WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. ms0(A,B,C) -> ms(-1 + A,B,C) True (?,1) 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 2. ms(A,B,C) -> c2(ms0(D,B,A),ms1(D,B,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [0->{2},1->{},2->{0,1},3->{2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, 1 + A, .+ 1) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, C, .= 0) (<1,0,B>, A, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, ?, .?) (<2,0,B>, B, .= 0) (<2,0,C>, A, .= 0) (<2,1,A>, ?, .?) (<2,1,B>, B, .= 0) (<2,1,C>, A, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. ms0(A,B,C) -> ms(-1 + A,B,C) True (?,1) 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 2. ms(A,B,C) -> c2(ms0(D,B,A),ms1(D,B,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [0->{2},1->{},2->{0,1},3->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<2,1,A>, ?) (<2,1,B>, ?) (<2,1,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, ?) (<0,0,B>, B) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, B) (<2,0,C>, ?) (<2,1,A>, ?) (<2,1,B>, B) (<2,1,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) * Step 3: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. ms0(A,B,C) -> ms(-1 + A,B,C) True (?,1) 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 2. ms(A,B,C) -> c2(ms0(D,B,A),ms1(D,B,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [0->{2},1->{},2->{0,1},3->{2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, B) (<2,0,C>, ?) (<2,1,A>, ?) (<2,1,B>, B) (<2,1,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) + Applied Processor: ChainProcessor False [0,1,2,3] + Details: We chained rule 2 to obtain the rules [4] . * Step 4: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. ms0(A,B,C) -> ms(-1 + A,B,C) True (?,1) 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) 4. ms(A,B,C) -> c2(ms(-1 + D,B,A),ms1(D,B,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,2) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [0->{4},1->{},3->{4},4->{1,4}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, B) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [0] * Step 5: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) 4. ms(A,B,C) -> c2(ms(-1 + D,B,A),ms1(D,B,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,2) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [1->{},3->{4},4->{1,4}] Sizebounds: (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<4,0,A>, ?) (<4,0,B>, B) (<4,0,C>, ?) + Applied Processor: ChainProcessor False [1,3,4] + Details: We chained rule 4 to obtain the rules [5] . * Step 6: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. ms1(A,B,C) -> fms(C,A,C) True (?,1) 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [1->{},3->{5},5->{5}] Sizebounds: (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) + Applied Processor: UnreachableRules + Details: The following transitions are not reachable from the starting states and are removed: [1] * Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [3->{5},5->{5}] Sizebounds: (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<5,0,A>, ?, .?) (<5,0,B>, B, .= 0) (<5,0,C>, A, .= 0) (<5,1,A>, A, .= 0) (<5,1,B>, ?, .?) (<5,1,C>, A, .= 0) * Step 8: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [3->{5},5->{5}] Sizebounds: (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,1,A>, ?) (<5,1,B>, ?) (<5,1,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,1,A>, ?) (<5,1,B>, ?) (<5,1,C>, ?) * Step 9: LocationConstraintsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [3->{5},5->{5}] Sizebounds: (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,1,A>, ?) (<5,1,B>, ?) (<5,1,C>, ?) + Applied Processor: LocationConstraintsProc + Details: We computed the location constraints 3 : True 5 : True . * Step 10: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (?,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [3->{5},5->{5}] Sizebounds: (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,1,A>, ?) (<5,1,B>, ?) (<5,1,C>, ?) + Applied Processor: LoopRecurrenceProcessor [5] + Details: Applying the recurrence pattern linear * f to the expression A yields the solution A . * Step 11: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 3. start(A,B,C) -> ms(A,B,C) True (1,1) 5. ms(A,B,C) -> c2(ms(-1 + D,B,A),fms(A,-1 + D,A)) [A >= 2 + B && 2*D >= A + B && 2 + A + B >= 2*D && B >= 0 && A >= 0] (A,3) Signature: {(fms,3);(ms,3);(ms0,3);(ms1,3);(start,3)} Flow Graph: [3->{5},5->{5}] Sizebounds: (<3,0,A>, A) (<3,0,B>, B) (<3,0,C>, C) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<5,1,A>, ?) (<5,1,B>, ?) (<5,1,C>, ?) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))