WORST_CASE(?,O(n^1)) * Step 1: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 1. a0(A,B) -> a(A,B) True (?,1) 2. a1(A,B) -> a(B,B) True (?,1) 3. a(A,B) -> c2(a0(C,D),a1(C,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,1) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{3},1->{3},2->{3},3->{1,2}] + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<1,0,A>, A, .= 0) (<1,0,B>, B, .= 0) (<2,0,A>, B, .= 0) (<2,0,B>, B, .= 0) (<3,0,A>, A, .= 0) (<3,0,B>, A, .= 0) (<3,1,A>, A, .= 0) (<3,1,B>, A, .= 0) * Step 2: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 1. a0(A,B) -> a(A,B) True (?,1) 2. a1(A,B) -> a(B,B) True (?,1) 3. a(A,B) -> c2(a0(C,D),a1(C,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,1) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{3},1->{3},2->{3},3->{1,2}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<1,0,A>, ?) (<1,0,B>, ?) (<2,0,A>, ?) (<2,0,B>, ?) (<3,0,A>, ?) (<3,0,B>, ?) (<3,1,A>, ?) (<3,1,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) (<3,0,A>, A) (<3,0,B>, A) (<3,1,A>, A) (<3,1,B>, A) * Step 3: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 1. a0(A,B) -> a(A,B) True (?,1) 2. a1(A,B) -> a(B,B) True (?,1) 3. a(A,B) -> c2(a0(C,D),a1(C,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,1) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{3},1->{3},2->{3},3->{1,2}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) (<3,0,A>, A) (<3,0,B>, A) (<3,1,A>, A) (<3,1,B>, A) + Applied Processor: ChainProcessor False [0,1,2,3] + Details: We chained rule 3 to obtain the rules [4] . * Step 4: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 1. a0(A,B) -> a(A,B) True (?,1) 2. a1(A,B) -> a(B,B) True (?,1) 4. a(A,B) -> c2(a(C,D),a1(C,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,2) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{4},1->{4},2->{4},4->{2,4}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<1,0,A>, A) (<1,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: UnreachableRules + Details: Following transitions are not reachable from the starting states and are removed: [1] * Step 5: ChainProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 2. a1(A,B) -> a(B,B) True (?,1) 4. a(A,B) -> c2(a(C,D),a1(C,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,2) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{4},2->{4},4->{2,4}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) (<4,0,A>, A) (<4,0,B>, B) + Applied Processor: ChainProcessor False [0,2,4] + Details: We chained rule 4 to obtain the rules [5] . * Step 6: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 2. a1(A,B) -> a(B,B) True (?,1) 5. a(A,B) -> c2(a(C,D),a(D,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,3) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{5},2->{5},5->{5}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<2,0,A>, A) (<2,0,B>, B) (<5,0,A>, A) (<5,0,B>, B) + Applied Processor: UnreachableRules + Details: Following transitions are not reachable from the starting states and are removed: [2] * Step 7: LocalSizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 5. a(A,B) -> c2(a(C,D),a(D,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,3) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{5},5->{5}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<5,0,A>, A) (<5,0,B>, B) + Applied Processor: LocalSizeboundsProc + Details: LocalSizebounds generated; rvgraph (<0,0,A>, A, .= 0) (<0,0,B>, B, .= 0) (<5,0,A>, A, .= 0) (<5,0,B>, A, .= 0) (<5,1,A>, A, .= 0) (<5,1,B>, A, .= 0) * Step 8: SizeboundsProc WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 5. a(A,B) -> c2(a(C,D),a(D,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,3) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{5},5->{5}] Sizebounds: (<0,0,A>, ?) (<0,0,B>, ?) (<5,0,A>, ?) (<5,0,B>, ?) (<5,1,A>, ?) (<5,1,B>, ?) + Applied Processor: SizeboundsProc + Details: Sizebounds computed: (<0,0,A>, A) (<0,0,B>, B) (<5,0,A>, A) (<5,0,B>, A) (<5,1,A>, A) (<5,1,B>, A) * Step 9: LoopRecurrenceProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 5. a(A,B) -> c2(a(C,D),a(D,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (?,3) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{5},5->{5}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<5,0,A>, A) (<5,0,B>, A) (<5,1,A>, A) (<5,1,B>, A) + Applied Processor: LoopRecurrenceProcessor [5] + Details: Solving the recurrence Master Theorem (A) for the expression A yields the solution A . * Step 10: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> a(A,B) [A >= 0] (1,1) 5. a(A,B) -> c2(a(C,D),a(D,D)) [A >= 1 && A >= 2*C && A >= 2*D && C >= 0 && D >= 0] (A,3) Signature: {(a,2);(a0,2);(a1,2);(start,2)} Flow Graph: [0->{5},5->{5}] Sizebounds: (<0,0,A>, A) (<0,0,B>, B) (<5,0,A>, A) (<5,0,B>, A) (<5,1,A>, A) (<5,1,B>, A) + Applied Processor: UnsatPaths + Details: The problem is already solved. WORST_CASE(?,O(n^1))