WORST_CASE(?,O(n^2))
* Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(B,A,C)      True     (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)      [B >= 1] (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(A,-1 + B,C) True     (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        LocalSizebounds generated; rvgraph
          (<0,0,A>, A, .= 0) (<0,0,B>,     B, .= 0) (<0,0,C>,     C, .= 0) 
          (<1,0,A>, B, .= 0) (<1,0,B>,     A, .= 0) (<1,0,C>,     C, .= 0) 
          (<2,0,A>, A, .= 0) (<2,0,B>,     B, .= 0) (<2,0,C>,     A, .= 0) 
          (<3,0,A>, A, .= 0) (<3,0,B>,     B, .= 0) (<3,0,C>,     C, .= 0) 
          (<4,0,A>, A, .= 0) (<4,0,B>,     B, .= 0) (<4,0,C>,     C, .= 0) 
          (<5,0,A>, A, .= 0) (<5,0,B>,     B, .= 0) (<5,0,C>,     C, .= 0) 
          (<6,0,A>, A, .= 0) (<6,0,B>,     B, .= 0) (<6,0,C>, 1 + C, .+ 1) 
          (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>,     C, .= 0) 
          (<8,0,A>, A, .= 0) (<8,0,B>,     B, .= 0) (<8,0,C>,     C, .= 0) 
* Step 2: SizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(B,A,C)      True     (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)      [B >= 1] (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(A,-1 + B,C) True     (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) 
          (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) 
          (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) 
          (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) 
    + Applied Processor:
        SizeboundsProc
    + Details:
        Sizebounds computed:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<3,0,A>, B) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, B) (<8,0,B>, ?) (<8,0,C>, ?) 
* Step 3: LeafRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)    -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C)  -> evalfbb4in(B,A,C)      True     (?,1)
          2. evalfbb4in(A,B,C)    -> evalfbb2in(A,B,A)      [B >= 1] (?,1)
          3. evalfbb4in(A,B,C)    -> evalfreturnin(A,B,C)   [0 >= B] (?,1)
          4. evalfbb2in(A,B,C)    -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)    -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)    -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)    -> evalfbb4in(A,-1 + B,C) True     (?,1)
          8. evalfreturnin(A,B,C) -> evalfstop(A,B,C)       True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<3,0,A>, B) (<3,0,B>, ?) (<3,0,C>, ?) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
          (<8,0,A>, B) (<8,0,B>, ?) (<8,0,C>, ?) 
    + Applied Processor:
        LeafRules
    + Details:
        The following transitions are estimated by its predecessors and are removed [3,8]
* Step 4: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (?,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (?,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = 1
            p(evalfbb2in) = 1
            p(evalfbb3in) = 1
            p(evalfbb4in) = 1
          p(evalfentryin) = 2
            p(evalfstart) = 2
        
        The following rules are strictly oriented:
                         True ==>                  
          evalfentryin(A,B,C)   = 2                
                                > 1                
                                = evalfbb4in(B,A,C)
        
        
        The following rules are weakly oriented:
                       True ==>                       
          evalfstart(A,B,C)   = 2                     
                             >= 2                     
                              = evalfentryin(A,B,C)   
        
                   [B >= 1] ==>                       
          evalfbb4in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb2in(A,B,A)     
        
                   [C >= 1] ==>                       
          evalfbb2in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb1in(A,B,C)     
        
                   [0 >= C] ==>                       
          evalfbb2in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb3in(A,B,C)     
        
                       True ==>                       
          evalfbb1in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb2in(A,B,-1 + C)
        
                       True ==>                       
          evalfbb3in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb4in(A,-1 + B,C)
        
        
* Step 5: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (?,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
            p(evalfbb1in) = -1 + x2
            p(evalfbb2in) = -1 + x2
            p(evalfbb3in) = -1 + x2
            p(evalfbb4in) = x2     
          p(evalfentryin) = x1     
            p(evalfstart) = x1     
        
        The following rules are strictly oriented:
                   [B >= 1] ==>                  
          evalfbb4in(A,B,C)   = B                
                              > -1 + B           
                              = evalfbb2in(A,B,A)
        
        
        The following rules are weakly oriented:
                         True ==>                       
            evalfstart(A,B,C)   = A                     
                               >= A                     
                                = evalfentryin(A,B,C)   
        
                         True ==>                       
          evalfentryin(A,B,C)   = A                     
                               >= A                     
                                = evalfbb4in(B,A,C)     
        
                     [C >= 1] ==>                       
            evalfbb2in(A,B,C)   = -1 + B                
                               >= -1 + B                
                                = evalfbb1in(A,B,C)     
        
                     [0 >= C] ==>                       
            evalfbb2in(A,B,C)   = -1 + B                
                               >= -1 + B                
                                = evalfbb3in(A,B,C)     
        
                         True ==>                       
            evalfbb1in(A,B,C)   = -1 + B                
                               >= -1 + B                
                                = evalfbb2in(A,B,-1 + C)
        
                         True ==>                       
            evalfbb3in(A,B,C)   = -1 + B                
                               >= -1 + B                
                                = evalfbb4in(A,-1 + B,C)
        
        
* Step 6: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (A,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (?,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,5,6,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 1
          p(evalfbb2in) = 1
          p(evalfbb3in) = 1
          p(evalfbb4in) = 0
        
        The following rules are strictly oriented:
                       True ==>                       
          evalfbb3in(A,B,C)   = 1                     
                              > 0                     
                              = evalfbb4in(A,-1 + B,C)
        
        
        The following rules are weakly oriented:
                   [C >= 1] ==>                       
          evalfbb2in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb1in(A,B,C)     
        
                   [0 >= C] ==>                       
          evalfbb2in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb3in(A,B,C)     
        
                       True ==>                       
          evalfbb1in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb2in(A,B,-1 + C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
        (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
        (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
        (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
        (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
        (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
        (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
* Step 7: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (A,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (?,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (A,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,5,6,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 1
          p(evalfbb2in) = 1
          p(evalfbb3in) = 0
          p(evalfbb4in) = 0
        
        The following rules are strictly oriented:
                   [0 >= C] ==>                  
          evalfbb2in(A,B,C)   = 1                
                              > 0                
                              = evalfbb3in(A,B,C)
        
        
        The following rules are weakly oriented:
                   [C >= 1] ==>                       
          evalfbb2in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb1in(A,B,C)     
        
                       True ==>                       
          evalfbb1in(A,B,C)   = 1                     
                             >= 1                     
                              = evalfbb2in(A,B,-1 + C)
        
                       True ==>                       
          evalfbb3in(A,B,C)   = 0                     
                             >= 0                     
                              = evalfbb4in(A,-1 + B,C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
        (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
        (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
        (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
        (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
        (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
        (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
* Step 8: PolyRank WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (A,1)
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (?,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (A,1)
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (A,1)
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        PolyRank {useFarkas = True, withSizebounds = [7,5,6,4], shape = Linear}
    + Details:
        We apply a polynomial interpretation of shape linear:
          p(evalfbb1in) = 1 + x3
          p(evalfbb2in) = 2 + x3
          p(evalfbb3in) = 2 + x3
          p(evalfbb4in) = 2 + x3
        
        The following rules are strictly oriented:
                   [C >= 1] ==>                  
          evalfbb2in(A,B,C)   = 2 + C            
                              > 1 + C            
                              = evalfbb1in(A,B,C)
        
        
        The following rules are weakly oriented:
                   [0 >= C] ==>                       
          evalfbb2in(A,B,C)   = 2 + C                 
                             >= 2 + C                 
                              = evalfbb3in(A,B,C)     
        
                       True ==>                       
          evalfbb1in(A,B,C)   = 1 + C                 
                             >= 1 + C                 
                              = evalfbb2in(A,B,-1 + C)
        
                       True ==>                       
          evalfbb3in(A,B,C)   = 2 + C                 
                             >= 2 + C                 
                              = evalfbb4in(A,-1 + B,C)
        
        We use the following global sizebounds:
        (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
        (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
        (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
        (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
        (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
        (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
        (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
* Step 9: KnowledgePropagation WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)        
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)        
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (A,1)        
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (2*A + A*B,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (A,1)        
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (?,1)        
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (A,1)        
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        KnowledgePropagation
    + Details:
        We propagate bounds from predecessors.
* Step 10: LocalSizeboundsProc WORST_CASE(?,O(n^2))
    + Considered Problem:
        Rules:
          0. evalfstart(A,B,C)   -> evalfentryin(A,B,C)    True     (1,1)        
          1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C)      True     (2,1)        
          2. evalfbb4in(A,B,C)   -> evalfbb2in(A,B,A)      [B >= 1] (A,1)        
          4. evalfbb2in(A,B,C)   -> evalfbb1in(A,B,C)      [C >= 1] (2*A + A*B,1)
          5. evalfbb2in(A,B,C)   -> evalfbb3in(A,B,C)      [0 >= C] (A,1)        
          6. evalfbb1in(A,B,C)   -> evalfbb2in(A,B,-1 + C) True     (2*A + A*B,1)
          7. evalfbb3in(A,B,C)   -> evalfbb4in(A,-1 + B,C) True     (A,1)        
        Signature:
          {(evalfbb1in,3)
          ;(evalfbb2in,3)
          ;(evalfbb3in,3)
          ;(evalfbb4in,3)
          ;(evalfentryin,3)
          ;(evalfreturnin,3)
          ;(evalfstart,3)
          ;(evalfstop,3)}
        Flow Graph:
          [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}]
        Sizebounds:
          (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) 
          (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) 
          (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, B) 
          (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, ?) 
          (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, ?) 
          (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, ?) 
          (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, ?) 
    + Applied Processor:
        LocalSizeboundsProc
    + Details:
        The problem is already solved.

WORST_CASE(?,O(n^2))