WORST_CASE(?,O(n^3))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)    -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D)  -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (?,1)
          2.  evalfbb3in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  [D >= B]               (?,1)
          3.  evalfbb3in(A,B,C,D)    -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          6.  evalfbb4in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  True                   (?,1)
          7.  evalfbbin(A,B,C,D)     -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)     -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)    -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)    -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D)      True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (< 0,0,A>, A, .= 0) (< 0,0,B>, B, .= 0) (< 0,0,C>,     C, .= 0) (< 0,0,D>,     D, .= 0) 
          (< 1,0,A>, A, .= 0) (< 1,0,B>, B, .= 0) (< 1,0,C>,     0, .= 0) (< 1,0,D>,     0, .= 0) 
          (< 2,0,A>, A, .= 0) (< 2,0,B>, B, .= 0) (< 2,0,C>,     C, .= 0) (< 2,0,D>,     D, .= 0) 
          (< 3,0,A>, A, .= 0) (< 3,0,B>, B, .= 0) (< 3,0,C>,     C, .= 0) (< 3,0,D>,     D, .= 0) 
          (< 4,0,A>, A, .= 0) (< 4,0,B>, B, .= 0) (< 4,0,C>,     C, .= 0) (< 4,0,D>,     D, .= 0) 
          (< 5,0,A>, A, .= 0) (< 5,0,B>, B, .= 0) (< 5,0,C>,     C, .= 0) (< 5,0,D>,     D, .= 0) 
          (< 6,0,A>, A, .= 0) (< 6,0,B>, B, .= 0) (< 6,0,C>,     C, .= 0) (< 6,0,D>,     D, .= 0) 
          (< 7,0,A>, A, .= 0) (< 7,0,B>, B, .= 0) (< 7,0,C>,     C, .= 0) (< 7,0,D>,     D, .= 0) 
          (< 8,0,A>, A, .= 0) (< 8,0,B>, B, .= 0) (< 8,0,C>,     C, .= 0) (< 8,0,D>,     D, .= 0) 
          (< 9,0,A>, A, .= 0) (< 9,0,B>, B, .= 0) (< 9,0,C>, 1 + C, .+ 1) (< 9,0,D>,     D, .= 0) 
          (<10,0,A>, A, .= 0) (<10,0,B>, B, .= 0) (<10,0,C>,     0, .= 0) (<10,0,D>, 1 + D, .+ 1) 
          (<11,0,A>, A, .= 0) (<11,0,B>, B, .= 0) (<11,0,C>,     C, .= 0) (<11,0,D>,     D, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)    -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D)  -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (?,1)
          2.  evalfbb3in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  [D >= B]               (?,1)
          3.  evalfbb3in(A,B,C,D)    -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          6.  evalfbb4in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  True                   (?,1)
          7.  evalfbbin(A,B,C,D)     -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)     -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)    -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)    -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D)      True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, ?) (< 0,0,B>, ?) (< 0,0,C>, ?) (< 0,0,D>, ?) 
          (< 1,0,A>, ?) (< 1,0,B>, ?) (< 1,0,C>, ?) (< 1,0,D>, ?) 
          (< 2,0,A>, ?) (< 2,0,B>, ?) (< 2,0,C>, ?) (< 2,0,D>, ?) 
          (< 3,0,A>, ?) (< 3,0,B>, ?) (< 3,0,C>, ?) (< 3,0,D>, ?) 
          (< 4,0,A>, ?) (< 4,0,B>, ?) (< 4,0,C>, ?) (< 4,0,D>, ?) 
          (< 5,0,A>, ?) (< 5,0,B>, ?) (< 5,0,C>, ?) (< 5,0,D>, ?) 
          (< 6,0,A>, ?) (< 6,0,B>, ?) (< 6,0,C>, ?) (< 6,0,D>, ?) 
          (< 7,0,A>, ?) (< 7,0,B>, ?) (< 7,0,C>, ?) (< 7,0,D>, ?) 
          (< 8,0,A>, ?) (< 8,0,B>, ?) (< 8,0,C>, ?) (< 8,0,D>, ?) 
          (< 9,0,A>, ?) (< 9,0,B>, ?) (< 9,0,C>, ?) (< 9,0,D>, ?) 
          (<10,0,A>, ?) (<10,0,B>, ?) (<10,0,C>, ?) (<10,0,D>, ?) 
          (<11,0,A>, ?) (<11,0,B>, ?) (<11,0,C>, ?) (<11,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) 
* Step 3: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)    -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D)  -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (?,1)
          2.  evalfbb3in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  [D >= B]               (?,1)
          3.  evalfbb3in(A,B,C,D)    -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          6.  evalfbb4in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  True                   (?,1)
          7.  evalfbbin(A,B,C,D)     -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)     -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)    -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)    -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D)      True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{2,3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(1,2)]
* Step 4: LeafRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)    -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D)  -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (?,1)
          2.  evalfbb3in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  [D >= B]               (?,1)
          3.  evalfbb3in(A,B,C,D)    -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)    -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          6.  evalfbb4in(A,B,C,D)    -> evalfreturnin(A,B,C,D)  True                   (?,1)
          7.  evalfbbin(A,B,C,D)     -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)     -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)    -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)    -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfreturnin(A,B,C,D) -> evalfstop(A,B,C,D)      True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{3},2->{11},3->{4,5,6},4->{7,8},5->{7,8},6->{11},7->{9},8->{10},9->{2,3},10->{2,3},11->{}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 2,0,A>, A) (< 2,0,B>, B) (< 2,0,C>, A) (< 2,0,D>, B) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 6,0,A>, A) (< 6,0,B>, B) (< 6,0,C>, A) (< 6,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, A) (<11,0,D>, B) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [2,6,11]
* Step 5: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)   -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (?,1)
          3.  evalfbb3in(A,B,C,D)   -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          7.  evalfbbin(A,B,C,D)    -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)    -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)   -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)   -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = 1
            p(evalfbb2in) = 1
            p(evalfbb3in) = 1
            p(evalfbb4in) = 1
             p(evalfbbin) = 1
          p(evalfentryin) = 2
            p(evalfstart) = 2
        
        The following rules are strictly oriented:
         [A >= 1 && B >= 1 + A] ==>                    
          evalfentryin(A,B,C,D)   = 2                  
                                  > 1                  
                                  = evalfbb3in(A,B,0,0)
        
        
        The following rules are weakly oriented:
                         True ==>                        
          evalfstart(A,B,C,D)   = 2                      
                               >= 2                      
                                = evalfentryin(A,B,C,D)  
        
                 [B >= 1 + D] ==>                        
          evalfbb3in(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbb4in(A,B,C,D)    
        
                 [0 >= 1 + E] ==>                        
          evalfbb4in(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbbin(A,B,C,D)     
        
                     [E >= 1] ==>                        
          evalfbb4in(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbbin(A,B,C,D)     
        
                 [A >= 1 + C] ==>                        
           evalfbbin(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbb1in(A,B,C,D)    
        
                     [C >= A] ==>                        
           evalfbbin(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbb2in(A,B,C,D)    
        
                         True ==>                        
          evalfbb1in(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbb3in(A,B,1 + C,D)
        
                         True ==>                        
          evalfbb2in(A,B,C,D)   = 1                      
                               >= 1                      
                                = evalfbb3in(A,B,0,1 + D)
        
        
* Step 6: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          0.  evalfstart(A,B,C,D)   -> evalfentryin(A,B,C,D)   True                   (1,1)
          1.  evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (2,1)
          3.  evalfbb3in(A,B,C,D)   -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          7.  evalfbbin(A,B,C,D)    -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)    -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)   -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)   -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [0->{1},1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3}]
        Sizebounds:
          (< 0,0,A>, A) (< 0,0,B>, B) (< 0,0,C>, C) (< 0,0,D>, D) 
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [0,1,3,4,5,7,8,9,10]
    + Details:
        We chained rule 0 to obtain the rules [11] .
* Step 7: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          1.  evalfentryin(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (2,1)
          3.  evalfbb3in(A,B,C,D)   -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D)   -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          7.  evalfbbin(A,B,C,D)    -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)    -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D)   -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D)   -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfstart(A,B,C,D)   -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (1,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [1->{3},3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3},11->{3}]
        Sizebounds:
          (< 1,0,A>, A) (< 1,0,B>, B) (< 1,0,C>, 0) (< 1,0,D>, 0) 
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [1]
* Step 8: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          3.  evalfbb3in(A,B,C,D) -> evalfbb4in(A,B,C,D)     [B >= 1 + D]           (?,1)
          4.  evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D)      [0 >= 1 + E]           (?,1)
          5.  evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D)      [E >= 1]               (?,1)
          7.  evalfbbin(A,B,C,D)  -> evalfbb1in(A,B,C,D)     [A >= 1 + C]           (?,1)
          8.  evalfbbin(A,B,C,D)  -> evalfbb2in(A,B,C,D)     [C >= A]               (?,1)
          9.  evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True                   (?,1)
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                   (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A] (1,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [3->{4,5},4->{7,8},5->{7,8},7->{9},8->{10},9->{3},10->{3},11->{3}]
        Sizebounds:
          (< 3,0,A>, A) (< 3,0,B>, B) (< 3,0,C>, A) (< 3,0,D>, B) 
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
    + Applied Processor:
        ChainProcessor False [3,4,5,7,8,9,10,11]
    + Details:
        We chained rule 3 to obtain the rules [12,13] .
* Step 9: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          4.  evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D)      [0 >= 1 + E]                (?,1)
          5.  evalfbb4in(A,B,C,D) -> evalfbbin(A,B,C,D)      [E >= 1]                    (?,1)
          7.  evalfbbin(A,B,C,D)  -> evalfbb1in(A,B,C,D)     [A >= 1 + C]                (?,1)
          8.  evalfbbin(A,B,C,D)  -> evalfbb2in(A,B,C,D)     [C >= A]                    (?,1)
          9.  evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True                        (?,1)
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                        (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [4->{7,8},5->{7,8},7->{9},8->{10},9->{12,13},10->{12,13},11->{12,13},12->{7,8},13->{7,8}]
        Sizebounds:
          (< 4,0,A>, A) (< 4,0,B>, B) (< 4,0,C>, A) (< 4,0,D>, B) 
          (< 5,0,A>, A) (< 5,0,B>, B) (< 5,0,C>, A) (< 5,0,D>, B) 
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [4,5]
* Step 10: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          7.  evalfbbin(A,B,C,D)  -> evalfbb1in(A,B,C,D)     [A >= 1 + C]                (?,1)
          8.  evalfbbin(A,B,C,D)  -> evalfbb2in(A,B,C,D)     [C >= A]                    (?,1)
          9.  evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True                        (?,1)
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                        (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [7->{9},8->{10},9->{12,13},10->{12,13},11->{12,13},12->{7,8},13->{7,8}]
        Sizebounds:
          (< 7,0,A>, A) (< 7,0,B>, B) (< 7,0,C>, A) (< 7,0,D>, B) 
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [7,8,9,10,11,12,13]
    + Details:
        We chained rule 7 to obtain the rules [14] .
* Step 11: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          8.  evalfbbin(A,B,C,D)  -> evalfbb2in(A,B,C,D)     [C >= A]                    (?,1)
          9.  evalfbb1in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) True                        (?,1)
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                        (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [8->{10},9->{12,13},10->{12,13},11->{12,13},12->{8,14},13->{8,14},14->{12,13}]
        Sizebounds:
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (< 9,0,A>, A) (< 9,0,B>, B) (< 9,0,C>, A) (< 9,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [9]
* Step 12: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          8.  evalfbbin(A,B,C,D)  -> evalfbb2in(A,B,C,D)     [C >= A]                    (?,1)
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                        (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [8->{10},10->{12,13},11->{12,13},12->{8,14},13->{8,14},14->{12,13}]
        Sizebounds:
          (< 8,0,A>, A) (< 8,0,B>, B) (< 8,0,C>, A) (< 8,0,D>, B) 
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [8,10,11,12,13,14]
    + Details:
        We chained rule 8 to obtain the rules [15] .
* Step 13: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          10. evalfbb2in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) True                        (?,1)
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                    (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [10->{12,13},11->{12,13},12->{14,15},13->{14,15},14->{12,13},15->{12,13}]
        Sizebounds:
          (<10,0,A>, A) (<10,0,B>, B) (<10,0,C>, 0) (<10,0,D>, B) 
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [10]
* Step 14: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          11. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,0)     [A >= 1 && B >= 1 + A]      (1,2)
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$] (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]     (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                    (?,2)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [11->{12,13},12->{14,15},13->{14,15},14->{12,13},15->{12,13}]
        Sizebounds:
          (<11,0,A>, A) (<11,0,B>, B) (<11,0,C>, 0) (<11,0,D>, 0) 
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [11,12,13,14,15]
    + Details:
        We chained rule 11 to obtain the rules [16,17] .
* Step 15: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          12. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && 0 >= 1 + E$]                      (?,2)
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]                          (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                                     (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                                         (?,2)
          16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4)
          17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1]     (1,4)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [12->{14,15},13->{14,15},14->{12,13},15->{12,13},16->{14,15},17->{14,15}]
        Sizebounds:
          (<12,0,A>, A) (<12,0,B>, B) (<12,0,C>, A) (<12,0,D>, B) 
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
          (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) 
          (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [12,13,14,15,16,17]
    + Details:
        We chained rule 12 to obtain the rules [18,19] .
* Step 16: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          13. evalfbb3in(A,B,C,D) -> evalfbbin(A,B,C,D)      [B >= 1 + D && E$ >= 1]                          (?,2)
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                                     (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                                         (?,2)
          16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4)
          17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1]     (1,4)
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]        (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]            (?,4)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [13->{14,15},14->{13,18,19},15->{13,18,19},16->{14,15},17->{14,15},18->{13,18,19},19->{13,18,19}]
        Sizebounds:
          (<13,0,A>, A) (<13,0,B>, B) (<13,0,C>, A) (<13,0,D>, B) 
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
          (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) 
          (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) 
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [13,14,15,16,17,18,19]
    + Details:
        We chained rule 13 to obtain the rules [20,21] .
* Step 17: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                                     (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                                         (?,2)
          16. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$] (1,4)
          17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1]     (1,4)
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]        (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]            (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]            (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                (?,4)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [14->{18,19,20,21},15->{18,19,20,21},16->{14,15},17->{14,15},18->{18,19,20,21},19->{18,19,20,21},20->{18
          ,19,20,21},21->{18,19,20,21}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
          (<16,0,A>, A) (<16,0,B>, B) (<16,0,C>, A) (<16,0,D>, B) 
          (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) 
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [14,15,16,17,18,19,20,21]
    + Details:
        We chained rule 16 to obtain the rules [22,23] .
* Step 18: ChainProcessor WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                                               (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                                                   (?,2)
          17. evalfstart(A,B,C,D) -> evalfbbin(A,B,0,0)      [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1]               (1,4)
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [14->{18,19,20,21},15->{18,19,20,21},17->{14,15},18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21}
          ,21->{18,19,20,21},22->{18,19,20,21},23->{18,19,20,21}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
          (<17,0,A>, A) (<17,0,B>, B) (<17,0,C>, A) (<17,0,D>, B) 
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) 
    + Applied Processor:
        ChainProcessor False [14,15,17,18,19,20,21,22,23]
    + Details:
        We chained rule 17 to obtain the rules [24,25] .
* Step 19: UnreachableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          14. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,1 + C,D) [A >= 1 + C]                                               (?,2)
          15. evalfbbin(A,B,C,D)  -> evalfbb3in(A,B,0,1 + D) [C >= A]                                                   (?,2)
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [14->{18,19,20,21},15->{18,19,20,21},18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20
          ,21},22->{18,19,20,21},23->{18,19,20,21},24->{18,19,20,21},25->{18,19,20,21}]
        Sizebounds:
          (<14,0,A>, A) (<14,0,B>, B) (<14,0,C>, A) (<14,0,D>, B) 
          (<15,0,A>, A) (<15,0,B>, B) (<15,0,C>, 0) (<15,0,D>, B) 
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) 
    + Applied Processor:
        UnreachableRules
    + Details:
        The following transitions are not reachable from the starting states and are removed: [14,15]
* Step 20: UnsatPaths WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{18,19,20
          ,21},24->{18,19,20,21},25->{18,19,20,21}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) 
    + Applied Processor:
        UnsatPaths
    + Details:
        We remove following edges from the transition graph: [(23,18)
                                                             ,(23,19)
                                                             ,(23,20)
                                                             ,(23,21)
                                                             ,(25,18)
                                                             ,(25,19)
                                                             ,(25,20)
                                                             ,(25,21)]
* Step 21: LocalSizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, A) (<22,0,D>, B) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, B) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, A) (<24,0,D>, B) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, B) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<18,0,A>, A, .= 0) (<18,0,B>, B, .= 0) (<18,0,C>, 1 + C, .+ 1) (<18,0,D>,     D, .= 0) 
          (<19,0,A>, A, .= 0) (<19,0,B>, B, .= 0) (<19,0,C>,     0, .= 0) (<19,0,D>, 1 + D, .+ 1) 
          (<20,0,A>, A, .= 0) (<20,0,B>, B, .= 0) (<20,0,C>, 1 + C, .+ 1) (<20,0,D>,     D, .= 0) 
          (<21,0,A>, A, .= 0) (<21,0,B>, B, .= 0) (<21,0,C>,     0, .= 0) (<21,0,D>, 1 + D, .+ 1) 
          (<22,0,A>, A, .= 0) (<22,0,B>, B, .= 0) (<22,0,C>,     1, .= 1) (<22,0,D>,     0, .= 0) 
          (<23,0,A>, A, .= 0) (<23,0,B>, B, .= 0) (<23,0,C>,     0, .= 0) (<23,0,D>,     1, .= 1) 
          (<24,0,A>, A, .= 0) (<24,0,B>, B, .= 0) (<24,0,C>,     1, .= 1) (<24,0,D>,     0, .= 0) 
          (<25,0,A>, A, .= 0) (<25,0,B>, B, .= 0) (<25,0,C>,     0, .= 0) (<25,0,D>,     1, .= 1) 
* Step 22: SizeboundsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, ?) (<18,0,B>, ?) (<18,0,C>, ?) (<18,0,D>, ?) 
          (<19,0,A>, ?) (<19,0,B>, ?) (<19,0,C>, ?) (<19,0,D>, ?) 
          (<20,0,A>, ?) (<20,0,B>, ?) (<20,0,C>, ?) (<20,0,D>, ?) 
          (<21,0,A>, ?) (<21,0,B>, ?) (<21,0,C>, ?) (<21,0,D>, ?) 
          (<22,0,A>, ?) (<22,0,B>, ?) (<22,0,C>, ?) (<22,0,D>, ?) 
          (<23,0,A>, ?) (<23,0,B>, ?) (<23,0,C>, ?) (<23,0,D>, ?) 
          (<24,0,A>, ?) (<24,0,B>, ?) (<24,0,C>, ?) (<24,0,D>, ?) 
          (<25,0,A>, ?) (<25,0,B>, ?) (<25,0,C>, ?) (<25,0,D>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
* Step 23: LocationConstraintsProc WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        LocationConstraintsProc
    + Details:
        We computed the location constraints  18 :  [E$$ >= 1] 19 :  [E$$ >= 1] 20 :  [E$$ >= 1] 21 :  [E$$ >= 1] 22 :  True 23 :  True 24 :  True 25 :  True .
* Step 24: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (?,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb3in) = x2 + -1*x4
          p(evalfstart) = x2        
        
        The following rules are strictly oriented:
                                 [B >= 1 + D && E$ >= 1 && C >= A] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                     > -1 + B + -1*D          
                                                                     = evalfbb3in(A,B,0,1 + D)
        
        [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                     > -1 + B                 
                                                                     = evalfbb3in(A,B,0,1)    
        
            [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                     > -1 + B                 
                                                                     = evalfbb3in(A,B,0,1)    
        
        
        The following rules are weakly oriented:
                         [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                    >= B + -1*D               
                                                                     = evalfbb3in(A,B,1 + C,D)
        
                             [B >= 1 + D && 0 >= 1 + E$ && C >= A] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                    >= -1 + B + -1*D          
                                                                     = evalfbb3in(A,B,0,1 + D)
        
                             [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                    >= B + -1*D               
                                                                     = evalfbb3in(A,B,1 + C,D)
        
        [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                    >= B                      
                                                                     = evalfbb3in(A,B,1,0)    
        
            [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                    >= B                      
                                                                     = evalfbb3in(A,B,1,0)    
        
        
* Step 25: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (?,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (B,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb3in) = x2 + -1*x4
          p(evalfstart) = x2        
        
        The following rules are strictly oriented:
                             [B >= 1 + D && 0 >= 1 + E$ && C >= A] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                     > -1 + B + -1*D          
                                                                     = evalfbb3in(A,B,0,1 + D)
        
                                 [B >= 1 + D && E$ >= 1 && C >= A] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                     > -1 + B + -1*D          
                                                                     = evalfbb3in(A,B,0,1 + D)
        
        [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                     > -1 + B                 
                                                                     = evalfbb3in(A,B,0,1)    
        
            [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                     > -1 + B                 
                                                                     = evalfbb3in(A,B,0,1)    
        
        
        The following rules are weakly oriented:
                         [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                    >= B + -1*D               
                                                                     = evalfbb3in(A,B,1 + C,D)
        
                             [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==>                        
                                               evalfbb3in(A,B,C,D)   = B + -1*D               
                                                                    >= B + -1*D               
                                                                     = evalfbb3in(A,B,1 + C,D)
        
        [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                    >= B                      
                                                                     = evalfbb3in(A,B,1,0)    
        
            [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1] ==>                        
                                               evalfstart(A,B,C,D)   = B                      
                                                                    >= B                      
                                                                     = evalfbb3in(A,B,1,0)    
        
        
* Step 26: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (B,4)
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (?,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (B,4)
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [18,20], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb3in) = x1 + -1*x3
        
        The following rules are strictly oriented:
        [B >= 1 + D && E$ >= 1 && A >= 1 + C] ==>                        
                          evalfbb3in(A,B,C,D)   = A + -1*C               
                                                > -1 + A + -1*C          
                                                = evalfbb3in(A,B,1 + C,D)
        
        
        The following rules are weakly oriented:
        [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==>                        
                              evalfbb3in(A,B,C,D)   = A + -1*C               
                                                   >= -1 + A + -1*C          
                                                    = evalfbb3in(A,B,1 + C,D)
        
        We use the following global sizebounds:
        (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
        (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
        (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
        (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
        (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
        (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
        (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
        (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
* Step 27: PolyRank WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (?,4)              
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (B,4)              
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (2 + 2*A + 2*A*B,4)
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (B,4)              
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)              
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)              
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)              
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)              
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [18], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb3in) = x1 + -1*x3
        
        The following rules are strictly oriented:
        [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C] ==>                        
                              evalfbb3in(A,B,C,D)   = A + -1*C               
                                                    > -1 + A + -1*C          
                                                    = evalfbb3in(A,B,1 + C,D)
        
        
        The following rules are weakly oriented:
        
        We use the following global sizebounds:
        (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
        (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
        (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
        (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
        (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
        (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
        (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
        (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
* Step 28: KnowledgePropagation WORST_CASE(?,O(n^3))
    + Considered Problem:
        Rules:
          18. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && 0 >= 1 + E$ && A >= 1 + C]                  (2 + 6*A + 2*A*B + 4*A^2 + 4*A^2*B,4)
          19. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && 0 >= 1 + E$ && C >= A]                      (B,4)                                
          20. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,1 + C,D) [B >= 1 + D && E$ >= 1 && A >= 1 + C]                      (2 + 2*A + 2*A*B,4)                  
          21. evalfbb3in(A,B,C,D) -> evalfbb3in(A,B,0,1 + D) [B >= 1 + D && E$ >= 1 && C >= A]                          (B,4)                                
          22. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && A >= 1] (1,6)                                
          23. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && 0 >= 1 + E$$ && 0 >= A] (1,6)                                
          24. evalfstart(A,B,C,D) -> evalfbb3in(A,B,1,0)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && A >= 1]     (1,6)                                
          25. evalfstart(A,B,C,D) -> evalfbb3in(A,B,0,1)     [A >= 1 && B >= 1 + A && B >= 1 && E$$ >= 1 && 0 >= A]     (1,6)                                
        Signature:
          {(evalfbb1in,4)
          ;(evalfbb2in,4)
          ;(evalfbb3in,4)
          ;(evalfbb4in,4)
          ;(evalfbbin,4)
          ;(evalfentryin,4)
          ;(evalfreturnin,4)
          ;(evalfstart,4)
          ;(evalfstop,4)}
        Flow Graph:
          [18->{18,19,20,21},19->{18,19,20,21},20->{18,19,20,21},21->{18,19,20,21},22->{18,19,20,21},23->{},24->{18
          ,19,20,21},25->{}]
        Sizebounds:
          (<18,0,A>, A) (<18,0,B>, B) (<18,0,C>, A) (<18,0,D>, B) 
          (<19,0,A>, A) (<19,0,B>, B) (<19,0,C>, 0) (<19,0,D>, B) 
          (<20,0,A>, A) (<20,0,B>, B) (<20,0,C>, A) (<20,0,D>, B) 
          (<21,0,A>, A) (<21,0,B>, B) (<21,0,C>, 0) (<21,0,D>, B) 
          (<22,0,A>, A) (<22,0,B>, B) (<22,0,C>, 1) (<22,0,D>, 0) 
          (<23,0,A>, A) (<23,0,B>, B) (<23,0,C>, 0) (<23,0,D>, 1) 
          (<24,0,A>, A) (<24,0,B>, B) (<24,0,C>, 1) (<24,0,D>, 0) 
          (<25,0,A>, A) (<25,0,B>, B) (<25,0,C>, 0) (<25,0,D>, 1) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^3))