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Abstract. Modern program analyzers translate imperative programs to
an intermediate formal language like integer transition systems (ITSs),
and then analyze properties of ITSs. Because of the high complexity
of the task, a number of incorrect proofs are revealed annually in the
Software Verification Competitions.

In this paper, we establish the trustworthiness of termination and safety
proofs for ITSs. To this end we extend our Isabelle/HOL formalization
IsaFoR by formalizing several verification techniques for ITSs, such as
invariant checking, ranking functions, etc. Consequently the extracted
certifier CeTA can now (in)validate safety and termination proofs for
ITSs. We also adapted the program analyzers T2 and AProVE to produce
machine-readable proof certificates, and as a result, most termination
proofs generated by these tools on a standard benchmark set are now
certified.

1 Introduction

A number of recently introduced techniques for proving safety or termination of
imperative programs, such as Java [1,29,32] and C [6,16,34], rely on a two-step
process: the input program is abstracted into an intermediate formal language,
and then properties of the intermediate program are analyzed. These intermediate
languages are usually variations of integer transition systems (ITSs), reflecting
the pervasive use of built-in integer data types in programming languages, as
well as common abstractions like modeling algebraic datatypes by their size. For
example, the C program in Fig. 1 can be abstracted to the ITS in Fig. 2.

To establish the trustworthiness of such program analyzers, two problems need
to be tackled. First, the soundness of the translation from the source programming
language to ITSs needs to be proven, requiring elaborate models that capture the
semantics of advanced programming languages [21,24,39]. Then, the soundness
of safety and termination proofs on ITSs needs to be validated.

? This work was partially supported by FWF project Y757. The authors are listed in
alphabetical order regardless of individual contributions or seniority. We thank the
anonymous reviewers for their helpful comments.



int x, y, z;

z = -1;

while (x >= -5) {
x = x + z;

y = 0;

z = z - 1;

while (y < x)

y = y + 1;

}

Fig. 1: Input C program

`0

`1 `2

τ1 : x′ = x ∧
y′ = y ∧
z′ = −1

τ2 : x ≥ −5 ∧ x′ = x+ z ∧
y′ = 0 ∧ z′ = z − 1

τ4 :
y ≥ x ∧ x′ = x ∧
y′ = y ∧ z′ = z

τ3 : y < x ∧
x′ = x ∧
y′ = y + 1 ∧
z′ = z

Fig. 2: ITS P corresponding to Fig. 1

In this work, we tackle the second problem by extending IsaFoR [35], the
Isabelle Formalization (originally) of Rewriting, by termination and safety prov-
ing techniques for ITSs. We then export verified code for the certifier CeTA, which
validates proof certificates generated by untrusted program analyzers. In order
for CeTA to read proofs for ITSs, we extend an XML certificate format [33] with
syntax for ITS inputs and various proof techniques. Moreover, we adapt the
program analyzers AProVE [18] and T2 [9] to produce certificates following the
XML format.

The rest of the paper is organized as follows. In Sect. 2, we formalize logic tran-
sition systems (LTSs), a generalization of ITSs. The termination and safety proofs
are developed on LTSs, so that we can easily extend our results to bit vectors,
arrays, etc. A number of approaches reduce the termination analysis problem to
a sequence of program safety problems that derive suitable invariants [6,8,14,37].
Thus in Sect. 3, we formalize program invariant proofs as generated by the Impact
algorithm [26], yielding a certifier for safety proofs. In Sect. 4 we consider certify-
ing termination proofs. We recapitulate and formalize the concept of cooperation
programs [8] and then present how to certify termination proofs. To instantiate
the general results to ITSs, in Sect. 5 we discuss how to reason about linear
integer arithmetic. In Sect. 6 we report on an experimental evaluation, showing
that a large number of termination proofs can now be certified.

This paper describes what program analyzers need to provide in a proof cer-
tificate, and what CeTA has to check to certify them. As all proofs are checked
by Isabelle [27], we have omitted them from this paper. The full formaliza-
tion, consisting of around 10 000 lines of Isabelle code and an overview that
links theorems as stated in this paper to the actual formalization is available
at http://cl-informatik.uibk.ac.at/ceta/experiments/lts. The website
further contains certificates for the two termination proofs of the ITS P in Fig. 2
that are developed in this paper.

Related Work: A range of methods has been explored to improve the trust-
worthiness of program analyzers. Most related to this work is the certification
of termination and complexity proofs of term rewrite systems [5,12,35]. Here
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certification means to validate output of untrusted tools using a trustable certi-
fier whose soundness is formally verified. Although our work is built upon one
of them [35], the techniques for ITSs required a substantial addition to the li-
brary. SparrowBerry [11] follows a similar approach to validate numerical program
invariants obtained by abstract interpretation [15] of C programs.

A less formal approach, taken in the context of complexity [2] and safety [3]
proofs, is to cross-check a tool output using another (unverified) tool. A weakness
of this approach is that, even if a “cross-checker” accepts a proof, it does not
mean the proof is fully trustable. The cross-checker may have a bug, and both
tools may be based on wrong (interpretations of) paper proofs. In contrast, we
aim at termination, and we have formally proven in Isabelle that if our certifier
accepts a proof, then the proof is indeed correct.

Another approach is to develop fully verified program analyzers, in which
all intermediate steps in the proof search are formalized and verified, and not
only the final proof as in our case. Examples of this approach have been used
to develop a static analyzer for numerical domains [20] and to validate a Java
Bytecode-like intermediate language in JINJA [21]. Compared to this approach,
our certification approach demands much less work on the tool developers: they
only have to output proofs that comply with the certificate format.

2 Logic Transition Systems

While our goal is specific to linear integer arithmetic, the used techniques apply
to other logics as well. We separate the generic parts from the logic-specific
parts. This clarifies the explanation of the generic parts, and makes it easier
to extend our development to other logics in the future. We assume a sound
validity checker for clauses (disjunctions of atoms) of the underlying logic. Linear
integer arithmetic (i.e., Presburger arithmetic) can be considered as the canonical
instance, but one may consider bit vectors, arrays, etc.

A logic describes how to interpret formulas of a certain shape. We first
formalize the notion of many-sorted algebras [10,38] and formulas over them. We
base our development on the (untyped) term datatype in IsaFoR.

Definition 1. A many-sorted signature Σ consists of a set S of sorts and
a disjoint family that assigns a set Σσ1···σnσ of function symbols to each list
σ1, . . . , σn, σ ∈ S of sorts. A sorted variable is a pair of a variable symbol v
and a sort σ (written v : σ, or just v when the sort is clear from the context).
Given a set V of sorted variables, the set Tσ(V) of expressions of sort σ is defined
inductively as follows: v : σ ∈ Tσ(V), and f(e1, . . . , en) ∈ Tσ(V) if f ∈ Σσ1···σnσ

and ei ∈ Tσi
(V) for each i = 1, . . . , n.

Definition 2. A many-sorted Σ-algebra A specifies the domain Aσ of each sort
σ ∈ S and an interpretation [[f ]] : Aσ1 × · · · ×Aσn → Aσ of each f ∈ Σσ1···σnσ.

An assignment α on a set V of sorted variables assigns each variable v : σ a
value α(v) ∈ Aσ. We define the interpretation [[e]]α of an expression e under α
as usual: [[v]]α = α(v) and [[f(e1, . . . , en)]]α = [[f ]]([[e1]]α, . . . , [[en]]α).
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Definition 3. We define a many-sorted logic Λ as a tuple consisting of a set of
sorts S, a many-sorted signature Σ on S, and a Σ-algebra A such that bool ∈ S
and true, false ∈ Abool. Formulas Λ(V) over typed variables from V are defined
by the grammar φ ::= a | φ ∧ φ | φ ∨ φ | ¬φ,3 where an atom a ∈ Tbool(V) is an
expression of sort bool.

We say an assignment α satisfies a formula φ, written α |= φ, if φ evaluates
to true when every atom a in the formula is replaced by [[a]]α. We write φ |= ψ
iff α |= φ implies α |= ψ for every assignment α.

We define the notion of logic transition systems (LTSs) over a logic Λ. Note
that an LTS can be seen as a labeled transition system, which also is commonly
abbreviated to LTS.

In the following, we fix a set L of locations in a program and a set V of
variables that may occur in the program.

Definition 4. A state is a pair of ` ∈ L and an assignment α on V.

To define state transitions, we introduce a fresh variable v′ for each variable
v ∈ V. We write V ′ for the set {v′ | v ∈ V}, α′ for the assignment on V ′ defined
as α′(v′) = α(v), and e′ (resp. φ′) for the expression e (resp. formula φ) where
all variables v are replaced by v′.

Definition 5. A transition rule is a triple of `, r ∈ L and a transition formula

φ ∈ Λ(V ]V ′),4 written `
φ−−→ r. A logic transition system (LTS) P is a set of

transition rules, coupled with a special location `0 ∈ L called the initial location.

In the rest of the paper, we always use `0 as the initial location. Hence we
identify an LTS and the set of its transition rules.

For our formalization, we extend LTSs with assertions, i.e., a mapping Φ
that assigns a formula describing all valid states to each location. We assume no
assertions for an input LTS, i.e., Φ(`) = true for every ` ∈ L.

Definition 6. The transition step →τ w.r.t. a transition rule τ : `
φ−−→ r and

an assertion Φ is defined by (`, α)→τ (r, β) iff α ] β′ |= φ, where α |= Φ(`) and
β |= Φ(r). For an LTS P, we write →P =

⋃
τ∈P→τ .

Throughout the paper we establish methods that reduce a desired property
of an LTS to zero or more subproblems of proving properties of refined LTSs.
Hence the certificate forms a proof tree, where the root concludes the desired
property of the input LTS, and all leafs are concluded by methods that yield no
more subproblems.

In the formalization, corresponding theorems assume that LTSs are well-typed,
i.e., atoms in transition formulas and assertions are of type bool. Well-typedness
is checked only when an input LTS is given, and is statically proven for LTSs
which are introduced as subproblems.

3 In the Isabelle formalization and the certificate XML, formulas are represented in
negation normal form and conjunction and disjunction are not necessarily binary.

4 In the Isabelle formalization we admit auxiliary variables to appear in the transition
formula. To ease readability we omit this ability in the paper.

4



3 Certifying Invariants and Safety Proofs

The safety of a program means that certain “bad” states cannot be reached, and
is usually modeled by a set of error locations L ⊆ L that are reached from such
bad states. Safety then reduces to the unreachability of error locations.

Definition 7. We say a state (`n, αn) is reachable if there is a sequence of
transition steps starting from the initial location: (`0, α0)→P · · · →P (`n, αn). A
location `n is reachable if there is a reachable state (`n, αn).

A program invariant maps every ` ∈ L to a formula φ such that α |= φ for all
reachable states (`, α). Program safety can thus be proven by finding a program
invariant that maps every error location to an unsatisfiable formula (e.g., false).

Definition 8. We say a mapping I : L → Λ(V ) is an invariant of an LTS P
iff α |= I(`) whenever (`, α) is reachable in P.

One way to prove that a mapping is an invariant is to find an unwinding [26]
of a program. We integrate support for invariant checking and safety proofs into
CeTA by formalizing unwindings in Isabelle.

Definition 9. An unwinding of LTS P under assertion Φ is a graph G = (Nt ∪
Nc,−→∪ 99K) with Nt ∪Nc ⊆ L×Λ(V), where nodes in Nt are called transition
nodes, those in Nc are covered nodes, edges in −→ are transition edges, those
in 99K are cover edges, and the following conditions are satisfied:

1. (`0, true) ∈ Nt ∪Nc;
2. for every transition node (`, φ) ∈ Nt, either φ is unsatisfiable or for every

transition rule `
χ−−→ r ∈ P there is a transition edge (`, φ) −→ (r, ψ) such

that Φ(`) ∧ φ ∧ χ |= ψ′;
3. for every covered node (`, φ) ∈ Nc, there exists exactly one outgoing edge,

which is a cover edge (`, φ) 99K (`, ψ) with (`, ψ) ∈ Nt and φ |= ψ.

Each node (`, φ) in an unwinding represents the set of states {(`, α) | α |= φ}.
If φ is unsatisfiable then the node represents no state, and thus no successor
of that node needs to be explored in condition 2. A location ` in the original
program is represented by multiple transition nodes (`, φ1), . . . , (`, φn), meaning
that φ1 ∨ . . . ∨ φn is a disjunctive invariant in `.

Example 1. Consider the LTS P in Fig. 2 again. In order to prove the termination
of the outer while loop, the invariant z < 0 in location `1 is essential. To prove
this invariant, we use the graph G in Fig. 3, a simplified version of the unwinding
constructed by the Impact algorithm [26].

Our definition of unwindings only roughly follows the original definition [26],
in which nodes and transition edges are specified as a tree and cover edges are
given as a separate set. This turned out to be unwieldy in the formalization;
our definition is not restricted to trees, since being a tree or not is irrelevant for
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`0, true `1, z < 0 `2, z < −1

`1, z < −1

`2, z < −1

τ1
τ2 τ3

τ4

Fig. 3: An unwinding G of P

soundness. This flexibility gives some benefits. For instance, instead of introducing
an additional node in Fig. 3 as the target of τ4, the corresponding transition
edge could just point back to the node (`1, z < 0). More significantly, we are able
to certify invariants obtained by other means (e.g., abstract interpretation [15]).
For this, an inductive invariant I : L → Λ(V) can be cast as an unwinding with
transition nodes {(`, I(`)) | ` ∈ L} and transition edges {(`, I(`)) −→ (r, I(r)) |
`

φ−−→ r ∈ P}, with no covered nodes.

Theorem 1 (Invariants via Unwindings). Let G be an unwinding for an
LTS P. Then a mapping I : L → Λ(V ) is an invariant of P if for every l ∈ L,(∨

(`,φ)∈Nt
φ
)
|= I(`) (1)

To verify that Thm. 1 is applied correctly, CeTA needs the invariant I and the
unwinding G to be specified in the certificate. It checks conditions 1–3 of Def. 9,
and then the entailment (1) for each location. For efficiency we further assume
that each transition edge is annotated by the corresponding transition rule.

To use invariants in proofs for the desired properties (safety or termination),
we turn invariants into assertions. As we have proven that the invariant formula
is satisfied whenever a location is visited, “asserting” the formula merely makes
implicit global information available at each location. This approach has the
advantage that invariants become a part of input for the later proofs, and thus
we do not have to prove that they are invariant repeatedly when we transform
programs as required in Sect. 4.

Theorem 2 (Invariant Assertion for Safety Proofs). Let P be an LTS, Φ
an assertion on P, and Ψ an invariant of P. Then P under assertion Φ is safe
if P under assertion Ψ is safe.

Thm. 2 requires nothing to be checked, besides that the invariant is certified
via Thm. 1. A typical application of Thm. 2 refines the current assertion Φ by a
stronger one Ψ . When sufficiently strong assertions are made, one can conclude
safety as follows.

Theorem 3 (Safety by Assertions). Let P be an LTS, Φ an assertion on P,
and L a set of error locations. If Φ(`) is unsatisfiable for every ` ∈ L , then P
under assertion Φ is safe.
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4 Certifying Termination Proofs

Now we present our formalization of techniques for proving termination of LTSs.

Definition 10. An LTS P is terminating iff there exists no infinite transition
sequence starting from the initial location: (`0, α0)→P (`1, α1)→P · · · .

We formalize a collection of transformation techniques for LTSs such that
every transformation preserves nontermination, i.e., the termination of all result-
ing LTSs implies the termination of the original LTS. The cooperation graph
method [8], the foundation of the termination tool T2, will be modeled by a
combination of such transformations. The split into smaller techniques not only
simplifies and modularizes the formalization task, but also provides a way to
certify termination proofs of tools which use related methods. They can choose a
subset of supported termination techniques that is sufficient to model their inter-
nally constructed termination proofs. For instance, we also integrate certificate
export for LTSs in AProVE, which internally does not utilize cooperation graphs.

4.1 Initial Transformation

The key component of cooperation graphs is the use of two copies of the program:
the original part is used to describe reachable program states, and a termination
part is progressively modified during the termination proof. This approach makes
it possible to apply transformations which would be unsound when performed on
the original program; e.g., one can remove transitions from the termination part
if they are proven to be usable only a finite number of times. This is unsound if
it is performed on the original program; consider, e.g., a non-terminating LTS

consisting of only the two transition rules `0
true−−→ `1 and `1

true−−→ `1. Clearly, the
first transition rule can be applied only once. Nevertheless, if it is removed, `1
becomes unreachable, and the resulting LTS is terminating.

To describe the copies of programs, we introduce a fresh location `] for each
location ` ∈ L. We write L] for the set {`] | ` ∈ L}.

Definition 11. A cooperation program Q is an LTS on locations L∪L] which
is split into three parts: Q = Q\∪Q]∪Q]], where Q\,Q],Q]] consist of transitions

of form `
φ−−→ r, `

φ−−→ r], `]
φ−−→ r], respectively, where `, r ∈ L.

We say Q is CP-terminating if there exists no infinite sequence of form

(`0, α0)→Q\ · · · →Q\ (`n, αn)→Q] (`]n, αn)→Q]] (`]n+1, αn+1)→Q]] · · ·

where each transition rule used after the n-th step must be used infinitely often.

We call Q\ the original part and Q]] the termination part. The termination
of an LTS can be reduced to the CP-termination of a cooperation program which
has the input LTS as the original part and its copy (where every location ` is
renamed to `]) as the termination part, and additionally includes ε-transitions
that allow to jump from locations ` to `].
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`0

`1 `2

τ1
τ2

τ4

τ3

`]0

`]1`]2
ε

τ ]1τ ]2

τ ]4

τ ]3

Fig. 4: Cooperation program Q con-
structed from P

`0

`1 `2

τ1
τ2

τ4

τ3

`]1`]2
ε

τ ]2

τ ]4

τ ]3

Fig. 5: Cooperation program Q1 result-
ing from SCC decomposition of Q

Definition 12. We say a transition rule τ : `
φ−−→ r is an ε-transition iff

(`, α) →τ (r, α) for any assignment α, i.e., α ] α′ |= φ. We write `
ε−−→ r to

denote an ε-transition.

Canonically, one can consider `
ε−−→ `] for every location `, but we can also

do a little better by employing the notion of cutpoints. For this, we view an LTS

P as a program graph with nodes L and edges {(`, r) | ` φ−−→ r ∈ P}.

Definition 13. A set C ⊆ L of locations is a cutpoint set of an LTS P if the
program graph of P \C is acyclic.

Intuitively, if C is a cutpoint set of P, then any infinite execution of P must
visit some cutpoint ` ∈ C infinitely often.

Theorem 4 (Initial Cooperation Program). Let P be a finite LTS over L,
Q a cooperation program, and C ⊆ L such that

1. for each `
φ−−→ r ∈ P, there exist `

φ−−→ r ∈ Q and `]
φ−−→ r] ∈ Q;

2. for each ` ∈ C, there exists `
ε−−→ `] ∈ Q; and

3. C is a cutpoint set for P.

Then P is terminating if Q is CP-terminating.

Example 2. In order to construct an initial cooperation program for P in Fig. 2,
termination provers need to choose a cutpoint set. Let us consider a minimal one:
C = {`2}. We obtain the cooperation program Q in Fig. 4, where each transition

τ ]i has the same transition formula as τi for i = 1, . . . , 4 and ε has transition
formula x′ = x ∧ y′ = y ∧ z′ = z.

To check that Thm. 4 is applied correctly, we only require the added ε-
transitions to be specified in the certificate. The other parts, e.g., the cutpoint
set C, are automatically inferred by CeTA.

Condition 1 of Thm. 4 is always fulfilled, since these transitions are automat-
ically generated by CeTA, and statically proven correct.

For condition 2, CeTA checks if the transition formula is of form
∧
v∈W v′ = v

for some set of variables W ⊆ V. Allowing W ⊂ V can be useful: Consider a C
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fragment x = x + 1; x = 2 * x. This might be encoded into a single transition
formula using an auxiliary variable, e.g., as aux = x+ 1 ∧ x′ = 2 ∗ aux . It would
make sense not to mention the auxiliary variables in epsilon transitions.

For condition 3, i.e., to check that C is indeed a cutpoint set, we must check
acyclicity of graphs as required in Def. 13. Luckily we could reuse the certified
implementation of Gabow’s strongly connected component (SCC) decomposition
algorithm [23] and check that after removing C from P, it has only trivial SCCs.

To reason about the termination of LTSs, we often require program invariants
to allow us to reason about reachable program states. Thus, analogous to Thm. 2
for safety proofs, we provide a way to introduce program invariants in termination
proofs. The following result is formalized both for normal LTSs w.r.t. Def. 10 as
well for cooperation programs w.r.t. Def. 11.

Theorem 5 (Invariant Assertion for Termination). Let P be an LTS, Φ
an assertion on P, and Ψ an invariant of P. Then P under assertion Φ is
(CP-)terminating if P under assertion Ψ is (CP-)terminating.

4.2 SCC and Cutpoint Decompositions

In the setting of cooperation programs, it is sound to decompose the termination
part into SCCs.

Theorem 6 (SCC Decomposition). Given a cooperation program Q, if the

cooperation program Q\∪Q]∪{`] φ−−→ r] ∈ Q]] | `], r] ∈ S} is CP-terminating for
every non-trivial SCC S of the program graph of Q]], then Q is CP-terminating.

To certify an application of Thm. 6, the certificate has to list the subproofs
for each SCC. CeTA invokes the same certified SCC algorithm as in the cutpoint
validation to check applications of the SCC decomposition.

Example 3. Using SCC decomposition, Q in Fig. 4 can be transformed into the
new problem Q1 in Fig. 5, where location `]0 and transition τ ]1 are removed.

We can also decompose a cooperation program by case distinction depending
on which ε-transition for a cutpoint is taken. This can also be used to delete
ε-transitions leading to locations whose outgoing transitions have already been
removed by other means.

Theorem 7 (Cutpoint Decomposition). Let P be a cooperation program

with P] = Q]0∪Q
]
1∪ . . .∪Q]n, where for every `

ψ−−→ `] ∈ Q]0 there is no transition

rule of form `]
φ−−→ r] in P]]. Then P is CP-terminating if P\ ∪Q]i ∪ P

]] is CP-
terminating for every i = 1, . . . , n.

A certificate for Thm. 7 needs to provide the considered partition Q]1∪. . .∪Q]n
and a corresponding subproof for each of the newly created cooperation programs.
CeTA determines Q]0 and checks that it has no succeeding transitions in P]].
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4.3 Transition Removal

A cooperation program is trivially CP-terminating if its termination part is
empty. Hence we now formalize a way to remove transitions via rank functions,
the core termination proving procedure for cooperation programs, and also for
other termination methods as implemented by, e.g., AProVE or VeryMax [6].

Roughly speaking, a rank function is a mapping from program states to
a mathematical domain on which a well-founded order exist (e.g., the natural
numbers). We formalize such domains reusing a notion from term rewriting.

Definition 14. We call a pair (≥, >) of relations a (quasi-)order pair if ≥ is
reflexive, both are transitive, and they are “compatible”, i.e., (≥ ◦ > ◦ ≥) ⊆ >.
We say that the order pair is well-founded if > is well-founded.

We model a rank function as a mapping that assigns an expression f(`]) ∈
Tσ(V) of sort σ to each location `]. Here we assume that the domain Aσ of σ
has a well-founded order pair (≥, >). If some transitions in Q]] strictly decrease
a rank function and all other transitions “do not increase” this rank function,
then the decreasing transitions can be used only finitely often, and thus can be
removed from the termination part.

Theorem 8 (Transition Removal). Let Q be a cooperation program with
assertion Φ, (≥, >) a well-founded order pair5 on Aσ, f : L] → Tσ(V), and

D]] ⊆ Q]] a set of transition rules such that for every `]
φ−−→ r] ∈ Q]],

– Φ(`]) ∧ Φ(r])′ ∧ φ |= f(`]) > f(r])′ if `]
φ−−→ r] ∈ D]]; and

– Φ(`]) ∧ Φ(r])′ ∧ φ |= f(`]) ≥ f(r])′ otherwise.

Then Q is CP-terminating if Q \ D]] is CP-terminating.

To certify the correct application of Thm. 8, naturally the rank function and
deleted transitions have to be specified in the certificate. For integer arithmetic
σ is fixed to int, but one also needs to choose the well-founded order. Note that
> on integers is not well-founded, but its bounded variant >b is, where s >b t iff
s > t and s ≥ b. Note also that (≥, >b) forms an order pair.

Example 4. The program P from Fig. 2 can be shown terminating by repeatedly
applying Thm. 8. Assume that we have applied Thm. 5 on P and established the
assertion z < −1 on `2, based on the unwinding from Ex. 1, before transforming
P into Q1 of Fig. 5. We then apply Thm. 8 with rank function x and bound −5
for all locations in Q]]1 . With the assertion z < −1, this allows us to remove τ ]2 .

Then, using the constant rank functions 1 for `]1 and 0 for `]2, we can remove

the transition τ ]4 (alternatively, we could use SCC decomposition here). Finally,
the rank function x− y and bound 0 can be used to remove the last remaining
transition τ ]3 .

5 In the paper we use symbols ≥ and > also for formulas. In the formalization we
encode, e.g., by a formula e1 ≥f e2 such that α |= e1 ≥f e2 iff [[e1]]α ≥ [[e2]]α.
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Simple rank functions on integers are sometimes too weak, so we also integrate
lexicographic orderings.

Definition 15. Given order pairs (%1,�1), . . . , (%n,�n) on A, their lexico-

graphic composition is the order pair (%lex
1,...,n,�lex

1,...,n) on length-n lists of A

defined as follows: 〈x1, . . . , xn〉 �lex
1,...,n 〈y1, . . . , yn〉 iff

∃i ≤ n. x1 %1 y1 ∧ · · · ∧ xi−1 %i−1 yi−1 ∧ xi �i yi (2)

and 〈x1, . . . , xn〉 %lex
1,...,n 〈y1, . . . , yn〉 iff (2) holds or x1 %1 y1 ∧ · · · ∧ xn %n yn.

The lexicographic composition of well-founded order pairs forms again a well-
founded order pair. Hence, to conclude the correct application of Thm. 8, CeTA
demands a list of bounds b1, . . . , bn to be given in the certificate, and then uses the
lexicographic composition induced by bounded order pairs (≥, >b1), . . . , (≥, >bn).
An application is illustrated at the end of the next subsection in Ex. 6.

4.4 Variable and Location Additions

Transition removal is an efficient termination proving method, but relies on local
syntactic structure of the program. Most significantly, it cannot find termination
arguments that depend on interactions between succeeding transitions on a cycle.
Safety-based termination proofs thus instead consider evaluations that represent
a full cycle through a program SCC, from a cutpoint back to itself, and show that
every such evaluation decreases some well-founded measure. In order to do this, a
snapshot variable vs is introduced for each program variable v and the program is
extended to set vs to the value of v on every transition leaving a cutpoint. Then,
a rank function for the SCC satisfies f(v1s, . . . , vns) > f(v1, . . . , vn) whenever
an evaluation reaches the cutpoint again. In our modified version of T2, we
implement the setting of snapshot variables and checking of rank functions by
adding dedicated fresh locations after and before a cutpoint.

Theorem 9 (Location Addition). Let P be a cooperation program and Q]] a

set of transitions such that for every transition `]
φ−−→ r] ∈ P]] \Q]] there exists

a location f such that `]
φ−−→ f, f

ε−−→ r] ∈ Q]] or `]
ε−−→ f, f

φ−−→ r] ∈ Q]]. Then
P is CP-terminating if P\ ∪P] ∪Q]] is CP-terminating.

In certificates the new component Q]] does not have to be provided. Instead
it suffices to provide the new ε-transition f

ε−−→ r] (resp. `]
ε−−→ f) with fresh

location f . Then Q]] is computed from P]] by redirecting every transition with
target r] (resp. source `]) towards f .

Example 5. Here and in Ex. 6, we provide an alternative termination proof for
the cooperation program Q1 of Fig. 5. We use the global reasoning that every
cycle from `]2 back to itself decreases the measure 〈x, x− y〉, bounded by −5 and
0 respectively. Note that x decreases in every iteration of the outer loop, and
x− y decreases in every iteration of the inner loop.
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Fig. 6: Cooperation program Q2 re-
sulting from Q1 by adding a location
`a2 after `]2 and a location `b2 before `]2
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Fig. 7: Cooperation program Q3 result-
ing from Q2 by adding snapshot vari-
ables

As a first step, we transform Q1 into Q2 of Fig. 6 by applying Thm. 9 twice,
providing the transitions `b2

ε−−→ `]2 and `]2
ε−−→ `a2 to introduce fresh locations

before and after the cutpoint `]2.

The addition of snapshot variables is not trivially sound, as the operation
involves strengthening transition formulas, e.g., from φ to φ ∧ x′s = x. Thus to
ensure soundness, CeTA demands the new variable xs and the formula added
to each transition, and checks that no existing transition formula mentions x′s,
and the added formulas do nothing more than giving a value to x′s. The latter
condition is more precisely formulated as follows.

Definition 16. We say a variable x of sort σ is definable in a formula ψ iff for
any assignment α, there exists v ∈ Aσ such that α[x 7→ v] |= ψ, where α[x 7→ v]
maps x to v and y 6= x to α(y).

Theorem 10 (Variable Addition). Let P and Q be cooperation programs, x
a variable, and Ψ a mapping from transitions to formulas, such that for every

transition τ : `
φ−−→ r ∈ P, x does not occur in φ and there exists `

φ∧Ψ(τ)−−−−−→ r ∈ Q
where x is definable in Ψ(τ). Then P is CP-terminating if Q is CP-terminating.

Example 6. We can transform Q2 to Q3 in Fig. 7. Here, each τ̃ ]i extends τ ]i
to keep the values of xs, ys, zs unchanged; i.e., x′s = xs ∧ y′s = ys ∧ z′s = zs is
added to the transition formulas. The transition τ6 keeps all variables unchanged,
and τ5 initializes the snapshot variables: . . . ∧ x′s = x ∧ y′s = y ∧ z′s = z. This
transformation is achieved by repeatedly adding snapshot variables xs, ys, and zs.
To add xs, for instance, we apply Thm. 10 on Q2 with Ψ(`]2

ε−−→ `a2) =
(
x′s = x

)
and Ψ(τ) =

(
x′s = xs

)
for all other transitions τ ∈ Q]]2 .

Every cycle from `]2 back to itself decreases the bounded measure 〈x, x− y〉,
so we are able to remove the transition τ6 by Thm. 8, using the rank func-
tion f with f(`]2) = 〈x, x− y〉 and f(`]) = 〈xs, xs − ys〉 for all other locations

`] 6= `]2. To this end we need to be able to show 〈xs, xs − ys〉 >lex
−5,0 〈x, x− y〉

for τ6. Weak decreases required for other transitions are immediate from the
transition formulas. So we need an invariant on `b2 that is strong enough to prove
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Fig. 8: Partial unwinding of Q2 from Fig. 6

〈xs, xs − ys〉 >lex
−5,0 〈x, x− y〉. To this end the following invariant works, and can

be proven using the unwinding (partially) shown in Fig. 8.

(0 ≤ y ∧ ys + x < xs + y ∧ −5 ≤ xs ∧ ys < xs ∧ x ≤ xs)
∨ (0 ≤ y ∧ −5 ≤ xs ∧ x < xs)

Having τ6 removed, Q]]3 contains no SCC anymore, and thus SCC decompo-
sition (requiring no further subproofs) finishes the proof.

5 Linear Integer Arithmetic

In the preceding sections we have assumed that we can certify entailments ψ |= χ,
i.e., the validity of formulas ¬ψ ∨ χ. In this section, we provide such a validity
checker when the underlying logic is linear integer arithmetic. Note that although
Isabelle has already builtin support for reasoning about linear arithmetic, we
cannot use these results: Isabelle tactics like linarith and presburger are not
accessible to CeTA, since CeTA is a stand-alone Haskell program that has been
constructed via code generation from Isabelle, and it has no access to Isabelle
tactics at all.

5.1 Reduction to Linear Programming

As the initial step, CeTA converts the input formula (whose validity has to be
verified) into conjunctive normal form (CNF). Note that here we cannot use
the Tseitin transformation [36] since we are interested in checking validity, not
satisfiability. By default, CeTA completely distributes disjunctions to obtain CNFs,
but we also provide a “hint” format to indicate that some part of the formula
should be erased or to explicitly apply distributivity rules at some position.

Next, we ensure the validity of a CNF by equivalently checking the validity
of every clause. Hence, the underlying logic should provide at least a validity

13



checker for disjunctions of literals, or equivalently an unsatisfiability checker for
conjunctions of literals.

For linear integer arithmetic, all literals can be translated into inequalities of
the form e ≥ 0 by using straightforward rules such as ¬(e1 ≤ e2) ↪→ e1−e2−1 ≥ 0.
Thus, we only need to prove unsatisfiability of a conjunction of linear inequalities,
a question in the domain of integer linear programming (ILP).

Since the unsatisfiability of ILP instances is a coNP-complete problem [30,
Chapter 18], there is little hope in getting small certificates which are easy to
check. We provide two alternatives. Both interpret ILPs as linear programming
problems (LPs) over Q, not Z, and thus are incomplete but sound, in the sense
that the resulting LP might be satisfiable although the input ILP is unsatisfiable,
but not vise versa. In our experiments the incompleteness was never encountered
when certifying proofs generated by AProVE and T2.

Simplex Algorithm: The first alternative employs the existing Isabelle formaliza-
tion of the simplex algorithm by Spasić and Marić [31]. We only had to manually
rebase the formalization from Isabelle 2012 to Isabelle 2016-1, and then establish
a connection between the linear rational inequalities as formalized by Spasić and
Marić and our linear integer inequalities.

Farkas’ Lemma: The second alternative demands the certificate to provide the
coefficients as used in Farkas’ Lemma [17]: Given an LP constraint e1 ≥ 0∧ . . .∧
en ≥ 0 and a list of non-negative coefficients λ1, . . . , λn, we conclude

∑n
i=1 λiei ≥

0 and then check that this inequality is trivially unsatisfiable, i.e., that
∑n
i=1 λiei

is a negative constant. It is well known that this criterion is of the same power
as the first alternative. The advantage of this alternative is that it is faster to
validate—at the cost of more demanding certificates.

5.2 Executable Certifier for ITSs

To summarize, we developed a validity checker for formulas in linear integer
arithmetic, whose correctness is formally proven. Hence we derive an executable
checker for the correct application of Thms. 1–10 on linear ITSs. Thus CeTA is
now able to certify safety and termination proofs for linear ITSs.

Corollary 1 (Safety and Termination Checker). Let P be a linear ITS. If
CeTA accepts a safety proof certificate (resp. termination proof certificate) for P,
then P is safe (resp. terminating).

Our validity checker has exponential worst-case complexity and is incomplete,
but the experimental results show that the current implementation of CeTA is
good enough to validate all the proofs generated by AProVE and T2. A reason for
this is that the transition formulas in the example ITSs are all conjunctions of
atoms, and thus disjunctions are only due to invariants from the Impact algorithm
and encoded lexicographic orderings. As a consequence, the CNF of formulas that
have to be validated is at most quadratically larger than the original formula.
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Table 1: Experimental results with AProVE, T2 and CeTA

Tool # Yes # No # Certified # Rejected
average
time tool

average
time CeTA

certifiable T2 562 – 560 2 7.98s 1.24s
certifiable T2 (w. hints) 540 – 539 1 8.35s 0.54s
full T2 615 420 – – 8.60s –

certifiable AProVE 543 – 535 8 14.52s 1.39s
full AProVE 512 369 – – 21.19s –

6 Experiments

For our experiments, we used full (unmodified) versions of AProVE and T2 as well
as certifiable versions, where the latter have to produce termination certificates
in XML using only the techniques described in this work. Additionally, we also
consider a version of T2 that provides “hints” to prove entailments of linear
arithmetic formulas. These certificates will then be checked by CeTA version 2.30.

The modification to obtain the certifiable version of T2 consists of about 1 500
lines of additional code, mostly to produce the machine-readable certificates and
to keep the required information about all proof steps. The certifiable version
uses precisely the techniques presented without formalization in [8], and all of
these techniques can be modeled by the formalized theorems of this paper. The
difference between the certifiable and the full version of T2 is that the latter uses
Spacer [22] instead of Impact, supports additional termination techniques [13],
and searches for nontermination proofs, but does not produce certifiable output.

Although AProVE does not explicitly work on cooperation programs, its certi-
fiable version inserts an application of Thm. 4 at the beginning of each certificate.
Afterwards, SCC decompositions and ranking functions that AProVE internally
computes are reformatted into the applications of Thm. 6 and Thm. 8, respec-
tively. Ranking functions over rational numbers are converted into ones over
the integers by multiplication with the common denominator. The difference
between the certifiable and the full version of AProVE is that the latter tries
more termination techniques like non-linear ranking functions and searches for
nontermination proofs, but does not produce certifiable output.

We performed experiments of our implementation on an Intel Xeon E5-1620
(clocked at 3.6GHz) with 16GB RAM on the 1222 examples from the “Integer
Transition System” category from the Termination Competition 2016. The source
code of CeTA is exported in Haskell using Isabelle’s code export function, and
compiled by ghc. All tools were run with a timeout of 60 seconds.

Table 1 summarizes our experiments. The table contains five rows, one for
each configuration. The column “# Yes” indicates the number of successful ter-
mination proofs, “# No” the number of successful nontermination proofs, “#
Certified” the number of proofs that were validated by CeTA, and “# Rejected”
the number of certificates that were not validated by CeTA. We note that for
termination, the certifiable version of T2 already has 91 % of the power of the
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full version, even though many advanced techniques (e.g., polyranking rank func-
tions [7]) are disabled. The certifiable version of AProVE was even more powerful
than the full version w.r.t. termination proving, most likely since the full version
also spends a significant amount of time to detect nontermination. Nearly all of
the certificates were successfully validated by CeTA, except for two from AProVE
where non-linear arithmetic reasoning is essential, and six which could not be
certified in the given time. Currently, CeTA ignores all non-linear constraints when
invoking the simplex algorithm. For T2, three certificates lead to CeTA parsing
errors, caused by bugs in the certificate export.

Certification for T2 took in average about a sixth of the time T2 required to
find a termination proof—the average time for successful runs of T2 (certifiable)
is 7.98s. Generating and exporting hints for entailments in T2 more than halves
the time CeTA needs to check certificates.

All experimental details including links to AProVE, T2 and CeTA can be found
on http://cl-informatik.uibk.ac.at/ceta/experiments/lts.

7 Conclusion and Future Work

We have presented a formalization of safety and termination proofs using the
unwinding and cooperation graph techniques. Furthermore, we have implemented
the certification of proof certificates in CeTA, and have extended T2 to produce
such certificates. While we have focused on two specific techniques in this paper,
our formalization is general enough to accommodate proofs produced by other
safety and termination provers, witnessed by AProVE. It remains as future work to
extend other tools to export proof certificates and support additional techniques
they require.

Our experiments show that extending our formalization to also support non-
termination proof certificates would be valuable. We are also interested in sup-
porting other related program analyzes, such as inferring runtime complexity
bounds or proving properties in temporal logics.

As the most part of our formalization is independent of the chosen logic,
formalized decision procedures for other logics than linear integer arithmetic,
such as non-linear arithmetic, bit-vectors, arrays, etc. will immediately extend
our results to systems which cannot be expressed as linear ITSs. For example,
the two rejected certificates from AProVE can be certified if non-linear arith-
metic reasoning is supported. Incorporating the certified quantifier elimination
algorithms by Nipkow [28] would not only lead to another alternative validity
checker but also allow for quantified formulas appear in transition formulas and
invariants.

Finally, we note that CeTA is usually an order of magnitude faster than the
termination tools on term rewriting, a statement that is not yet true for ITSs.
Here, profiling reveals that the validity checker for formulas over linear integer
arithmetic is the bottleneck. Consequently, it seems to be fruitful to develop a
formalized SMT solver by extending work on SAT solving [4,19,25].
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32. Spoto, F., Mesnard, F., Payet, É.: A termination analyser for Java Bytecode based

on path-length. ACM Trans. Progr. Lang. Syst. 32(3), 8:1–8:70 (2010)
33. Sternagel, C., Thiemann, R.: The certification problem format. In: UITP 2014.

EPTCS, vol. 167, pp. 61–72 (2014)
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