WORST_CASE(?,O(n^2)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [0 >= B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<0,0,C>, C, .= 0) (<1,0,A>, B, .= 0) (<1,0,B>, A, .= 0) (<1,0,C>, C, .= 0) (<2,0,A>, A, .= 0) (<2,0,B>, B, .= 0) (<2,0,C>, 1, .= 1) (<3,0,A>, A, .= 0) (<3,0,B>, B, .= 0) (<3,0,C>, C, .= 0) (<4,0,A>, A, .= 0) (<4,0,B>, B, .= 0) (<4,0,C>, C, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, B, .= 0) (<5,0,C>, C, .= 0) (<6,0,A>, A, .= 0) (<6,0,B>, B, .= 0) (<6,0,C>, 1 + C, .+ 1) (<7,0,A>, A, .= 0) (<7,0,B>, 1 + B, .+ 1) (<7,0,C>, C, .= 0) (<8,0,A>, A, .= 0) (<8,0,B>, B, .= 0) (<8,0,C>, C, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [0 >= B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<0,0,C>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<1,0,C>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<2,0,C>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,0,C>, ?) (<4,0,A>, ?) (<4,0,B>, ?) (<4,0,C>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,0,C>, ?) (<6,0,A>, ?) (<6,0,B>, ?) (<6,0,C>, ?) (<7,0,A>, ?) (<7,0,B>, ?) (<7,0,C>, ?) (<8,0,A>, ?) (<8,0,B>, ?) (<8,0,C>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<3,0,A>, B) (<3,0,B>, ?) (<3,0,C>, 1 + B + C) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) (<8,0,A>, B) (<8,0,B>, ?) (<8,0,C>, 1 + B + C) * Step 3: LeafRules WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (?,1) 3. evalfbb4in(A,B,C) -> evalfreturnin(A,B,C) [0 >= B] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) 8. evalfreturnin(A,B,C) -> evalfstop(A,B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{4,5},7->{2,3},8->{}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<3,0,A>, B) (<3,0,B>, ?) (<3,0,C>, 1 + B + C) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) (<8,0,A>, B) (<8,0,B>, ?) (<8,0,C>, 1 + B + C) + Applied Processor: LeafRules + Details: The following transitions are estimated by its predecessors and are removed [3,8] * Step 4: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (?,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 1 p(evalfbb4in) = 1 p(evalfentryin) = 2 p(evalfstart) = 2 The following rules are strictly oriented: True ==> evalfentryin(A,B,C) = 2 > 1 = evalfbb4in(B,A,C) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = 2 >= 2 = evalfentryin(A,B,C) [B >= 1] ==> evalfbb4in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1) [A >= C] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb1in(A,B,C) [C >= 1 + A] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1 + C) True ==> evalfbb3in(A,B,C) = 1 >= 1 = evalfbb4in(A,-1 + B,C) * Step 5: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (?,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = -1 + x2 p(evalfbb2in) = -1 + x2 p(evalfbb3in) = -1 + x2 p(evalfbb4in) = x2 p(evalfentryin) = x1 p(evalfstart) = x1 The following rules are strictly oriented: [B >= 1] ==> evalfbb4in(A,B,C) = B > -1 + B = evalfbb2in(A,B,1) The following rules are weakly oriented: True ==> evalfstart(A,B,C) = A >= A = evalfentryin(A,B,C) True ==> evalfentryin(A,B,C) = A >= A = evalfbb4in(B,A,C) [A >= C] ==> evalfbb2in(A,B,C) = -1 + B >= -1 + B = evalfbb1in(A,B,C) [C >= 1 + A] ==> evalfbb2in(A,B,C) = -1 + B >= -1 + B = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = -1 + B >= -1 + B = evalfbb2in(A,B,1 + C) True ==> evalfbb3in(A,B,C) = -1 + B >= -1 + B = evalfbb4in(A,-1 + B,C) * Step 6: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (A,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (?,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,6,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 p(evalfbb2in) = 1 p(evalfbb3in) = 0 The following rules are strictly oriented: [C >= 1 + A] ==> evalfbb2in(A,B,C) = 1 > 0 = evalfbb3in(A,B,C) The following rules are weakly oriented: [A >= C] ==> evalfbb2in(A,B,C) = 1 >= 1 = evalfbb1in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 >= 1 = evalfbb2in(A,B,1 + C) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) * Step 7: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (A,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (A,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (?,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 8: PolyRank WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (A,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (?,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (A,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (A,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [5,6,4], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalfbb1in) = 1 + x1 + -1*x3 p(evalfbb2in) = 2 + x1 + -1*x3 p(evalfbb3in) = 2 + x1 + -1*x3 The following rules are strictly oriented: [A >= C] ==> evalfbb2in(A,B,C) = 2 + A + -1*C > 1 + A + -1*C = evalfbb1in(A,B,C) The following rules are weakly oriented: [C >= 1 + A] ==> evalfbb2in(A,B,C) = 2 + A + -1*C >= 2 + A + -1*C = evalfbb3in(A,B,C) True ==> evalfbb1in(A,B,C) = 1 + A + -1*C >= 1 + A + -1*C = evalfbb2in(A,B,1 + C) We use the following global sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) * Step 9: KnowledgePropagation WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (A,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (3*A + A*B,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (A,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (?,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (A,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 10: LocalSizeboundsProc WORST_CASE(?,O(n^2)) + Considered Problem: Rules: 0. evalfstart(A,B,C) -> evalfentryin(A,B,C) True (1,1) 1. evalfentryin(A,B,C) -> evalfbb4in(B,A,C) True (2,1) 2. evalfbb4in(A,B,C) -> evalfbb2in(A,B,1) [B >= 1] (A,1) 4. evalfbb2in(A,B,C) -> evalfbb1in(A,B,C) [A >= C] (3*A + A*B,1) 5. evalfbb2in(A,B,C) -> evalfbb3in(A,B,C) [C >= 1 + A] (A,1) 6. evalfbb1in(A,B,C) -> evalfbb2in(A,B,1 + C) True (3*A + A*B,1) 7. evalfbb3in(A,B,C) -> evalfbb4in(A,-1 + B,C) True (A,1) Signature: {(evalfbb1in,3) ;(evalfbb2in,3) ;(evalfbb3in,3) ;(evalfbb4in,3) ;(evalfentryin,3) ;(evalfreturnin,3) ;(evalfstart,3) ;(evalfstop,3)} Flow Graph: [0->{1},1->{2},2->{4,5},4->{6},5->{7},6->{4,5},7->{2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<0,0,C>, C) (<1,0,A>, B) (<1,0,B>, A) (<1,0,C>, C) (<2,0,A>, B) (<2,0,B>, ?) (<2,0,C>, 1) (<4,0,A>, B) (<4,0,B>, ?) (<4,0,C>, B) (<5,0,A>, B) (<5,0,B>, ?) (<5,0,C>, 1 + B) (<6,0,A>, B) (<6,0,B>, ?) (<6,0,C>, B) (<7,0,A>, B) (<7,0,B>, ?) (<7,0,C>, 1 + B) + Applied Processor: LocalSizeboundsProc + Details: The problem is already solved. WORST_CASE(?,O(n^2))