WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [0 >= C] (?,1) 4. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [C >= B] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, C, .= 0) (<1,0,B>, B, .= 0) (<1,0,C>, A, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, C, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, C, .= 0) (<7,0,A>, A, .= 0) (<7,0,B>, B, .= 0) (<7,0,C>, 1 + C, .+ 1) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, 1 + C, .+ 1) (<9,0,A>, A, .= 0) (<9,0,B>, B, .= 0) (<9,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [0 >= C] (?,1) 4. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [C >= B] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) (<9,0,A>, ?) (<9,0,B>, ?) (<9,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [0 >= C] (?,1) 4. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [C >= B] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3),(1,4)] * Step 4: LeafRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 3. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [0 >= C] (?,1) 4. evalfbb3in(A,B,C) -> evalfreturnin(A,B,C) [C >= B] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{5,6},3->{9},4->{9},5->{7},6->{8},7->{2,3,4},8->{2,3,4},9->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<3,0,A>, C) (<3,0,B>, B) (<3,0,C>, A + B) (<4,0,A>, C) (<4,0,B>, B) (<4,0,C>, A + B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A + B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,4,9] * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 0 p(evalfbb2in) = 0 p(evalfbb3in) = 0 p(evalfbbin) = 0 p(evalfentryin) = 1 p(evalfstart) = 1 The following rules are strictly oriented: [A >= 1 && B >= 1 + A] ==> evalfentryin(A,B,C) = 1 > 0 = evalfbb3in(C,B,A) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = 1 >= 1 = evalfentryin(A,B,C) [C >= 1 && B >= 1 + C] ==> evalfbb3in(A,B,C) = 0 >= 0 = evalfbbin(A,B,C) [A >= 1] ==> evalfbbin(A,B,C) = 0 >= 0 = evalfbb1in(A,B,C) [0 >= A] ==> evalfbbin(A,B,C) = 0 >= 0 = evalfbb2in(A,B,C) True ==> evalfbb1in(A,B,C) = 0 >= 0 = evalfbb3in(A,B,1 + C) True ==> evalfbb2in(A,B,C) = 0 >= 0 = evalfbb3in(A,B,-1 + C) * Step 6: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) + Applied Processor: ChainProcessor False [0,1,2,5,6,7,8] + Details: We chained rule 0 to obtain the rules [9] . * Step 7: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. evalfentryin(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,1) 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [1->{2},2->{5,6},5->{7},6->{8},7->{2},8->{2},9->{2}] Sizebounds: (<1,0,A>, C) (<1,0,B>, B) (<1,0,C>, A) (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 8: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 2. evalfbb3in(A,B,C) -> evalfbbin(A,B,C) [C >= 1 && B >= 1 + C] (?,1) 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [2->{5,6},5->{7},6->{8},7->{2},8->{2},9->{2}] Sizebounds: (<2,0,A>, C) (<2,0,B>, B) (<2,0,C>, B) (<5,0,A>, C) (<5,0,B>, B) (<5,0,C>, B) (<6,0,A>, C) (<6,0,B>, B) (<6,0,C>, B) (<7,0,A>, C) (<7,0,B>, B) (<7,0,C>, B) (<8,0,A>, C) (<8,0,B>, B) (<8,0,C>, B) (<9,0,A>, C) (<9,0,B>, B) (<9,0,C>, A) + Applied Processor: ChainProcessor False [2,5,6,7,8,9] + Details: We chained rule 2 to obtain the rules [10,11] . * Step 9: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 5. evalfbbin(A,B,C) -> evalfbb1in(A,B,C) [A >= 1] (?,1) 6. evalfbbin(A,B,C) -> evalfbb2in(A,B,C) [0 >= A] (?,1) 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) 10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 && B >= 1 + C && A >= 1] (?,2) 11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C) [C >= 1 && B >= 1 + C && 0 >= A] (?,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [5->{7},6->{8},7->{10,11},8->{10,11},9->{10,11},10->{7},11->{8}] Sizebounds: (< 5,0,A>, C) (< 5,0,B>, B) (< 5,0,C>, B) (< 6,0,A>, C) (< 6,0,B>, B) (< 6,0,C>, B) (< 7,0,A>, C) (< 7,0,B>, B) (< 7,0,C>, B) (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [5,6] * Step 10: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 7. evalfbb1in(A,B,C) -> evalfbb3in(A,B,1 + C) True (?,1) 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) 10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 && B >= 1 + C && A >= 1] (?,2) 11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C) [C >= 1 && B >= 1 + C && 0 >= A] (?,2) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [7->{10,11},8->{10,11},9->{10,11},10->{7},11->{8}] Sizebounds: (< 7,0,A>, C) (< 7,0,B>, B) (< 7,0,C>, B) (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) + Applied Processor: ChainProcessor False [7,8,9,10,11] + Details: We chained rule 7 to obtain the rules [12,13] . * Step 11: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 8. evalfbb2in(A,B,C) -> evalfbb3in(A,B,-1 + C) True (?,1) 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) 10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 && B >= 1 + C && A >= 1] (?,2) 11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C) [C >= 1 && B >= 1 + C && 0 >= A] (?,2) 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [8->{10,11},9->{10,11},10->{12,13},11->{8},12->{12,13},13->{8}] Sizebounds: (< 8,0,A>, C) (< 8,0,B>, B) (< 8,0,C>, B) (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) + Applied Processor: ChainProcessor False [8,9,10,11,12,13] + Details: We chained rule 8 to obtain the rules [14,15] . * Step 12: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 9. evalfstart(A,B,C) -> evalfbb3in(C,B,A) [A >= 1 && B >= 1 + A] (1,2) 10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 && B >= 1 + C && A >= 1] (?,2) 11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C) [C >= 1 && B >= 1 + C && 0 >= A] (?,2) 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3) 14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [9->{10,11},10->{12,13},11->{14,15},12->{12,13},13->{14,15},14->{12,13},15->{14,15}] Sizebounds: (< 9,0,A>, C) (< 9,0,B>, B) (< 9,0,C>, A) (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) + Applied Processor: ChainProcessor False [9,10,11,12,13,14,15] + Details: We chained rule 9 to obtain the rules [16,17] . * Step 13: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 10. evalfbb3in(A,B,C) -> evalfbb1in(A,B,C) [C >= 1 && B >= 1 + C && A >= 1] (?,2) 11. evalfbb3in(A,B,C) -> evalfbb2in(A,B,C) [C >= 1 && B >= 1 + C && 0 >= A] (?,2) 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3) 14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [10->{12,13},11->{14,15},12->{12,13},13->{14,15},14->{12,13},15->{14,15},16->{12,13},17->{14,15}] Sizebounds: (<10,0,A>, C) (<10,0,B>, B) (<10,0,C>, B) (<11,0,A>, C) (<11,0,B>, B) (<11,0,C>, B) (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10,11] * Step 14: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3) 14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12,13},13->{14,15},14->{12,13},15->{14,15},16->{12,13},17->{14,15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(12,13),(13,14),(14,13),(15,14),(16,13),(17,14)] * Step 15: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 13. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && 0 >= A] (?,3) 14. evalfbb2in(A,B,C) -> evalfbb1in(A,B,-1 + C) [-1 + C >= 1 && B >= C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},13->{15},14->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<13,0,A>, C) (<13,0,B>, B) (<13,0,C>, B) (<14,0,A>, C) (<14,0,B>, B) (<14,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [13,14] * Step 16: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, B) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, B) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<12,0,A>, A, .= 0) (<12,0,B>, B, .= 0) (<12,0,C>, 1 + C, .+ 1) (<15,0,A>, A, .= 0) (<15,0,B>, B, .= 0) (<15,0,C>, 1 + C, .+ 1) (<16,0,A>, C, .= 0) (<16,0,B>, B, .= 0) (<16,0,C>, A, .= 0) (<17,0,A>, C, .= 0) (<17,0,B>, B, .= 0) (<17,0,C>, A, .= 0) * Step 17: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, ?) (<12,0,B>, ?) (<12,0,C>, ?) (<15,0,A>, ?) (<15,0,B>, ?) (<15,0,C>, ?) (<16,0,A>, ?) (<16,0,B>, ?) (<16,0,C>, ?) (<17,0,A>, ?) (<17,0,B>, ?) (<17,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) * Step 18: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 12 : [C >= 1 && False] 15 : [C >= 1 && False] 16 : True 17 : True . * Step 19: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (?,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 0 p(evalfbb2in) = -1 + x3 p(evalfstart) = x1 The following rules are strictly oriented: [-1 + C >= 1 && B >= C && 0 >= A] ==> evalfbb2in(A,B,C) = -1 + C > -2 + C = evalfbb2in(A,B,-1 + C) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] ==> evalfstart(A,B,C) = A > 0 = evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] ==> evalfstart(A,B,C) = A > -1 + A = evalfbb2in(C,B,A) The following rules are weakly oriented: [1 + C >= 1 && B >= 2 + C && A >= 1] ==> evalfbb1in(A,B,C) = 0 >= 0 = evalfbb1in(A,B,1 + C) * Step 20: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (?,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (A,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = x2 + -1*x3 p(evalfbb2in) = x2 p(evalfstart) = x2 The following rules are strictly oriented: [1 + C >= 1 && B >= 2 + C && A >= 1] ==> evalfbb1in(A,B,C) = B + -1*C > -1 + B + -1*C = evalfbb1in(A,B,1 + C) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] ==> evalfstart(A,B,C) = B > -1*A + B = evalfbb1in(C,B,A) The following rules are weakly oriented: [-1 + C >= 1 && B >= C && 0 >= A] ==> evalfbb2in(A,B,C) = B >= B = evalfbb2in(A,B,-1 + C) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] ==> evalfstart(A,B,C) = B >= B = evalfbb2in(C,B,A) * Step 21: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (B,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (A,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: LoopRecurrenceProcessor [15] + Details: Applying the recurrence pattern linear * f to the expression C yields the solution C . * Step 22: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (B,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (A,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: LoopRecurrenceProcessor [12] + Details: Applying the recurrence pattern linear * f to the expression B-C yields the solution B + -1*C . * Step 23: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 12. evalfbb1in(A,B,C) -> evalfbb1in(A,B,1 + C) [1 + C >= 1 && B >= 2 + C && A >= 1] (B,3) 15. evalfbb2in(A,B,C) -> evalfbb2in(A,B,-1 + C) [-1 + C >= 1 && B >= C && 0 >= A] (A,3) 16. evalfstart(A,B,C) -> evalfbb1in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && C >= 1] (1,4) 17. evalfstart(A,B,C) -> evalfbb2in(C,B,A) [A >= 1 && B >= 1 + A && A >= 1 && B >= 1 + A && 0 >= C] (1,4) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbbin,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [12->{12},15->{15},16->{12},17->{15}] Sizebounds: (<12,0,A>, C) (<12,0,B>, B) (<12,0,C>, B) (<15,0,A>, C) (<15,0,B>, B) (<15,0,C>, B) (<16,0,A>, C) (<16,0,B>, B) (<16,0,C>, A) (<17,0,A>, C) (<17,0,B>, B) (<17,0,C>, A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))