
Loop Detection by Logically Constrained Term
Rewriting

Naoki Nishida1 and Sarah Winkler2

1 Department of Computing and Software Systems
Graduate School of Informatics, Nagoya University, Japan

nishida@i.nagoya-u.ac.jp
2 Department of Computer Science

University of Innsbruck, Innsbruck, Austria
sarah.winkler@uibk.ac.at

Abstract. Logically constrained rewrite systems constitute a very gen-
eral rewriting formalism that can capture simplification processes in
various domains as well as computation in imperative programs. In both
of these contexts, nontermination is a critical source of errors. We present
new criteria to find loops in logically constrained rewrite systems which
are implemented in the tool Ctrl. We illustrate the usefulness of these
criteria in three example applications: to find loops in LLVM peephole
optimizations, to detect looping program executions of C programs, and
to establish nontermination of integer transition systems.

1 Introduction

Rewriting in presence of side constraints captures simplification processes in
various areas, such as expression rewriting in compilers, theorem provers, or SMT
solvers [11,14,16]. But also computations in an imperative program can be seen
as rewrite sequences according to a constrained rewrite system describing the
control flow graph [7]. In both cases the imposed side constraints can typically be
expressed as formulas over a decidable logic. Logically constrained rewrite systems
(LCTRSs) [12] formalize a very general rewriting mechanism that can express
both of these settings, as well as earlier formalisms of constrained rewriting
(cf. [12]). Side constraints of LCTRSs can be formulated over an arbitrary logic,
though their application for practical analysis tasks requires decidability of the
logic under consideration, typically by means of an SMT solver. But thanks
to the impressive progress of SMT solving in the last two decades, we can use
theories including, for instance, integer as well as bitvector arithmetic and arrays.
This renders LCTRSs a powerful analysis tool in a wide range of areas, including
program verification [7].

Termination is a key property of simplification and computation processes,
and loops the most common violation thereof. We consider an example from the
field of compiler optimizations.

Example 1. The Instcombine pass in the LLVM compilation suite performs peep-
hole optimizations to simplify expressions in the intermediate representation. The

2 N. Nishida and S. Winkler

current optimization set contains over 1000 simplification rules to e.g. replace
multiplications by shifts or perform bitwidth changes. About 500 of them have
recently been translated into the domain-specific language Alive. The following
simplification is an example rule in this format.

Name: MulDivRem 9

Pre: C < 0 && isPowerOf2(abs(C))

%Op0 = sub %Y, %X

%r = mul %Op0, C

=>

%sub = sub %X, %Y

%r = mul %sub, abs(C)

It consists of a precondition labelled Pre, a left-hand side (the expression
before the arrow =>), and the right-hand side (the expression after the arrow).
Both expressions are given as a set of variable assignments. The last variable on
each side is the root variable, in this case %r, which identifies the pattern to be
replaced. Denoted as an LCTRS rule, this simplification reads as follows:

mul(sub(y, x), c)→ mul(sub(x, y), abs(c)) [c <s #x0 ∧ isPowerOf2(abs(c))] (1)

where the side constraint is formulated over bitvector arithmetic.
The Instcombine optimization suite is community-maintained, and unintended

interplay of rules may occur. For instance, rule (1) admits the following loop:

mul(sub(x, x),#x8000)→ mul(sub(x, x), abs(#x8000))→ mul(sub(x, x),#x8000)

In this paper we present new criteria to recognize loops in LCTRSs. We im-
plemented them in the Constrained Rewrite tooL Ctrl [13], which can now for
instance detect the loop shown in Example 1. In order to illustrate the usefulness
of these criteria, we discuss applications in three example domains: (1) finding
loops in the Instcombine optimization suite, (2) detecting loops in C programs,
and (3) establishing nontermination of integer transition systems.

The remainder of this paper is structured as follows. In Section 2 we recall
preliminaries about logically constrained rewrite systems. We present our non-
termination criteria in Section 3. Afterwards, we outline our implementation
within the tool Ctrl in Section 4, and report on detecting loops in some example
application areas in Section 5. In Section 6 we conclude.

2 Preliminaries

We assume familiarity with the basic notions of term rewrite systems [1], but
briefly recapitulate the notion of logically constrained rewriting [7, 12] that our
approach is based on.

We consider a sorted signature F = Fterms ∪ Ftheory such that T (F ,V)
denotes the set of terms over this signature. Here symbols in Fterms are called
term symbols, while Ftheory contains logical symbols. A substitution σ is a

Loop Detection by Logically Constrained Term Rewriting 3

mapping from variables to terms. As usual, we write tσ for the application of σ
to a term t. Terms over logical symbols are assumed to have a fixed semantics.
To this end, we assume a mapping I that assigns to every sort ι occurring in
Ftheory a carrier set I(ι), and an interpretation J that assigns to every symbol
f ∈ Ftheory a function fJ of appropriate sort. Moreover, for every sort ι occurring
in Ftheory we assume a set Valι ⊆ Ftheory of value symbols, such that all c ∈ Valι
are constants of sort ι and J constitutes a bijective mapping between Valι and
I(ι). Hence there exists a constant symbol for every value in the carrier set.
The interpretation J naturally extends to an interpretation of ground terms, by
setting [f(t1, . . . , tn)]J = fI([t1]J , . . . , [tn]J). In this way every ground term has
a unique value. We demand that theory symbols and term symbols overlap only
on values, i.e., Fterms ∩ Ftheory ⊆ Val holds. A term in T (Ftheory,V) is called a
logical term. In particular we assume a sort bool such that I(bool) = B = {>,⊥},
Valbool = {true, false}, trueI = >, and falseI = ⊥. Logical terms of sort bool are
called constraints. A constraint ϕ is valid if [ϕγ]J = > for all substitutions γ
with Dom(γ) ⊆ T (Val).

Logically Constrained Rewriting. A constrained rewrite rule is a triple `→ r [ϕ]
where `, r ∈ T (F ,V), ϕ is a logical constraint, and root(`) ∈ Fterms \ Ftheory. If
ϕ = true then the constraint is often omitted, and the rule is denoted as `→ r.
A set of constrained rewrite rules is called a logically constrained term rewrite
system (LCTRS for short).

We now define rewriting using constrained rewrite rules. To this end, a
substitution σ is said to respect a constraint ϕ if ϕσ is valid and σ(x) ∈ Val for
all x ∈ Var(ϕ). A calculation step s→calc t satisfies s = C[f(s1, . . . , sn)] for some
f ∈ Ftheory \ Val, t = C[u], si ∈ Val for all 1 6 i 6 n, and u ∈ Val is the value
symbol of [f(s1, . . . , sn)]J . In this case f(x1, . . . , xn)→ y [y = f(x1, . . . , xn)] is
a calculation rule, where y is a variable different from x1, . . . , xn. A rule step
s→`≈r [ϕ] t satisfies s = C[`σ], t = C[rσ], and σ respects ϕ. For an LCTRS R, we
also write →rule,R to refer to the relation {→α}α∈R, and denote →calc ∪→rule,R
by →R. The subscript R is dropped if clear from the context.

Example 2. Consider the sort int (besides bool) and let Ftheory consist of symbols
·, +, −, 6, and > as well as values n for all n ∈ Z, with the usual interpretations
on Z. Let Fterms = Val ∪ {fact}. The LCTRS R consisting of the rules

fact(x)→ 1 [x 6 0] fact(x)→ fact(x− 1) · x [x− 1 > 0]

admits the following rewrite steps:

fact(2)→rule fact(2− 1) · 2 (as 2− 1 > 0 is valid)

→calc fact(1) · 2 →rule (fact(1− 1) · 1) · 2 (as 1− 1 > 0 is valid)

→calc (fact(0) · 1) · 2 →rule (1 · 1) · 2 (as 0 6 0 is valid)

→+
calc 2

An LCTRS R is terminating if →R is well-founded. A loop is a rewrite se-
quence of the form t→+

R C[tσ]. Due to the sequence t→+
R C[tσ]→+

R C2[tσ2]→+
R

4 N. Nishida and S. Winkler

. . . existence of a loop implies nontermination. For example, a rewrite rule
f(x, y)→ h(f(−x, g(y))) [x > 0] gives rise to the loop

f(0, y)→rule h(f(−0, g(y)))→calc h(f(0, g(y)))→rule h(h(f(−0, g(g(y)))))→calc . . .

Rewriting Constrained Terms. In addition to the notion of rewriting defined so
far, it is for the sake of analysis convenient to define a notion of rewriting on
constrained terms.

A constrained term is a pair s [ϕ] of a term s and a constraint ϕ. Two
constrained terms s [ϕ] and t [ψ] are equivalent, denoted by s [ϕ] ∼ t [ψ], if
for every substitution γ respecting ϕ there is some substitution δ that respects
ψ such that sγ = tδ, and vice versa. For example, fact(x) · x [x = 1 ∧ x <
y] ∼ fact(1) · y [y > 0 ∧ y < 2] holds, but these terms are not equivalent to
fact(x) · y [x = y] or fact(1) [true].

Definition 1. Let R be a set of constrained rewrite rules.

– A calculation step s [ϕ] →calc t [ϕ ∧ x = f(s1, . . . , sn)] satisfies s =
C[f(s1, . . . , sn)] for some f ∈ Ftheory \ Fterms and t = C[x] such that
s1, . . . , sn ∈ Var(ϕ) ∪ Val and x is a fresh variable.

– A constrained rewrite rule α : `→ r [ψ] admits a rule step s [ϕ]→α t [ϕ] if
ϕ is satisfiable, s = C[`σ], t = C[rσ], σ(x) ∈ Val∪Var(ϕ) for all x ∈ Var(ψ),
and ϕ⇒ ψσ is valid.

Given an LCTRS R, we again write →rule,R for {→α}α∈R. The main rewrite
relation →R on constrained terms is defined as ∼ · (→calc ∪→rule,R) · ∼.

Example 3. Consider the LCTRS from Example 2, the constraint ϕ = x > 1∧y >
0, and let z be a fresh variable. Then the following rewrite steps are possible:

fact(x+ y) [ϕ]→rule fact(x+ y − 1) · (x+ y) [ϕ]

fact(x+ y) [ϕ]→calc fact(z) [ϕ ∧ z = x+ y]

Narrowing Constrained Terms. We next define narrowing on constrained terms
(cf. [4, 19]).

Definition 2. A constrained rewrite rule α : `→ r [ψ] admits a narrowing step
s [ϕ] µ

α,p t [ϕ′] if s = s[s′]p, the terms s′ and ` are unifiable with mgu µ, the
resulting term is t = (s[r]p)µ, ϕ′ = (ϕ ∧ ψ)µ, and ϕ′ is satisfiable.

If irrelevant or clear from the context, we omit the position p and substitution µ
in the notation µ

α,p. Given an LCTRS R, we write R for {→α}α∈R. We also
write s [ϕ] µα t [ϕ′] if α : `→ r [ψ] admits a step t [ϕ′] µ

r→` [ψ] s [ϕ].

Lemma 1. If s [ϕ] µ
α,p t [ϕ′] then sµ [ϕµ]→α,p t [ϕ′].

Loop Detection by Logically Constrained Term Rewriting 5

3 Loop Criteria

In this section we discuss criteria to detect looping derivations in LCTRSs.
In unconstrained rewriting, given a TRS R, tools commonly detect loops by
searching for rewrite sequences of the form t→+

R C[tσ]. In constrained rewriting,
a sequence t [ϕ]→+

R C[tσ] [ψ] does not necessarily imply a loop: this depends on
whether the constraints remain satisfied after repeated execution of the respective
rewrite steps. In this section we consider a rewrite sequence t [ϕ]→+

R C[tσ] [ψ]
such that ψ =⇒ ϕ is valid, which we abbreviate by t→+

ψ,R C[tσ], and look for
sufficient criteria such that this rewrite sequence gives rise to a loop.

The following criterion was already given in [17].

Lemma 2. Let R be an LCTRS, and ψ a logical constraint. If t→+
ψ,R C[tσ] for

some term t, context C, and substitution σ such that σ(x) ∈ T (Ftheory,V) for all
x ∈ Var(ψ), ψ is satisfiable, and ψ =⇒ ψσ is valid. Then R is non-terminating.

As a nontermination criterion, Lemma 2 has the disadvantage that it cannot
detect loops which occur only for specific input values, such as the loop from
Example 1. We next propose two criteria which remedy this shortcoming.

Lemma 3. Let R be an LCTRS, and ψ a logical constraint. Suppose that
t →+

ψ,R C[tσ] for some term t, context C, and substitution σ such that σ(x) ∈
T (Ftheory,V) for all x ∈ Var(ψ), and ψ∧

∧
y∈Dom(σ) y = yσ is satisfiable by some

assignment α.
Then the loop tα→+

R C[tασ] witnesses nontermination of R.

Proof. Suppose ψ∧
∧
y∈Dom(σ) y = yσ is satisfied by an assignment α. Thus ψα is

valid, and [tα]J = [tσα]J . So there is a loop tα→+
R C[tσα]→∗calc C[tα]→+

R · · ·.
ut

Example 4. Returning to Example 1, the two rewrite steps

mul(sub(y, x), c) [ϕ]→rule mul(sub(x, y), abs(c)) [ϕ]→calc mul(sub(x, y), c′) [ψ]

constitute a loop candidate, where ϕ = c <s #x0 ∧ isPowerOf2(abs(c)) and
ψ = ϕ ∧ c′ = abs(c). We thus have t [ψ] →+

R C[tσ] [ψ] for t = mul(sub(y, x), c),
C = 2, and σ = {y 7→ x, c 7→ c′}, such that σ(x) is a logical term for all x in ψ.
The formula ψ ∧ c = c′ is satisfiable by the assignment α(c) = α(c′) = #x8000.
This assignment corresponds to the loop given in Example 1:

mul(sub(x, x),#x8000)→ mul(sub(x, x), abs(#x8000))→ mul(sub(x, x),#x8000)

This criterion is rather restrictive in that it demands that the starting term
occurs again as a subterm after some steps (modulo calculations). The following
result adds some flexibility in this respect.

Lemma 4. Let R be an LCTRS, and ψ a logical constraint. Suppose that
t →+

ψ,R C[tσ] for some term t, context C, and substitution σ such that σ(x) ∈

6 N. Nishida and S. Winkler

T (Ftheory,V) for all x ∈ Var(ψ). Suppose Dom(σ) = {y1, . . . , yn}, and let
ρ = {y1 7→ z1, . . . , yn 7→ zn} be a renaming to fresh variables z1, . . . , zn.

If ∀y1 . . . yn.(ψ =⇒ ψσ)∧ψρ is satisfiable by α then the loop tρα→+
R C[tσρα]

witnesses nontermination of R.

Proof. Suppose that ∀y1 . . . yn.(ψ =⇒ ψσ) ∧ ψρ is satisfied by some assignment
α. So in particular ψρα holds. Since moreover ∀y1 . . . yn.(ψ =⇒ ψσ) is valid and
Dom(σ) = {y1, . . . , yn} we have validity of ∀y1 . . . yn.(ψσk =⇒ ψσk+1) for all
k > 0. Therefore ψσkρα is valid for all k > 0 such that

tρα→+
R C[tσρα]→+

R C2[tσ2ρα]→+
R · · ·

is indeed a loop.

Example 5. Consider the following LCTRS with side constraints over the integers:

f(x, y)→ f(x+ 1− y, y)− 1 [y 6 0 ∧ x > 0]

The rule constitutes itself a loop candidate: We have t [ψ] →+
R C[tσ] [ψ] for

t = f(x, y), C = 2 − 1, and σ = {x 7→ x + 1 − y} with Dom(σ) = {x}. The
formula

∀x (y 6 0 ∧ x > 0 =⇒ (y 6 0 ∧ (x+ 1− y) > 0)) ∧ y 6 0 ∧ z > 0

is satisfied e.g. by the assignment α(y) = α(z) = 0. Thus the following loop is
recognized:

f(0, 0)→R f(0 + 1− 0, 0)→+
calc f(1, 0)→R f(1 + 1− 0, 0)→+

calc f(2, 0)→ · · ·

Note that this loop is not captured by the criteria demanded in Lemmas 2 and 3.

4 Implementation

We extended the Ctrl [13] tool by nontermination techniques that exploit the
criteria presented in Section 3. Optionally a starting term can be given, i.e., two
modes are supported:

(a) Given an LCTRS R, find a loop t [ϕ]→+
R C[tσ] [ϕ] such that ϕ is satisfiable.

(b) Given an LCTRS R and a starting term u, find a loop reachable from u, i.e.,
a sequence u [true]→∗R t [ϕ]→+

R C[tσ] [ϕ] such that ϕ is satisfiable.

An input file in the ctrs format specifies the logical theory to be used, the
signature, the rewrite rules, and a query to fix the problem statement for Ctrl.
To support nontermination analysis, we specify loops as a query in input files:

QUERY loops t

Loop Detection by Logically Constrained Term Rewriting 7

where the optional argument t is a term from which a loop should be reachable.
Ctrl offers theory specifications for integers and arrays, and we added bitvectors of
fixed sizes for the present work. Alternatively a user-defined theory specification
can be used.

We next describe how loops are detected in our implementation. We call a
sequence tuple a tuple of the form (s→ t [ψ], S) where S = [(α1, p1), . . . , (αk, pk)],
s → t [ψ] is a constrained rewrite rule, αi is a rule of the form `i → ri [ϕi] in
R ∪ Rcalc and pi are positions for all 0 6 i 6 k such that there is the rewrite
sequence

s [ψ]→α1,pi · · · →αk,pk t [ψ].

In either of the modes (a) and (b), we proceed in five steps as follows.

(0) Using the dependency pair (DP) framework present in Ctrl [12], the problem
is split into strongly connected components of the dependency graph. This
results in a set of DP problems of the form (P,R), where P is a set of
dependency pairs and R the given LCTRS. (Basically this amounts to
splitting the problem into rules P that are applied at the root of a term and
rules R that can be applied below. Then potential cycles in the call graph are
identified, and only upon these the analysis continues; see [12] for details.)
The following steps are then performed for each of these DP problems:

(1) A set of initial sequence tuples T0 is determined. In case of (a), we take the set
of all single-step sequences (`→ r [ϕ], [(`→ r [ϕ])]) such that `→ r [ϕ] ∈ P .

(2) Given tuples Ti, we set Ti+1 to the set

{(sτ → u [ϕ′], Sf) | (s→ t [ψ], S) ∈ Ti, β ∈ P ∪R and t [ϕ] τ
β,q u [ϕ′]}

for forward unfolding where Sf = S ++ [(β, q)], and to

{(uτ → t [ϕ′], Sb) | (s→ t [ψ], S) ∈ Ti, β ∈ P ∪R and u [ϕ] τ
β,q s [ϕ′]}

for backward unfolding, where Sb = [(β, q)] ++ S. Here ++ denotes list
concatenation.

(3) Given T =
⋃
i6n Ti for some n, we call sµ [ψµ] →+

R C[sµ] [ψµ] a loop
candidate if (s→ C[s′] [ψ], S) ∈ T such that s and s′ are unifiable with mgu
µ and ψµ is satisfiable.

(4) We finally use Lemmas 2, 3, and 4 to check whether there are input values
for which the loop candidates correspond to actual loops.

Since it is known that forward and backward unfolding are incomparable in
general [18], both methods are supported. A link to the tool and its source code
as well as example input files corresponding to the examples used in this paper
can be obtained on-line.3

5 Applications

We now illustrate the loop support of Ctrl in three different application domains.

3 http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_loops

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_loops

8 N. Nishida and S. Winkler

Table 1. Experimental results on the Instcombine LCTRSs.

add-sub mul-div shift and-or select loops all

rules 66 118 75 180 85 43 518

fw 3-loops 4 8 4 22 2 40 51
time (s) 16 80 9 3601 24 25 >32k

bw 3-loops 4 8 4 10 2 27 TO
time (s) 29 727 9 8400 21 24 TO

LLVM Instcombine Simplifications

We transformed the around 500 simplifications in the Alive language mentioned
in Example 1 into LCTRSs using bitvector theory as background logic. These
simplifications are split into domains. We tested Ctrl on the simplification sets
for addition and subtraction, multiplication and division, shifts, bitwise logical
operations, and select operations, as well as on their union. Table 1 summarizes
our results. The columns refer to the different domains, and loops refers to the
set of rules involved in all loops found in the work [15] discussed below. The rows
indicate how many loops of length at most 3 were found by Ctrl using forward
(fw) and backward (bw) unfolding, respectively, and how much time was required.
In general forward unfolding seems to be more useful than backward unfolding.
We remark that not all loops found can actually occur in the LLVM Instcombine
pass since the rule set is applied with a particular strategy, such that certain
optimizations can “shadow” other ones. Thus it needs to be checked by hand
whether the detected potential loops can actually occur.

A dedicated tool alive-loops to detect loops in the Instcombine opti-
mizations was presented in [15]. We briefly compare our criteria to their ap-
proach: First of all, we found the same loops with Ctrl that were exhibited by
alive-loops, modulo combination and nesting of loops. But the loop check
applied in alive-loops is different: It amounts to the search for a loop candi-
date t →+

ψ,R C[tσ] such that ψ =⇒ ψσ is satisfiable. While this is obviously a
necessary condition it is in general not sufficient:

Example 6. As an (artificial) example, consider the constrained rewrite rule
and(#x0, x)→ and(#x0, x�u #x1) [x > #x0]. It gives rise to a loop candidate
t →+

ψ,R tσ where ψ = x > #x0, t = and(#x0, x), and σ = {x 7→ x �u #x1}.
The constraint ψ =⇒ ψσ is satisfiable. But logically shifting x to the right
will eventually result in a bit vector #x0000, hence no such loop exists. Indeed
alive-loops finds a spurious loop in this example, but Ctrl does not.

Moreover alive-loops is limited in that it restricts to loop candidates which
are not size-increasing. The shadowing problem mentioned above occurs as well.

Loops in Integer Transition Systems

Integer term rewriting has been introduced as a rewriting formalism which natively
supports integer operations, to be applied to rewrite-based program analysis [6].

Loop Detection by Logically Constrained Term Rewriting 9

The integer transition system Velroyen08-alternKonv.jar-obl-8 from the
Termination Problem Database 9.04 corresponds to the following LCTRS:

f1 0 main(x, y)→ f81 0(x′, y′) [x > 0 ∧ y > −1 ∧ y = x′] (1)

f81 0(x, y)→ f81 0(x′, y′) [x < 0 ∧ x > −3 ∧ x+ 2 = x′] (2)

f81 0(x, y)→ f81 0(x′, y′) [x > 0 ∧ x < 3 ∧ x− 2 = x′] (3)

f81 0(x, y)→ f81 0(x′, y′) [x < −2 ∧ x < −1 ∧ x < 0 ∧ −x− 2 = x′] (4)

f81 0(x, y)→ f81 0(x′, y′) [x > 2 ∧ −x+ 2 = x′] (5)

init(x, y)→ f1 0 main(x′, y′) (6)

where the starting term is of the form init(x, y). It admits the following rewrite
steps which contain a loop:

init(1, 1)
(6)−−→ f1 0 main(1, 1)

(1)−−→ f81 0(1,−1)
(3)−−→ f81 0(−1, 0)

(2)−−→ f81 0(1,−1)

(where the arrows are decorated with the applied rule). Ctrl can easily show
nontermination within less than 2 seconds by exploiting Lemma 3. This is
also the case for the similar system alternKonv rec, while in the Termination
Competition 20175 both of these problems remained unsolved.

Loops in C Programs

Consider the following C program implementing binary search [10]:

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {

unsigned int mid;

while (lo < hi) {

mid = (lo + hi)/2;

if (a[mid] < k)

lo = mid + 1;

else if (a[mid] > k)

hi = mid - 1;

else

return mid;

}

return -1;

}

It admits a loop for inputs lo=1 and hi=MAXINT if a[0] < k. Abstracting from
the array accesses, this program can be represented by the following LCTRS:

4 http://termination-portal.org/wiki/TPDB
5 http://www.termination-portal.org/wiki/Termination_Competition_2017

http://termination-portal.org/wiki/TPDB
http://www.termination-portal.org/wiki/Termination_Competition_2017

10 N. Nishida and S. Winkler

bsearch(k1, lo1, hi1)→ u1(k1, lo1, hi1, rnd1)

u1(k1, lo1, hi1,mid2)→ u2(k1, lo1, hi1,mid2)

u2(k1, lo1, hi1,mid2)→ u3(k1, lo1, hi1, (lo1 + hi1) /u #x02) [lo1 <u hi1]

u3(k1, lo1, hi1,mid2)→ u4(k1, (mid2 + #x01), hi1,mid2) [mid2 <u k1]

u4(k1, lo1, hi1,mid2)→ u5(k1, lo1, hi1,mid2)

u3(k1, lo1, hi1,mid2)→ u6(k1, lo1, (mid2 −#x01),mid2) [mid2 > k1 ∧mid2 > k1]

u6(k1, lo1, hi1,mid2)→ u7(k1, lo1, hi1,mid2)

u3(k1, lo1, hi1,mid2)→ return(mid2) [mid2 > k1 ∧mid2 6 k1]

u7(k1, lo1, hi1,mid2)→ u8(k1, lo1, hi1,mid2)

u5(k1, lo1, hi1,mid2)→ u9(k1, lo1, hi1,mid2)

u8(k1, lo1, hi1,mid2)→ u9(k1, lo1, hi1,mid2)

u9(k1, lo1, hi1,mid2)→ u10(k1, lo1, hi1,mid2)

u10(k1, lo1, hi1,mid2)→ u2(k1, lo1, hi1,mid2)

u2(k1, lo1, hi1,mid2)→ return(#xff) [lo1 >u hi1]

Ctrl can prove existence of a loop that is reachable from a term of the form
bsearch(x, y, l, h) below one second, using Lemma 3.

6 Conclusion

We presented new criteria to recognize loops in LCTRSs, and implemented these
in the constrained rewrite tool Ctrl. In order to demonstrate applicability of such
nontermination support, we investigated three example domains.

For the case of LLVM Instcombine optimizations, we confirmed all loops
found by the tool alive-loops [15], and argued that in contrast to this previous
work our criteria do not give rise to false positives. We moreover showed how Ctrl
can be used to detect loops in a C program and in integer transition systems.

Extensive work on nontermination detection has been done in the past for
both domains, c.f. [2, 5, 10] and [3, 9], for example. A thorough evaluation of
our criteria by means of comparison with tools such as [2, 3, 9] is left for future
work. Rather than claiming our implementation superior to other tools, we
consider the work presented in this paper a proof of concept that nontermination
criteria for LCTRSs are applicable to a wide range of domains. In contrast to
tools designed for integer transition systems, C programs, or LLVM Instcombine
optimizations, we can treat all these applications uniformly with our criteria:
Due to the generality of LCTRSs, the same implementation can be applied to a
variety of background theories such as integer or bitvector arithmetic or arrays.

In future work we want to investigate further application domains such
as simplifications performed in the preprocessing phase of SMT solvers [8, 16].
Moreover, it would be interesting to find criteria for nonlooping nontermination
of LCTRSs.

Loop Detection by Logically Constrained Term Rewriting 11

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. C. Borralleras, M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell,
and A. Rubio. Proving termination through conditional termination. In Proc. 23rd
TACAS, volume 10205 of LNCS, pages 99–117, 2017.

3. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: temporal
property verification. In Proc. 22nd TACAS, volume 9636 of LNCS, pages 387–393,
2016.

4. S. Falke and D. Kapur. A term rewriting approach to the automated termination
analysis of imperative programs. In Proc. 22nd CADE, volume 5663 of LNCS,
pages 277–293, 2009.

5. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler
intermediate languages. In Proc. 22nd RTA, volume 10 of Leibniz International
Proceedings in Informatics, pages 41–50, 2011.

6. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination
of integer term rewriting. In Proc. 20th RTA, volume 5595 of LNCS, pages 32–47,
2009.

7. C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained
rewriting induction. ACM TOCL, 18(2):14:1–14:50, 2017.

8. V. Ganesh, S. Berezin, and D. Dill. A decision procedure for fixed-width bit-vectors.
Technical report, Stanford University, 2005.

9. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel,
C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. JAR,
58(1):3–31, 2017.

10. A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R-.G. Xu. Proving
non-termination. SIGPLAN Not., 43(1):147–158, 2008.

11. K. Hoder, Z. Khasidashvili, K. Korovin, and A. Voronkov. Preprocessing techniques
for first-order clausification. In Proc. 12th FMCAD, pages 44–51, 2012.

12. C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. 9th
FroCoS, volume 8152 of LNAI, pages 343–358, 2013.

13. C. Kop and N. Nishida. Constrained term rewriting tool. In Proc. 20th LPAR,
volume 9450 of LNAI, pages 549–557, 2015.

14. N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct peephole
optimizations with Alive. In Proc. 36th PLDI, pages 22–32, 2015.

15. D. Menendez and S. Nagarakatte. Termination-checking for LLVM peephole
optimizations. In Proc. 38th International Conference on Software Engineering,
pages 191–202, 2016.

16. A. Nadel. Bit-vector rewriting with automatic rule generation. In Proc. 16th CAV,
pages 663–679, 2014.

17. N. Nishida, M. Sakai, and T. Hattori. On disproving termination of constrained
term rewriting systems. In Proc. 11th WST, page 5 pages, 2010.

18. É. Payet. Loop detection in term rewriting using the eliminating unfoldings.
Theoretical Computer Science, 403(2–3):307–327, 2008.

19. C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and open system
analysis. J. Log. Algebr. Meth. Program., 86(1):269–297, 2017.

	Loop Detection by Logically Constrained Term Rewriting

