WORST_CASE(?,O(n^1))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= C]               (?,1)
          4. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [C >= B]               (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)    -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>,     C, .= 0) 
          (<1,0,A>, C, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>,     A, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>,     C, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>,     C, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>,     C, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>,     C, .= 0) 
          (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>,     C, .= 0) 
          (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, 1 + C, .+ 1) 
          (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, 1 + C, .+ 1) 
          (<9,0,A>, A, .= 0) (<9,0,B>, B, .= 0) (<9,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= C]               (?,1)
          4. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [C >= B]               (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)    -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) 
          (<9,0,A>, ?) (<9,0,B>, ?) (<9,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>,     C) 
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>,     A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>,     B) 
          (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) 
          (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>,     B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>,     B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>,     B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>,     B) 
          (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= C]               (?,1)
          4. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [C >= B]               (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)    -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>,     C) 
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>,     A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>,     B) 
          (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) 
          (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>,     B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>,     B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>,     B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>,     B) 
          (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,3),(1,4)]
* Step 4: LeafRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (?,1)
          2. evalfbb3in(A,B,C)    -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          3. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= C]               (?,1)
          4. evalfbb3in(A,B,C)    -> evalfreturnin(A,B,C)   [C >= B]               (?,1)
          5. evalfbbin(A,B,C)     -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)     -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)    -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>,     C) 
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>,     A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>,     B) 
          (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) 
          (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>,     B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>,     B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>,     B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>,     B) 
          (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,4,9]
* Step 5: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (?,1)
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          5. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)   -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,-1 + C) True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = 0
            p(evalfbb2in) = 0
            p(evalfbb3in) = 0
             p(evalfbbin) = 0
          p(evalfentryin) = 1
            p(evalfstart) = 1
        
        The following rules are strictly oriented:
        [A >= 1 && B >= 1 + A] ==>                  
           evalfentryin(A,B,C)   = 1                
                                 > 0                
                                 = evalfbb3in(C,B,A)
        
        
        The following rules are weakly oriented:
                          True ==>                       
             evalfstart(A,B,C)   = 1                     
                                >= 1                     
                                 = evalfentryin(A,B,C)   
        
        [C >= 1 && B >= 1 + C] ==>                       
             evalfbb3in(A,B,C)   = 0                     
                                >= 0                     
                                 = evalfbbin(A,B,C)      
        
                      [A >= 1] ==>                       
              evalfbbin(A,B,C)   = 0                     
                                >= 0                     
                                 = evalfbb1in(A,B,C)     
        
                      [0 >= A] ==>                       
              evalfbbin(A,B,C)   = 0                     
                                >= 0                     
                                 = evalfbb2in(A,B,C)     
        
                          True ==>                       
             evalfbb1in(A,B,C)   = 0                     
                                >= 0                     
                                 = evalfbb3in(A,B,1 + C) 
        
                          True ==>                       
             evalfbb2in(A,B,C)   = 0                     
                                >= 0                     
                                 = evalfbb3in(A,B,-1 + C)
        
        
* Step 6: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True                   (1,1)
          1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (1,1)
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          5. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)   -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,-1 + C) True                   (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [0,1,2,5,6,7,8]
    + Details:
        We chained rule 0 to obtain the rules [9] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (1,1)
          2. evalfbb3in(A,B,C)   -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          5. evalfbbin(A,B,C)    -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)    -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C)   -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfstart(A,B,C)   -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (1,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2},9->{2}]
        Sizebounds:
          (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) 
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) 
          (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 8: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C)       [C >= 1 && B >= 1 + C] (?,1)
          5. evalfbbin(A,B,C)  -> evalfbb1in(A,B,C)      [A >= 1]               (?,1)
          6. evalfbbin(A,B,C)  -> evalfbb2in(A,B,C)      [0 >= A]               (?,1)
          7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C)  True                   (?,1)
          8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True                   (?,1)
          9. evalfstart(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A] (1,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [2->{5,6},5->{7},6->{8},7->{2},8->{2},9->{2}]
        Sizebounds:
          (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) 
          (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) 
          (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) 
          (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) 
          (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) 
          (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A) 
    + Applied Processor:
        ChainProcessor False [2,5,6,7,8,9]
    + Details:
        We chained rule 2 to obtain the rules [10,11] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          5.  evalfbbin(A,B,C)  -> evalfbb1in(A,B,C)      [A >= 1]                         (?,1)
          6.  evalfbbin(A,B,C)  -> evalfbb2in(A,B,C)      [0 >= A]                         (?,1)
          7.  evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C)  True                             (?,1)
          8.  evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True                             (?,1)
          9.  evalfstart(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A]           (1,2)
          10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C)      [C >= 1 && B >= 1 + C && A >= 1] (?,2)
          11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C)      [C >= 1 && B >= 1 + C && 0 >= A] (?,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [5->{7},6->{8},7->{10,11},8->{10,11},9->{10,11},10->{7},11->{8}]
        Sizebounds:
          (< 5,0,A>, C) (< 5,0,B>, B) (< 5,0,C>, B) 
          (< 6,0,A>, C) (< 6,0,B>, B) (< 6,0,C>, B) 
          (< 7,0,A>, C) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) 
          (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) 
          (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [5,6]
* Step 10: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          7.  evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C)  True                             (?,1)
          8.  evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True                             (?,1)
          9.  evalfstart(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A]           (1,2)
          10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C)      [C >= 1 && B >= 1 + C && A >= 1] (?,2)
          11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C)      [C >= 1 && B >= 1 + C && 0 >= A] (?,2)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [7->{10,11},8->{10,11},9->{10,11},10->{7},11->{8}]
        Sizebounds:
          (< 7,0,A>, C) (< 7,0,B>, B) (< 7,0,C>, B) 
          (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) 
          (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) 
          (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11]
    + Details:
        We chained rule 7 to obtain the rules [12,13] .
* Step 11: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          8.  evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True                                 (?,1)
          9.  evalfstart(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A]               (1,2)
          10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C)      [C >= 1 && B >= 1 + C && A >= 1]     (?,2)
          11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C)      [C >= 1 && B >= 1 + C && 0 >= A]     (?,2)
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3)
          13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [8->{10,11},9->{10,11},10->{12,13},11->{8},12->{12,13},13->{8}]
        Sizebounds:
          (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) 
          (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) 
          (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) 
          (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [8,9,10,11,12,13]
    + Details:
        We chained rule 8 to obtain the rules [14,15] .
* Step 12: ChainProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          9.  evalfstart(A,B,C) -> evalfbb3in(C,B,A)      [A >= 1 && B >= 1 + A]               (1,2)
          10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C)      [C >= 1 && B >= 1 + C && A >= 1]     (?,2)
          11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C)      [C >= 1 && B >= 1 + C && 0 >= A]     (?,2)
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3)
          13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3)
          14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1]    (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]    (?,3)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [9->{10,11},10->{12,13},11->{14,15},12->{12,13},13->{14,15},14->{12,13},15->{14,15}]
        Sizebounds:
          (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) 
          (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) 
          (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
    + Applied Processor:
        ChainProcessor False [9,10,11,12,13,14,15]
    + Details:
        We chained rule 9 to obtain the rules [16,17] .
* Step 13: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C)      [C >= 1 && B >= 1 + C && A >= 1]                         (?,2)
          11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C)      [C >= 1 && B >= 1 + C && 0 >= A]                         (?,2)
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && 0 >= A]                     (?,3)
          14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1]                        (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [10->{12,13},11->{14,15},12->{12,13},13->{14,15},14->{12,13},15->{14,15},16->{12,13},17->{14,15}]
        Sizebounds:
          (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) 
          (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) 
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10,11]
* Step 14: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && 0 >= A]                     (?,3)
          14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1]                        (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12,13},13->{14,15},14->{12,13},15->{14,15},16->{12,13},17->{14,15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(12,13),(13,14),(14,13),(15,14),(16,13),(17,14)]
* Step 15: UnreachableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && 0 >= A]                     (?,3)
          14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1]                        (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},13->{15},14->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) 
          (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [13,14]
* Step 16: LocalSizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, 1 + C, .+ 1) 
          (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, 1 + C, .+ 1) 
          (<16,0,A>, C, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>,     A, .= 0) 
          (<17,0,A>, C, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>,     A, .= 0) 
* Step 17: SizeboundsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) 
          (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) 
          (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) 
          (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
* Step 18: LocationConstraintsProc WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  12 :  [C >= 1 && False] 15 :  [C >= 1
                                                                             && False] 16 :  True 17 :  True .
* Step 19: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (?,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 0      
          p(evalfbb2in) = -1 + x3
          p(evalfstart) = x1     
        
        The following rules are strictly oriented:
                               [-1 + C >= 1 && B >= C && 0 >= A] ==>                       
                                               evalfbb2in(A,B,C)   = -1 + C                
                                                                   > -2 + C                
                                                                   = evalfbb2in(A,B,-1 + C)
        
        [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] ==>                       
                                               evalfstart(A,B,C)   = A                     
                                                                   > 0                     
                                                                   = evalfbb1in(C,B,A)     
        
        [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] ==>                       
                                               evalfstart(A,B,C)   = A                     
                                                                   > -1 + A                
                                                                   = evalfbb2in(C,B,A)     
        
        
        The following rules are weakly oriented:
        [1 + C >= 1 && B >= 2 + C && A >= 1] ==>                      
                           evalfbb1in(A,B,C)   = 0                    
                                              >= 0                    
                                               = evalfbb1in(A,B,1 + C)
        
        
* Step 20: PolyRank WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (?,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (A,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = x2 + -1*x3
          p(evalfbb2in) = x2        
          p(evalfstart) = x2        
        
        The following rules are strictly oriented:
                            [1 + C >= 1 && B >= 2 + C && A >= 1] ==>                      
                                               evalfbb1in(A,B,C)   = B + -1*C             
                                                                   > -1 + B + -1*C        
                                                                   = evalfbb1in(A,B,1 + C)
        
        [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] ==>                      
                                               evalfstart(A,B,C)   = B                    
                                                                   > -1*A + B             
                                                                   = evalfbb1in(C,B,A)    
        
        
        The following rules are weakly oriented:
                               [-1 + C >= 1 && B >= C && 0 >= A] ==>                       
                                               evalfbb2in(A,B,C)   = B                     
                                                                  >= B                     
                                                                   = evalfbb2in(A,B,-1 + C)
        
        [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] ==>                       
                                               evalfstart(A,B,C)   = B                     
                                                                  >= B                     
                                                                   = evalfbb2in(C,B,A)     
        
        
* Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (B,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (A,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        LoopRecurrenceProcessor [15]
    + Details:
        Applying the recurrence pattern linear * f to the expression C yields the solution C .
* Step 22: LoopRecurrenceProcessor WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (B,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (A,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        LoopRecurrenceProcessor [12]
    + Details:
        Applying the recurrence pattern linear * f to the expression B-C yields the solution B + -1*C .
* Step 23: UnsatPaths WORST_CASE(?,O(n^1))
    + Considered Problem:
        Rules:
          12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C)  [1 + C >= 1 && B >= 2 + C && A >= 1]                     (B,3)
          15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A]                        (A,3)
          16. evalfstart(A,B,C) -> evalfbb1in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4)
          17. evalfstart(A,B,C) -> evalfbb2in(C,B,A)      [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbbin,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [12->{12},15->{15},16->{12},17->{15}]
        Sizebounds:
          (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) 
          (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) 
          (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) 
          (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) 
    + Applied Processor:
        UnsatPaths
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^1))