>, ?) (<13,0,A>, ?) (<13,0,B>, ?) (<13,0,C>, ?) (<13,0,D>, ?) (<14,0,A>, ?) (<14,0,B>, ?) (<14,0,C>, ?) (<14,0,D>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<15,0,D>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<16,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) * Step 16: LocationConstraintsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 11 : [C >= 1] 12 : [C >= 1] 13 : [C >= 1 && C >= 1 + B] 14 : [C >= 1] 15 : True 16 : True . * Step 17: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (?,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultipleDepbb1in) = -1 + -1*x2 + x3 p(evalSimpleMultipleDepbb2in) = -1 + -1*x2 + x3 p(evalSimpleMultipleDepstart) = x3 The following rules are strictly oriented: [C >= 2 + B && 0 >= D] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1 + -1*B + C > -2 + -1*B + C = evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 1 && D >= 1] ==> evalSimpleMultipleDepstart(A,B,C,D) = C > -1 + C = evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && 0 >= D] ==> evalSimpleMultipleDepstart(A,B,C,D) = C > -1 + C = evalSimpleMultipleDepbb2in(0,0,C,D) The following rules are weakly oriented: [C >= 1 + B && D >= 2 + A] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1 + -1*B + C >= -1 + -1*B + C = evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1 + -1*B + C >= -1 + -1*B + C = evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 2 + B && D >= 1] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1 + -1*B + C >= -2 + -1*B + C = evalSimpleMultipleDepbb1in(0,1 + B,C,D) * Step 18: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (?,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (C,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultipleDepbb1in) = -1*x2 + x3 p(evalSimpleMultipleDepbb2in) = -1*x2 + x3 p(evalSimpleMultipleDepstart) = x3 The following rules are strictly oriented: [C >= 2 + B && D >= 1] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1*B + C > -1 + -1*B + C = evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1*B + C > -1 + -1*B + C = evalSimpleMultipleDepbb2in(0,1 + B,C,D) The following rules are weakly oriented: [C >= 1 + B && D >= 2 + A] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 && D >= 1] ==> evalSimpleMultipleDepstart(A,B,C,D) = C >= C = evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && 0 >= D] ==> evalSimpleMultipleDepstart(A,B,C,D) = C >= C = evalSimpleMultipleDepbb2in(0,0,C,D) * Step 19: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (?,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (C,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (C,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultipleDepbb1in) = -1*x2 + x3 p(evalSimpleMultipleDepbb2in) = -1 + -1*x2 + x3 p(evalSimpleMultipleDepstart) = x3 The following rules are strictly oriented: [C >= 1 + B && 1 + A >= D] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1*B + C > -1 + -1*B + C = evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 2 + B && 0 >= D] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1 + -1*B + C > -2 + -1*B + C = evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 1 && 0 >= D] ==> evalSimpleMultipleDepstart(A,B,C,D) = C > -1 + C = evalSimpleMultipleDepbb2in(0,0,C,D) The following rules are weakly oriented: [C >= 1 + B && D >= 2 + A] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 2 + B && D >= 1] ==> evalSimpleMultipleDepbb2in(A,B,C,D) = -1 + -1*B + C >= -1 + -1*B + C = evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 1 && D >= 1] ==> evalSimpleMultipleDepstart(A,B,C,D) = C >= C = evalSimpleMultipleDepbb1in(0,0,C,D) * Step 20: LoopRecurrenceProcessor WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (C,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (C,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: LoopRecurrenceProcessor [14] + Details: Applying the recurrence pattern linear * f to the expression C-B yields the solution -1*B + C . * Step 21: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (?,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (C,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (C,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [11], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultipleDepbb1in) = -1 + -1*x1 + x4 The following rules are strictly oriented: [C >= 1 + B && D >= 2 + A] ==> evalSimpleMultipleDepbb1in(A,B,C,D) = -1 + -1*A + D > -2 + -1*A + D = evalSimpleMultipleDepbb1in(1 + A,B,C,D) The following rules are weakly oriented: We use the following global sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) * Step 22: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 11. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb1in(1 + A,B,C,D) [C >= 1 + B && D >= 2 + A] (1 + C + C*D + D,3) 12. evalSimpleMultipleDepbb1in(A,B,C,D) -> evalSimpleMultipleDepbb2in(1 + A,B,C,D) [C >= 1 + B && 1 + A >= D] (C,3) 13. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,1 + B,C,D) [C >= 2 + B && D >= 1] (C,3) 14. evalSimpleMultipleDepbb2in(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,1 + B,C,D) [C >= 2 + B && 0 >= D] (C,3) 15. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb1in(0,0,C,D) [C >= 1 && D >= 1] (1,4) 16. evalSimpleMultipleDepstart(A,B,C,D) -> evalSimpleMultipleDepbb2in(0,0,C,D) [C >= 1 && 0 >= D] (1,4) Signature: {(evalSimpleMultipleDepbb1in,4) ;(evalSimpleMultipleDepbb2in,4) ;(evalSimpleMultipleDepbb3in,4) ;(evalSimpleMultipleDepbbin,4) ;(evalSimpleMultipleDepentryin,4) ;(evalSimpleMultipleDepreturnin,4) ;(evalSimpleMultipleDepstart,4) ;(evalSimpleMultipleDepstop,4)} Flow Graph: [11->{11,12},12->{13,14},13->{11,12},14->{14},15->{11,12},16->{14}] Sizebounds: (<11,0,A>, D) (<11,0,B>, C) (<11,0,C>, C) (<11,0,D>, D) (<12,0,A>, 1 + D) (<12,0,B>, C) (<12,0,C>, C) (<12,0,D>, D) (<13,0,A>, 0) (<13,0,B>, C) (<13,0,C>, C) (<13,0,D>, D) (<14,0,A>, 0) (<14,0,B>, C) (<14,0,C>, C) (<14,0,D>, D) (<15,0,A>, 0) (<15,0,B>, 0) (<15,0,C>, C) (<15,0,D>, D) (<16,0,A>, 0) (<16,0,B>, 0) (<16,0,C>, C) (<16,0,D>, D) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^2))