WORST_CASE(?,O(n^3)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C,D) -> evalfreturnin(A,B,C,D) [D >= B] (?,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 6. evalfbb4in(A,B,C,D) -> evalfreturnin(A,B,C,D) True (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>, C, .= 0) (< 0,0,D>, D, .= 0) (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>, 0, .= 0) (< 1,0,D>, 0, .= 0) (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>, C, .= 0) (< 2,0,D>, D, .= 0) (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>, C, .= 0) (< 3,0,D>, D, .= 0) (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>, C, .= 0) (< 4,0,D>, D, .= 0) (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>, C, .= 0) (< 5,0,D>, D, .= 0) (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>, C, .= 0) (< 6,0,D>, D, .= 0) (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>, C, .= 0) (< 7,0,D>, D, .= 0) (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>, C, .= 0) (< 8,0,D>, D, .= 0) (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 1 + C, .+ 1) (< 9,0,D>, D, .= 0) (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>, 0, .= 0) (<10,0,D>, 1 + D, .+ 1) (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>, C, .= 0) (<11,0,D>, D, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C,D) -> evalfreturnin(A,B,C,D) [D >= B] (?,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 6. evalfbb4in(A,B,C,D) -> evalfreturnin(A,B,C,D) True (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}] Sizebounds: (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) * Step 3: UnsatPaths WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C,D) -> evalfreturnin(A,B,C,D) [D >= B] (?,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 6. evalfbb4in(A,B,C,D) -> evalfreturnin(A,B,C,D) True (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,2)] * Step 4: LeafRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 2. evalfbb3in(A,B,C,D) -> evalfreturnin(A,B,C,D) [D >= B] (?,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 6. evalfbb4in(A,B,C,D) -> evalfreturnin(A,B,C,D) True (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [2,6,11] * Step 5: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (?,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfbbin) = 1 p(evalfentryin) = 2 p(evalfstart) = 2 The following rules are strictly oriented: [A >= 1 && B >= 1 + A] ==> evalfentryin(A,B,C,D) = 2 > 1 = evalfbb3in(A,B,0,0) The following rules are weakly oriented: True ==> evalfstart(A,B,C,D) = 2 >= 2 = evalfentryin(A,B,C,D) [B >= 1 + D] ==> evalfbb3in(A,B,C,D) = 1 >= 1 = evalfbb4in(A,B,C,D) [0 >= 1 + E] ==> evalfbb4in(A,B,C,D) = 1 >= 1 = evalfbbin(A,B,C,D) [E >= 1] ==> evalfbb4in(A,B,C,D) = 1 >= 1 = evalfbbin(A,B,C,D) [A >= 1 + C] ==> evalfbbin(A,B,C,D) = 1 >= 1 = evalfbb1in(A,B,C,D) [C >= A] ==> evalfbbin(A,B,C,D) = 1 >= 1 = evalfbb2in(A,B,C,D) True ==> evalfbb1in(A,B,C,D) = 1 >= 1 = evalfbb3in(A,B,1 + C,D) True ==> evalfbb2in(A,B,C,D) = 1 >= 1 = evalfbb3in(A,B,0,1 + D) * Step 6: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 0. evalfstart(A,B,C,D) -> evalfentryin(A,B,C,D) True (1,1) 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (2,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [0->{1},1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3}] Sizebounds: (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) + Applied Processor: ChainProcessor False [0,1,3,4,5,7,8,9,10] + Details: We chained rule 0 to obtain the rules [11] . * Step 7: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 1. evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (2,1) 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3},11->{3}] Sizebounds: (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 8: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 3. evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D) [B >= 1 + D] (?,1) 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3},11->{3}] Sizebounds: (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) + Applied Processor: ChainProcessor False [3,4,5,7,8,9,10,11] + Details: We chained rule 3 to obtain the rules [12,13] . * Step 9: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 4. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [0 >= 1 + E] (?,1) 5. evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D) [E >= 1] (?,1) 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [4->{7,8},5->{7,8},7->{9},8->{10},9->{12,13},10->{12,13},11->{12,13},12->{7,8},13->{7,8}] Sizebounds: (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [4,5] * Step 10: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 7. evalfbbin(A,B,C,D) -> evalfbb1in(A,B,C,D) [A >= 1 + C] (?,1) 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [7->{9},8->{10},9->{12,13},10->{12,13},11->{12,13},12->{7,8},13->{7,8}] Sizebounds: (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) + Applied Processor: ChainProcessor False [7,8,9,10,11,12,13] + Details: We chained rule 7 to obtain the rules [14] . * Step 11: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 9. evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [8->{10},9->{12,13},10->{12,13},11->{12,13},12->{8,14},13->{8,14},14->{12,13}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [9] * Step 12: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 8. evalfbbin(A,B,C,D) -> evalfbb2in(A,B,C,D) [C >= A] (?,1) 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [8->{10},10->{12,13},11->{12,13},12->{8,14},13->{8,14},14->{12,13}] Sizebounds: (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) + Applied Processor: ChainProcessor False [8,10,11,12,13,14] + Details: We chained rule 8 to obtain the rules [15] . * Step 13: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True (?,1) 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [10->{12,13},11->{12,13},12->{14,15},13->{14,15},14->{12,13},15->{12,13}] Sizebounds: (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [10] * Step 14: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0) [A >= 1 && B >= 1 + A] (1,2) 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [11->{12,13},12->{14,15},13->{14,15},14->{12,13},15->{12,13}] Sizebounds: (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) + Applied Processor: ChainProcessor False [11,12,13,14,15] + Details: We chained rule 11 to obtain the rules [16,17] . * Step 15: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && 0 >= 1 + E$] (?,2) 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) 16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4) 17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1] (1,4) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [12->{14,15},13->{14,15},14->{12,13},15->{12,13},16->{14,15},17->{14,15}] Sizebounds: (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) + Applied Processor: ChainProcessor False [12,13,14,15,16,17] + Details: We chained rule 12 to obtain the rules [18,19] . * Step 16: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D) [B >= 1 + D && E$ >= 1] (?,2) 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) 16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4) 17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1] (1,4) 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [13->{14,15},14->{13,18,19},15->{13,18,19},16->{14,15},17->{14,15},18->{13,18,19},19->{13,18,19}] Sizebounds: (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) + Applied Processor: ChainProcessor False [13,14,15,16,17,18,19] + Details: We chained rule 13 to obtain the rules [20,21] . * Step 17: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) 16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4) 17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1] (1,4) 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [14->{18,19,20,21},15->{18,19,20,21},16->{14,15},17->{14,15},18->{18,19,20,21},19->{18,19,20,21},20->{18 ,19,20,21},21->{18,19,20,21}] Sizebounds: (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) + Applied Processor: ChainProcessor False [14,15,16,17,18,19,20,21] + Details: We chained rule 16 to obtain the rules [22,23] . * Step 18: ChainProcessor WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) 17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1] (1,4) 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [14->{18,19,20,21},15->{18,19,20,21},17->{14,15},18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21} ,21->{18,19,20,21},22->{18,19,20,21},23->{18,19,20,21}] Sizebounds: (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) + Applied Processor: ChainProcessor False [14,15,17,18,19,20,21,22,23] + Details: We chained rule 17 to obtain the rules [24,25] . * Step 19: UnreachableRules WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 14. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C] (?,2) 15. evalfbbin(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [C >= A] (?,2) 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [14->{18,19,20,21},15->{18,19,20,21},18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20 ,21},22->{18,19,20,21},23->{18,19,20,21},24->{18,19,20,21},25->{18,19,20,21}] Sizebounds: (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [14,15] * Step 20: UnsatPaths WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{18,19,20 ,21},24->{18,19,20,21},25->{18,19,20,21}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(23,18) ,(23,19) ,(23,20) ,(23,21) ,(25,18) ,(25,19) ,(25,20) ,(25,21)] * Step 21: LocalSizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, 1 + C, .+ 1) (<18,0,D>, D, .= 0) (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>, 0, .= 0) (<19,0,D>, 1 + D, .+ 1) (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 1 + C, .+ 1) (<20,0,D>, D, .= 0) (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>, 0, .= 0) (<21,0,D>, 1 + D, .+ 1) (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>, 1, .= 1) (<22,0,D>, 0, .= 0) (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>, 0, .= 0) (<23,0,D>, 1, .= 1) (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>, 1, .= 1) (<24,0,D>, 0, .= 0) (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>, 0, .= 0) (<25,0,D>, 1, .= 1) * Step 22: SizeboundsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) * Step 23: LocationConstraintsProc WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 18 : [E$$ >= 1] 19 : [E$$ >= 1] 20 : [E$$ >= 1] 21 : [E$$ >= 1] 22 : True 23 : True 24 : True 25 : True . * Step 24: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (?,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb3in) = x2 + -1*x4 p(evalfstart) = x2 The following rules are strictly oriented: [B >= 1 + D && E$ >= 1 && C >= A] ==> evalfbb3in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalfbb3in(A,B,0,1 + D) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] ==> evalfstart(A,B,C,D) = B > -1 + B = evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] ==> evalfstart(A,B,C,D) = B > -1 + B = evalfbb3in(A,B,0,1) The following rules are weakly oriented: [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] ==> evalfbb3in(A,B,C,D) = B + -1*D >= -1 + B + -1*D = evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalfbb3in(A,B,1 + C,D) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] ==> evalfstart(A,B,C,D) = B >= B = evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] ==> evalfstart(A,B,C,D) = B >= B = evalfbb3in(A,B,1,0) * Step 25: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (?,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (B,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb3in) = x2 + -1*x4 p(evalfstart) = x2 The following rules are strictly oriented: [B >= 1 + D && 0 >= 1 + E$ && C >= A] ==> evalfbb3in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] ==> evalfbb3in(A,B,C,D) = B + -1*D > -1 + B + -1*D = evalfbb3in(A,B,0,1 + D) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] ==> evalfstart(A,B,C,D) = B > -1 + B = evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] ==> evalfstart(A,B,C,D) = B > -1 + B = evalfbb3in(A,B,0,1) The following rules are weakly oriented: [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = B + -1*D >= B + -1*D = evalfbb3in(A,B,1 + C,D) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] ==> evalfstart(A,B,C,D) = B >= B = evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] ==> evalfstart(A,B,C,D) = B >= B = evalfbb3in(A,B,1,0) * Step 26: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (B,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (?,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (B,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [18,20], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb3in) = x1 + -1*x3 The following rules are strictly oriented: [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = A + -1*C > -1 + A + -1*C = evalfbb3in(A,B,1 + C,D) The following rules are weakly oriented: [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = A + -1*C >= -1 + A + -1*C = evalfbb3in(A,B,1 + C,D) We use the following global sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) * Step 27: PolyRank WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (?,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (B,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (2 + 2*A + 2*A*B,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (B,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [18], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb3in) = x1 + -1*x3 The following rules are strictly oriented: [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==> evalfbb3in(A,B,C,D) = A + -1*C > -1 + A + -1*C = evalfbb3in(A,B,1 + C,D) The following rules are weakly oriented: We use the following global sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) * Step 28: KnowledgePropagation WORST_CASE(?,O(n^3)) + Considered Problem: Rules: 18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] (2 + 6*A + 2*A*B + 4*A^2 + 4*A^2*B,4) 19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A] (B,4) 20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C] (2 + 2*A + 2*A*B,4) 21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A] (B,4) 22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6) 23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6) 24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] (1,6) 25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1) [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] (1,6) Signature: {(evalfbb1in,4) ;(evalfbb2in,4) ;(evalfbb3in,4) ;(evalfbb4in,4) ;(evalfbbin,4) ;(evalfentryin,4) ;(evalfreturnin,4) ;(evalfstart,4) ;(evalfstop,4)} Flow Graph: [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18 ,19,20,21},25->{}] Sizebounds: (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) + Applied Processor: KnowledgePropagation + Details: The problem is already solved. WORST_CASE(?,O(n^3))