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Abstract
In this paper, we present an Isabelle/HOL formalization of co-
rewrite pairs for non-reachability analysis in term rewriting.
In particular, we formalize polynomial interpretations over
negative integers as well as the weighted path order (WPO)
and its variant co-WPO. With this formalization, the verified
certifier CeTA is now able to check such non-reachability
proofs, including those for non-reachability problems of a
database where existing tools fail to provide certified proofs.

CCS Concepts: • Theory of computation→ Logic and
verification; Equational logic and rewriting.
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1 Introduction
Term rewriting is one of the most common methods for
equational reasoning and has a wide variety of applications,
functional programming [12], termination analysis of pro-
grams [25], computer algebra [13], and automated theorem
proving [9], to mention a few. In particular, conditional term
rewriting [11] has been widely used, since it is more expres-
sive than unconditional term rewriting (see [4, Section 11.3]
for a related discussion). It plays an important role in, for
example, algebraic specification of abstract data types [23]
and integration of functional and logic programming [8].

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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A term rewriting system (TRS) or a conditional term rewrit-
ing system (CTRS) R induces a notion of evaluation in the
form of a binary relation →R that describes a single rewrite
step. Now, given R and two terms 𝑠 and 𝑡 , the reachabil-
ity problem 𝑠 ↠ 𝑡 (w.r.t. R) asks about the existence of a
substitution 𝜎 with 𝑠𝜎 →∗

R 𝑡𝜎 , i.e., there is a way to instan-
tiate 𝑠 and 𝑡 by a substitution 𝜎 so that the instance 𝑠𝜎 of 𝑠
rewrites to the instance 𝑡𝜎 of 𝑡 in finitely many steps. This
reachability problem is said to be R-satisfiable if there is
such a substitution 𝜎 . If no such substitution exists, then this
problem is said to be R-unsatisfiable (or R-infeasible [15]).

Example 1.1. Consider the TRS representation R of the
Ackermann function:

𝐴(0, 𝑛) → 𝑠 (𝑛)
𝐴(𝑠 (𝑚), 0) → 𝐴(𝑚, 𝑠 (0))

𝐴(𝑠 (𝑚), 𝑠 (𝑛)) → 𝐴(𝑚,𝐴(𝑠 (𝑚), 𝑛))

The reachability problem 𝐴(𝑥, 𝑠 (𝑦)) ↠ 𝐴(𝑧,𝑦) is R-unsatis-
fiable, which means that there is no substitution 𝜎 satisfying
𝐴(𝑥, 𝑠 (𝑦))𝜎 →∗

R 𝐴(𝑧,𝑦)𝜎 .

Non-reachability has many applications in both uncondi-
tional and conditional rewriting, such as termination analy-
sis by the dependency pair method [3], confluence analysis
of conditional rewriting [26], non-joinability analysis [2],
irreducibility of rewriting systems [15], root-stability [19],
and so on. Due to its importance, since 2019, there has been
a category for automatic infeasibility problem solvers in
the International Confluence Competition [20]. (Infeasibility
problems are a variant of non-reachability problems.)
We illustrate an application of non-reachability analysis

in the area of termination analysis. The termination of a
TRS R can be characterized by dependency pairs, and one
important termination technique is the analysis of the depen-
dency graph [3]. The dependency graph is a directed graph
over rewrite rules, where there is an edge from 𝑠1 → 𝑡1 to
𝑠2 → 𝑡2 iff the reachability problem 𝑡1 ↠ 𝑠2 is R-satisfiable.
With the help of the dependency graph, termination analysis
can be done in a modular way by proving termination of
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each strongly connected component (SCC) in the graph sepa-
rately, similar to a call-graph analysis. The problem however
is that, in general, satisfiability of reachability problems is
an undecidable property, and therefore the edge-relation in
the dependency graph is undecidable, too. To this end, ter-
mination tools often perform over-approximations of the
dependency graph by using sufficient criteria to ensure R-
unsatisfiability of the reachability problems. The better the
non-reachability analysis is, the smaller will be the resulting
SCCs of the graph, resulting in a simpler task for those ter-
mination methods that analyze the termination behavior of
each computed SCC.

Recently, Yamada has shown that term orderings are use-
ful for proving non-reachability in unconditional and con-
ditional rewriting [35]. In particular, co-rewrite pairs, which
generalize reduction pairs [3], play a central role. Yamada
also has shown that the weighted path order (WPO) [37]
and co-WPO can be used to form a co-rewrite pair, where
WPO subsumes some well-known orders, such as the lexico-
graphic path order (LPO) [10] and the Knuth–Bendix order
(KBO) [13].

In this paper, we present a formalization of Yamada’s non-
reachability proving methods based on co-rewrite pairs. This
work could have been done in several proof assistants, based
on existing libraries that formalize term rewriting ([1], [6]).
We have chosen to use the proof assistant Isabelle/HOL [22]
and integrated to the library IsaFoR, the Isabelle Fomalization
of Rewriting [33], since we are most comfortable with this
proof assistant and this library. The main formalization re-
sults are as follows:

• the result that co-rewrite pairs provide a simple condi-
tion of non-reachability in (conditional) rewriting;

• two methods to construct co-rewrite pairs, namely co-
WPO and polynomial orders over negative integers.

In the source code of IsaFoR,1 all of the files related to
this work are located in the two directories thys/Orderings
and thys/Nonreachability. For the latter directory, Condi-
tional_Nonreach_TRS.thy is the only relevant file, while for
the former directory, these theory files are of interest:

CoWPO.thy CoWPO_Impl.thy
Poly_Order_Neg.thy Term_Order_Impl.thy
WPO_Impl.thy

Moreover, some part of this formalization is contained in
the archive of formal proofs (AFP). In particular, our exten-
sions of WPO have been integrated into the AFP-entry on
WPO [30].

In the remainder of this paper we provide hyperlinks—
marked by ✓—to an HTML rendering of our formalized
proofs in Isabelle/HOL.

1All supplementary material of this paper is available at:
http://cl-informatik.uibk.ac.at/experiments/CPP2025/

Reflexivity
𝑠 →∗

R 𝑠

𝑠 →R 𝑡 𝑡 →∗
R 𝑢

Transitivity:
𝑠 →∗

R 𝑢

Congruence:
𝑠𝑖 →R 𝑠′𝑖

𝑓 (𝑠1, . . . , 𝑠𝑖 , . . . 𝑠𝑛) →R 𝑓 (𝑠1, . . . , 𝑠
′
𝑖 , . . . , 𝑠𝑛)

𝑠1𝜎 →∗
R 𝑡1𝜎 · · · 𝑠𝑛𝜎 →∗

R 𝑡𝑛𝜎
Replacement:

ℓ𝜎 →R 𝑟𝜎
if (ℓ → 𝑟 ⇐ 𝑠1 ↠ 𝑡1, . . . , 𝑠𝑛 ↠ 𝑡𝑛) ∈ R.

Above,R is a conditional term rewriting system yield-
ing the one step rewrite relation→R as well as many
step rewriting →∗

R .

Figure 1. Inference rules for (oriented) conditional term
rewriting with a CTRS R (cf. [16]).

2 Preliminaries
We briefly recapitulate basic definitions in term rewriting.
For more detailed account, readers may refer to the book [4]
by Baader and Nipkow.
A signature is a set F of function symbols, where each

𝑓 ∈ F is associated with its fixed arity. The set of terms built
from F and a denumerable set V of variables is denoted
by T (F ,V). Given a term 𝑡 ∈ T (F ,V) and a substitution
𝜎 : V → T (F ,V), 𝑡𝜎 denotes the term obtained from 𝑡 by
replacing every variable 𝑥 by 𝜎 (𝑥). A context is a term 𝐶 ∈
T (F ,V ∪ {□}), where a special variable □ occurs exactly
once. Given a term 𝑡 ∈ T (F ,V), we denote by 𝐶 [𝑡] the
term obtained by replacing □ in 𝐶 by 𝑡 .

A relation 𝑅 over terms is closed under substitutions (resp.
contexts) if 𝑠 𝑅 𝑡 implies 𝑠𝜎 𝑅 𝑡𝜎 for any substitution 𝜎 (resp.
𝐶 [𝑠] 𝑅 𝐶 [𝑡] for any context𝐶). Relations over terms that are
closed under contexts and substitutions are called rewrite
relations. Rewrite relations which are also preorders (i.e. re-
flexive and transitive rewrite relations) are called rewrite
preorders.
A conditional rewriting rule ℓ → 𝑟 ⇐ 𝜑 consists of

a rule ℓ → 𝑟 , and a list 𝜑 of conditions, which are just
pairs of terms. For brevity, we write ℓ → 𝑟 for the con-
ditional rewriting rule ℓ → 𝑟 ⇐ [] with no condition;
Similarly, we write 𝑠1 ↠ 𝑡1, . . . , 𝑠𝑛 ↠ 𝑡𝑛 for a list of condi-
tions [⟨𝑠1, 𝑡1⟩, . . . , ⟨𝑠𝑛, 𝑡𝑛⟩]. A conditional term rewriting sys-
tem (CTRS) R is a set of conditional term rewriting rules. A
CTRS R induces the single-step rewrite relation→R and the
many-step rewrite relation→∗

R on terms, defined simultane-
ously by the inference rules in Fig. 1. (In this paper, we are
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only concerned with oriented conditional term rewriting.)
An unconditional term rewriting system (simply called TRS)
is a CTRS such that all rules have no conditions.

A reachability atom for a CTRS R is a pair of terms 𝑠 and
𝑡 , written 𝑠 ↠ 𝑡 . A reachability problem 𝑠1 ↠ 𝑡1, · · · , 𝑠𝑛 ↠ 𝑡𝑛
is a list of reachability atoms. We say that the reachability
problem is R-satisfiable if there is a substitution 𝜎 such that
𝑠𝑖𝜎 →∗

R 𝑡𝑖𝜎 for all 𝑖 ∈ {1, . . . , 𝑛}; otherwise it is said to be R-
unsatisfiable (or non-reachable). The notion of satisfiability
naturally carries over to a reachability atom by regarding
it as a reachability problem consisting of single atom. Note
that the replacement rule of Fig. 1 says that we can apply a
rule if the reachability problem specified by the condition
part is satisfiable.

A pair (⊐, ⊒) of relations is an order pair if ⊐ is irreflexive,
⊐ ⊆ ⊒2, and ⊒ ◦ ⊐ ◦ ⊒ ⊆ ⊐. The last inclusion is called
compatibility. A reduction pair [3] is an order pair (⊐, ⊒)
on terms that satisfies the following requirements: (i) ⊐ is
well-founded, (ii) ⊒ is a rewrite preorder, and (iii) ⊐ is closed
under substitutions.

A related F -algebraA = (𝐴, {𝑓A}𝑓 ∈F, >, ≥) (cf. [35]) con-
sists of a non-empty carrier set 𝐴 equipped with a pair (>, ≥)
of relations and a collection of interpretations 𝑓A : 𝐴𝑛 → 𝐴

for each 𝑛-ary function symbol 𝑓 ∈ F . For brevity, we may
call it F -algebra A or simply algebra A if F is clear from
context. An assignment 𝛼 : V → 𝐴 is a function mapping
variables to elements in the carrier 𝐴.

Evaluation of terms is defined as a function [𝛼]A (·) de-
fined as follows: [𝛼]A (𝑡) = 𝛼 (𝑡) if 𝑡 is a variable; otherwise
[𝛼]A (𝑓 (𝑡1, . . . , 𝑡𝑛)) = 𝑓A ( [𝛼]A (𝑡1), . . . , [𝛼]A (𝑡𝑛)). The al-
gebra A is strictly monotone (resp. weakly monotone) if ev-
ery algebra operation 𝑓A is strictly monotone (resp. weakly
monotone) in all arguments, i.e., if 𝑓 ∈ F has arity 𝑛 and 𝑖 ∈
{1, . . . , 𝑛}, then 𝑓A (𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑛) > 𝑓A (𝑎1, . . . , 𝑏, . . . , 𝑎𝑛)
(resp. 𝑓A (𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑛) ≥ 𝑓A (𝑎1, . . . , 𝑏, . . . , 𝑎𝑛)) for all
𝑎1, . . . , 𝑎𝑛, 𝑏 ∈ 𝐴 with 𝑎𝑖 > 𝑏 (resp. 𝑎𝑖 ≥ 𝑏). The relation >A
on terms is defined as follows: 𝑠 >A 𝑡 if [𝛼]A (𝑠) > [𝛼]A (𝑡)
for all assignments 𝛼 ; the relation ≥A is defined analogously.
We may also write A |= 𝑠 > 𝑡 and A |= 𝑠 ≥ 𝑡 for 𝑠 >A 𝑡 and
𝑠 ≥A 𝑡 .

A polynomial interpretation [14] over the natural numbers
N is an F -algebraN such that the carrier isN equipped with
the standard orders (>, ≥) and every 𝑛-ary algebra operation
𝑓N is associated with a polynomial 𝑃𝑓 (𝑋1, . . . , 𝑋𝑛) in 𝑛 inde-
terminates 𝑋1, . . . , 𝑋𝑛 with integer coefficients. The interpre-
tation of 𝑓 in N is 𝑃𝑓 , i.e., 𝑓N (𝑎1, . . . , 𝑎𝑛) := 𝑃𝑓 (𝑎1, . . . , 𝑎𝑛).
Note that it must satisfy the well-definedness [21]:

𝑓N (𝑥1, . . . , 𝑥𝑛) ≥ 0

2The inclusion ⊐ ⊆ ⊒ is normally not required for reduction pairs, but here
it is required to keep (co-)WPO well-behaved.

for all 𝑥1, . . . , 𝑥𝑛 ∈ N. The orderings >N and ≥N induced by
a polynomial interpretationN over the natural numbers are
called the polynomial orderings.

Proposition 2.1. The pair (>N, ≥N) is a reduction pair for
every weakly monotone polynomial interpretationN over nat-
ural numbers.

3 Formalization of Co-rewrite Pairs
Co-rewrite pairs are a generalization of reduction pairs for
proving non-reachability. In the following definition of co-
rewrite pairs,3 it is easy to see that every reduction pair
(⊐, ⊒) is also a co-rewrite pair.

Definition 3.1 ([35]). We call a pair (⊐, ⊒) of relations over
terms a co-rewrite pair, if ⊒ is a rewrite preorder, ⊐ is closed
under substitutions, and ⊒ ∩ ⊏ = ∅, where ⊏ denotes the
converse relation of ⊐.

We use Isabelle’s locale mechanism [5] to formalize co-
rewrite pair, where a locale is a named context for a set
of fixed parameters coming with assumptions. Locales are
useful for modeling a hierarchical structure of the term rela-
tions used in this paper. In the following locale for co-rewrite
pair, 𝑆 (the Strict relation) corresponds to ⊐, and 𝑁𝑆 (the
Non-Strict relation) corresponds to ⊒ in Definition 3.1.
locale co_rewrite_pair = 𝑟𝑒𝑤𝑟𝑖𝑡𝑒_𝑝𝑎𝑖𝑟 𝑆 𝑁𝑆 ✓

for 𝑆 𝑁𝑆 :: "(′f, ′v) 𝑡𝑒𝑟𝑚 𝑟𝑒𝑙" +
assumes refl_NS: "𝑟𝑒 𝑓 𝑙 𝑁𝑆"
and trans_NS: "𝑡𝑟𝑎𝑛𝑠 𝑁𝑆"
and disj_NS_S: "𝑁𝑆 ∩ (𝑆−1) = {}"

begin
· · ·
In the above, the locale rewrite_pair is formalized as just

a pair of relations that satisfy closure properties:
locale rewrite_pair = ✓

fixes 𝑆 𝑁𝑆 :: "(′f, ′v) 𝑡𝑟𝑠"
assumes ctxt_NS: "𝑐𝑡𝑥𝑡 .𝑐𝑙𝑜𝑠𝑒𝑑 𝑁𝑆"
and subst_S: "𝑠𝑢𝑏𝑠𝑡 .𝑐𝑙𝑜𝑠𝑒𝑑 𝑆"
and subst_NS: "𝑠𝑢𝑏𝑠𝑡 .𝑐𝑙𝑜𝑠𝑒𝑑 𝑁𝑆"

begin
· · ·
Note that the above definition does not impose compati-

bility ⊒ ◦ ⊐ ◦ ⊒ ⊆ ⊐ or any order assumptions, unlike the
original definition of rewrite pairs [35]. This generic locale
is used in several other locales in IsaFoR. For example,
locale redpair = 𝑟𝑒𝑤𝑟𝑖𝑡𝑒_𝑝𝑎𝑖𝑟 𝑆 𝑁𝑆 + 𝑆𝑁_𝑎𝑟𝑠 𝑆

for 𝑆 𝑁𝑆 :: "(′f, ′v) 𝑡𝑒𝑟𝑚 𝑟𝑒𝑙",

locale redpair_order = 𝑟𝑒𝑑𝑝𝑎𝑖𝑟 𝑆 𝑁𝑆 + 𝑝𝑟𝑒_𝑜𝑟𝑑𝑒𝑟_𝑝𝑎𝑖𝑟 𝑆 𝑁𝑆

for 𝑆 𝑁𝑆 :: "(′f, ′v) 𝑡𝑒𝑟𝑚 𝑟𝑒𝑙", and

locale compat_redpair_order = 𝑟𝑒𝑑𝑝𝑎𝑖𝑟_𝑜𝑟𝑑𝑒𝑟 𝑆 𝑁𝑆 +
𝑐𝑜𝑚𝑝𝑎𝑡_𝑝𝑎𝑖𝑟 𝑆 𝑁𝑆

for 𝑆 𝑁𝑆 :: "(′f,′v) 𝑡𝑟𝑠"
3We change the order and direction of the two relations within a co-rewrite
pair in comparison to [35]. This helps to illustrate the close relationship to
reduction pairs.
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where the locale SN_ars S demands that 𝑆 is well-founded (or
strongly normalizing), and the locale compat_redpair_order
formulates the conditions of reduction pair (such as compat-
ibility) as defined in the preliminaries.
In the formalization we easily express the relationship

between reduction orders and co-rewrite pairs: Simply we
state the relationship “every reduction pair is a co-rewrite
pair” as subsumption between the corresponding locales.
sublocale compat_redpair_order ⊆ co_rewrite_pair

Reduction pairs can be used to characterize termination
of TRSs, and similarly, co-rewrite pairs can be used to char-
acterize non-reachability:

Theorem 3.2 ([35]). Given a TRS R, the reachability problem
𝑠 ↠ 𝑡 is R-unsatisfiable if and only if there exists a co-rewrite
pair (⊐, ⊒) such that R ⊆ ⊒ and 𝑠 ⊏ 𝑡 . ✓

The above theorem shows how co-rewrite pairs are used
to prove non-reachability in rewriting systems. It says that
in order to show that 𝑠 ↠ 𝑡 is R-unsatisfiable for a given
TRS R, it is sufficient to find a co-rewrite pair (⊐, ⊒) such
that R ⊆ ⊒ and 𝑠 ⊏ 𝑡 . Conversely, if 𝑠 ↠ 𝑡 is R-unsatisfiable,
then there exists a co-rewrite pair (⊐, ⊒) such that R ⊆ ⊒
and 𝑠 ⊏ 𝑡 . In our formal statement of Theorem 3.2, the R-
unsatisfiability of 𝑠 ↠ 𝑡 is simply formalized as¬(∃𝜎. (𝑠 ·𝜎, 𝑡 ·
𝜎) ∈ (𝑟𝑠𝑡𝑒𝑝 R)∗). Here, rstep R is the formal version of the
unconditional rewrite relation→R within the IsaFoR-library.

Co-rewrite pairs can also serve as a sufficient condition for
proving non-reachability in conditional rewriting systems.

Theorem 3.3 ([35]). Let R be a CTRS. The reachability prob-
lem 𝑠 ↠ 𝑡 is R-unsatisfiable if there exists a co-rewrite pair
(⊐, ⊒) with the following conditions:

• 𝑠 ⊏ 𝑡

• for each (ℓ → 𝑟 ⇐ 𝜑) ∈ R, the relation ℓ ⊒ 𝑟 holds or
there is a condition 𝑢 ↠ 𝑣 ∈ 𝜑 with 𝑢 ⊏ 𝑣 ✓

Our formalization of Theorem 3.3 is described as follows:
context co_rewrite_pair ✓
begin
· · ·
theorem conditional_nonreach:
assumes "∀𝑙 𝑟 𝑐𝑠 . ((𝑙, 𝑟), 𝑐𝑠) ∈ R → ((𝑙, 𝑟) ∈ 𝑁𝑆 ∨

(∃𝑢 𝑣.(𝑢, 𝑣) ∈ 𝑠𝑒𝑡 𝑐𝑠 ∧ (𝑢, 𝑣) ∈ 𝑆−1))"
and "(𝑠, 𝑡) ∈ 𝑆−1"

shows "¬(∃𝜏 .(𝑠 · 𝜏, 𝑡 · 𝜏) ∈ (𝑐𝑠𝑡𝑒𝑝 R)∗)"
· · ·

end

We open an Isabelle context to obtain access to the fixed
relations 𝑆 and 𝑁𝑆 of the locale co_rewrite_pair, i.e., to the
relations ⊐ and ⊒ in Theorem 3.3. Consequently, 𝑆−1 in the
formalization corresponds to ⊏ in the theorem statement.
Furthermore, unsatisfiability of 𝑠 ↠ 𝑡 w.r.t. a conditional
rewriting system R is formalized as ¬(∃𝜏 .(𝑠 · 𝜏, 𝑡 · 𝜏) ∈
(𝑐𝑠𝑡𝑒𝑝 R)∗), where 𝑐𝑠𝑡𝑒𝑝 R is the formal version of the
conditional rewrite relation →R within the IsaFoR-library.

The rest of the formal statement directly corresponds to the
textual description of the theorem.

4 Formalization of Polynomial Orders
Recall that every reduction pair is a co-rewrite pair. Since
IsaFoR already contains several formalizations of reduction
pairs, we immediately get access to all of these term orders
for proving non-reachability. In particular, polynomial orders
over the natural numbers [14] and path orders such as KBO
and LPO can immediately be used as co-rewrite pairs.
For instance, the following lemma shows that polyno-

mial orders induced by a polynomial interpretation over
natural numbers (as a reduction pair) can be used to form
a co-rewrite pair. Based on the existing formalization of
polynomial interpretations over natural numbers in IsaFoR
including Proposition 2.1, the formalization of the following
lemma is obtained without much effort.

Lemma 4.1. For every weakly monotone polynomial inter-
pretation N over the natural numbers, (>N, ≥N) forms a co-
rewrite pair. ✓

However, it is impossible to handle the non-reachability
problem of Example 1.1 by reduction pairs via Theorem 3.2.
Consequently, polynomial interpretations over the natural
numbers do not apply, cf. Proposition 2.1.

Example 4.2. Applying Theorem 3.2 on Example 1.1 yields
the following problem: Find a co-rewrite pair (⊐, ⊒) such
that all the following relations are satisfied.

𝐴(0, 𝑛) ⊒ 𝑠 (𝑛)
𝐴(𝑠 (𝑚), 0) ⊒ 𝐴(𝑚, 𝑠 (0))

𝐴(𝑠 (𝑚), 𝑠 (𝑛)) ⊒ 𝐴(𝑚,𝐴(𝑠 (𝑚), 𝑛))
𝐴(𝑧,𝑦) ⊐ 𝐴(𝑥, 𝑠 (𝑦))

Now assume that there is a reduction pair that satisfies the
constraints. Applying closure under substitutions to the last
constraint repeatedly, we get the infinite sequence

𝐴(𝑧,𝑦) ⊐ 𝐴(𝑧, 𝑠 (𝑦)) ⊐ 𝐴(𝑧, 𝑠 (𝑠 (𝑦))) ⊐ · · · .

This contradicts the well-foundedness property of a reduc-
tion pair.

To alleviate this problem, we formalize co-rewrite pairs
that are not reduction pairs, namely co-rewrite pairs gen-
erated from polynomial interpretations over the negative
integers Z≤0 (with zero) [35, Example 2]. Polynomial in-
terpretations Z over Z≤0 are similar to those over natural
numbers [14], i.e., they are algebras where each 𝑛-ary func-
tion symbol 𝑓 is associated with a polynomial 𝑃𝑓 (𝑋1, . . . , 𝑋𝑛)
with𝑛 indeterminates𝑋1, . . . , 𝑋𝑛 . These polynomials must be
well-defined (𝑃𝑓 (𝑥1, . . . , 𝑥𝑛) ∈ Z≤0 for all 𝑥1, . . . , 𝑥𝑛 ∈ Z≤0)
and weakly monotone to form a co-rewrite pair. Importantly,
well-foundedness is not necessary to be a co-rewrite pair.
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Theorem 4.3. The pair (>Z, ≥Z) forms a co-rewrite pair for
every weakly monotone polynomial interpretationZ over Z≤0.
✓

The following corollary is immediate from Theorem 3.3.

Corollary 4.4. Given a polynomial interpretation Z over
Z≤0, if (ℓ → 𝑟 ⇐ 𝜑) ∈ R implies ℓ ≥Z 𝑟 or 𝑢 <Z 𝑣 for some
𝑢 ↠ 𝑣 ∈ 𝜑 , and 𝑠 <Z 𝑡 , then 𝑠 ↠ 𝑡 is R-unsatisfiable. ✓

Just with the change of the carrier, the leading example
can easily be solved.

Example 4.5. Consider the non-reachability problem of
Example 1.1. The following polynomial interpretations Z
over Z≤0

𝐴Z (𝑥,𝑦) = 𝑦 − 1
𝑠Z (𝑥) = 𝑥 − 1

0Z = 0

satisfies R ⊆ ≥Z and 𝐴(𝑧,𝑦) >Z 𝐴(𝑥, 𝑠 (𝑦)). In more detail,
the four term constraints result in the following four trivial
inequalities on polynomials.

𝑛 − 1 ≥ 𝑛 − 1
0 − 1 ≥ 0 − 1 − 1

𝑛 − 1 − 1 ≥ 𝑛 − 1 − 1
𝑦 − 1 > 𝑦 − 1 − 1

Therefore the non-reachability is concluded by Corollary 4.4.

Example 4.6. Consider the CTRS R that consists of the
following rules.

𝑎𝑑𝑑 (0, 𝑥) → 𝑥

𝑎𝑑𝑑 (𝑠 (𝑥), 𝑦) → 𝑠 (𝑎𝑑𝑑 (𝑥,𝑦))
𝑎𝑑𝑑 (𝑥, 0) → 𝑥 ⇐ 𝑎𝑑𝑑 (𝑥, 𝑠 (𝑦)) ↠ 𝑠 (𝑎𝑑𝑑 (𝑥,𝑦))

To prove that 𝑎𝑑𝑑 (𝑥, 𝑠 (0)) ↠ 𝑥 is unsatisfiable by Corol-
lary 4.4, we use the following polynomial interpretation
(Z, ≥) over Z≤0:

addZ (𝑥,𝑦) = 𝑥 + 𝑦
𝑠Z (𝑥) = 𝑥 − 1

0Z = 0
For this interpretation, the constraints ℓ ≥Z 𝑟 for the three
rules ℓ → 𝑟 ⇐ 𝜑 turn into obviously valid polynomial
inequalities.

0 + 𝑥 ≥ 𝑥

𝑥 − 1 + 𝑦 ≥ (𝑥 + 𝑦) − 1
𝑥 + 0 ≥ 𝑥

The constraint for 𝑎𝑑𝑑 (𝑥, 𝑠 (0)) ↠ 𝑥 again turns out to be the
trivial polynomial inequality 𝑥 + (0− 1) < 𝑥 . So we conclude
unsatisfiability.

The remaining part of this section is dedicated for illus-
trating our formalization. The main locale is as follows:

locale poly_order_neg = 𝑜𝑟𝑑𝑒𝑟_𝑝𝑎𝑖𝑟_𝑛𝑒𝑔 + ✓
fixes 𝐼 ::"(′ 𝑓 , ′𝑎)𝑝𝑜𝑙𝑦_𝑖𝑛𝑡𝑒𝑟"
and . . .

assumes 𝑛𝑒𝑔_𝐼 ::"
∧

fn. fn ∈ 𝐹 ⇒ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑙𝑦 ≥pn 𝐼 fn"
and 𝑚𝑜𝑛𝑜_𝐼 ::"

∧
fn. 𝑝𝑜𝑙𝑦_𝑤𝑒𝑎𝑘_𝑛𝑒𝑔_𝑚𝑜𝑛𝑜_𝑎𝑙𝑙 (𝐼 fn)"

· · ·
begin
· · ·

In the locale, 𝐹 is the signature, and its elements fn are
pairs of function symbols (of a type variable ′ 𝑓 ) and natural
numbers (i.e., arities). The symbol 𝐼 corresponds to a poly-
nomial interpretation, where its type is defined as follows:

type_synonym (′ 𝑓 , ′𝑎) 𝑝𝑜𝑙𝑦_𝑖𝑛𝑡𝑒𝑟 =
"′ 𝑓 × 𝑛𝑎𝑡 ⇒ (𝑛𝑎𝑡, ′𝑎) 𝑝𝑜𝑙𝑦"

The type "(𝑛𝑎𝑡, ′𝑎) 𝑝𝑜𝑙𝑦" in the above relies on the following
existing type definitions (see [27]):

typedef (overloaded) ′𝑣 𝑚𝑜𝑛𝑜𝑚 = ...

type_synonym (′𝑣, ′𝑎) 𝑝𝑜𝑙𝑦 ="(′𝑣 𝑚𝑜𝑛𝑜𝑚 × ′𝑎) 𝑙𝑖𝑠𝑡"

Roughly speaking, the type "(′𝑣, ′𝑎) 𝑝𝑜𝑙𝑦" is simply the type
"(′𝑣 𝑚𝑜𝑛𝑜𝑚 × ′𝑎) 𝑙𝑖𝑠𝑡" because polynomials can be repre-
sented by a sum of monomials (with the type "′𝑣 𝑚𝑜𝑛𝑜𝑚")
multiplied by some coefficient (with the type "′𝑎").
In the above locale poly_order_neg, the condition∧

fn. fn ∈ 𝐹 ⇒ 𝑧𝑒𝑟𝑜_𝑝𝑜𝑙𝑦 ≥pn 𝐼 fn

corresponds to well-definedness, while∧
fn. 𝑝𝑜𝑙𝑦_𝑤𝑒𝑎𝑘_𝑛𝑒𝑔_𝑚𝑜𝑛𝑜_𝑎𝑙𝑙 (𝐼 fn)

corresponds to weak monotonicity for polynomial interpre-
tations over Z≤0.

Note that one could in principle also take Z as carrier, but
it is known that for non-reachability proving it is not as good
as using Z≤0 [35, Section 7], so we have decided to support
Z≤0 first. In [35, Section 7] it is also remarked that having an
edge point (namely 0) in the carrier is often beneficial. We in
addition note that both onN and on Z≤0 one can successfully
compare linear polynomials with different coefficients, but
this is not possible on Z. For instance, 2𝑥 ≥ 𝑥 on N, 𝑥 ≥ 2𝑥
on Z≤0, but 𝑎𝑥 ≥ 𝑏𝑥 is invalid on Z for all integers 𝑎 ≠ 𝑏.

5 Formalization of Weighted Path Order
and Co-weighted Path Order

Theweighted path order (WPO) [37] provides a way to extend
interpretation-based orders such as polynomial orders. In
this section, we formalize the results thatWPO and its variant
co-WPO form co-rewrite pairs and therefore can be used to
prove non-reachability.
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5.1 Weighted Path Order
The weighted path order unifies and extends several well-
known term orders used in rewriting, such as the lexico-
graphic path order (LPO) [10] and the Knuth-Bendix or-
der (KBO) [13]. WPO has already been formalized in Is-
abelle/HOL [32], and we briefly repeat its definition and
required notions.

A partial status 𝜋 is a mapping that assigns to each 𝑛-ary
symbol 𝑓 a list [𝑖𝑚] = [𝑖1, . . . , 𝑖𝑚] of distinct positions from
{1, . . . , 𝑛}. We also view 𝜋 (𝑓 ) as the set {𝑖𝑚} for 𝜋 (𝑓 ) = [𝑖𝑚].
A related F -algebra A = (𝐴, {𝑓A}𝑓 ∈F, >, ≥) is weakly 𝜋-
simple (or just 𝜋-simple) for a partial status 𝜋 if 𝑓A (𝑎1, . . . ,

𝑎𝑛) ≥ 𝑎𝑖 for an arbitrary 𝑛-ary 𝑓 ∈ F , 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, and
𝑖 ∈ 𝜋 (𝑓 ).

Let 𝜋 be a partial status andA be an F -algebra. Let (>, ≥)
and (≻, ⪰) be pairs of relations on A and F , respectively.
The latter (≻, ⪰) is called precedence. Theweighted path order
WPO(𝜋,A, >, ≥, ≻, ⪰) is a pair (⊐WPO, ⊒WPO) of relations on
terms defined simultaneously as follows: 𝑠 ⊐WPO 𝑡 iff

1. A |= 𝑠 > 𝑡 or
2. A |= 𝑠 ≥ 𝑡 and
a. 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑛) and 𝑠𝑖 ⊒WPO 𝑡 for some 𝑖 ∈ 𝜋 (𝑓 ),

or
b. 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑛), 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑚), 𝑠 ⊐WPO 𝑡 𝑗 for

every 𝑗 ∈ 𝜋 (𝑔), and
i. 𝑓 ≻ 𝑔 or
ii. 𝑓 ⪰ 𝑔 and 𝜋𝑓 (𝑠1, . . . , 𝑠𝑛) ⊐lex

WPO 𝜋𝑔 (𝑡1, . . . , 𝑡𝑚).
The relation ⊒WPO is defined similarly by using ⊒lex

WPO in-
stead of ⊐lex

WPO in (2b-ii) and adding 𝑠 = 𝑡 ∈ V as a new
alternative case (2𝑐). Here ⊐lex

WPO and ⊒lex
WPO compare lists of

terms lexicographically using ⊐WPO and ⊒WPO, respectively.

Theorem 5.1 ([35]). Let 𝜋 be a partial status and A be an
F -algebra. Suppose that A and F are equipped with order
pairs (>, ≥) and (≻, ⪰), respectively. IfA is weakly monotone
and weakly 𝜋-simple, then (⊐WPO, ⊒WPO) forms a co-rewrite
pair. ✓

In the remainder of this paper, if a partial status 𝜋 is not
specifically given, then we assume that it is the total status.

Example 5.2. Let us consider a variant of the reachability
problem of Example 1.1 where the reachability atom is re-
placed by𝐴(𝑥, 𝑠 (𝑦)) ↠ 𝐴(𝑠 (𝑥), 𝑦). Nowwe interpret all func-
tion symbols as max functions over natural numbers. The
WPO induced by these interpretations and a precedence with
𝐴 ≻ 𝑠 satisfies R ⊆ ⊒WPO and 𝐴(𝑥, 𝑠 (𝑦)) ⊏WPO 𝐴(𝑠 (𝑥), 𝑦),
therefore the non-reachability is concluded by Theorem 3.2
and Theorem 5.1.

The formalization of Theorem 5.1 turned out to be more
effort than expected. The problem was the previous design
of IsaFoR regarding term relations. Since IsaFoR was initially
designed for checking termination proofs, all strict term rela-
tions ⊐ always imposed well-foundedness as an assumption:

without well-foundedness the relations could not be used
for termination proving. This global assumption on well-
foundedness also was imposed on algebras, etc. Hence, the
existing interface of term relations had the shape of requir-
ing several common properties unconditionally, e.g., well-
foundedness, closure under substitutions and some other
common properties. In addition, there have been a few flags
that indicate whether further optional properties are satis-
fied, e.g., whether⊐ is monotone, whether ⊒ has the subterm
property, etc.
Thus, with this interface there was no way to formalize

Theorem 5.1 in its full generality, because there was an im-
plicit restriction on well-founded algebras in the interface,
and this restriction is not present in Theorem 5.1. As an ex-
ample, it was possible in IsaFoR to obtain Theorem 5.1 with
polynomial interpretations over N as an algebra, but it was
not possible to use the theorem with polynomial interpreta-
tions over Z≤0 from the previous section.
In order to solve this problem, we did a major refactor-

ing of IsaFoR’s interface for term relations, so that strong
normalization is no longer an unconditional prerequisite.
In fact, we now integrated a detailed query interface about
term relations. For every class of orders one can query 11
different properties about the term relations. Example prop-
erties are well-foundedness, reflexivity, closure of ⊐ under
substitutions, closure of ⊐ under contexts, compatibility of
⊒ with some argument filter (a variant of a partial status),
etc., cf. the definitions of rel_impl and rel_impl_prop in
theory Term_Order_Impl. ✓
On the one hand, this extension of the interface enabled

us to formalize Theorem 5.1 in its general form. On the other
hand, we had to adjust all the existing classes of orders in
IsaFoR to adhere to the new interface. Formost of these orders
it was not a big effort, as we just had to set the correct flags
for each of the orderings. However, for all term relations that
are parameterized by some existing term order, we needed
to invest more effort and sometimes formalize new proofs.
Let us briefly illustrate the required changes w.r.t. WPO.

The previous formalization of WPO just assumed that the
algebra gives rise to a reduction pair, and then it was shown
that the resulting WPO is again a reduction pair. The new
formalization is more fine-grained. In particular it has now
been formalized that the strict WPO-relation is irreflexive,
without the assumption on well-foundedness of the algebra,
cf. lemma wpo_irrefl✓ in locale wpo_with_assms✓, where
the latter locale does not enforce strong normalization of the
strict relation. This is a completely novel formalization that
was not present earlier. We also refactored some other proofs
about properties of WPO that previously referred to well-
foundedness and now use a different way of reasoning. Note
that these changes have been performed in the AFP-entry
on WPO [30].
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5.2 Co-weighted Path Order
It is known that one can refine WPO for non-reachability,
resulting in the relation co-WPO [35]. Co-WPO is defined as
WPO induced by the negated relations, i.e., WPO(𝜋,A,≰,≮
,⪯̸,⊀). More specifically, the pair (⊐WPO, ⊒WPO) of relations
on terms is defined as follows: 𝑠 ⊐WPO 𝑡 iff

1. A |= 𝑠 ≰ 𝑡 or
2. A |= 𝑠 ≮ 𝑡 and
a. 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑛) and 𝑠𝑖 ⊒WPO 𝑡 for some 𝑖 ∈ 𝜋 (𝑓 ),

or
b. 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑛), 𝑡 = 𝑔(𝑡1, . . . , 𝑡𝑚), 𝑠 ⊐WPO 𝑡 𝑗 for

every 𝑗 ∈ 𝜋 (𝑔), and
i. 𝑓 ⪯̸ 𝑔 or
ii. 𝑓 ⊀ 𝑔 and 𝜋𝑓 (𝑠1, . . . , 𝑠𝑛) ⊐lex

WPO
𝜋𝑔 (𝑡1, . . . , 𝑡𝑚).

Also, ⊒WPO is defined similarly by using ⊒lex
WPO

instead of
⊐lex
WPO

in (2b-ii) and adding c. 𝑠 = 𝑡 ∈ V as the third alterna-
tive in case 2.

The idea of co-WPO is to use the relation ⊐WPO obtained
from WPO(𝜋,A,≰,≮,⪯̸,⊀) with the preorder ⊒WPO from
WPO(𝜋,A, >, ≥, ≻, ⪰). Note that if the underlying orders
are total, ⊐WPO is identical to ⊐WPO.

Proposition 5.3. Let 𝜋 be a partial status and A be an F -
algebra. Suppose that A and F are equipped with order pairs
(>, ≥) and (≻, ⪰), respectively. If A is a 𝜋-simple and weakly
monotone algebra, then (⊐WPO, ⊒WPO) is a co-rewrite pair. ✓

Example 5.4 ([35, Example 7]). Consider the CTRS R =

{𝑎 → 𝑏 ⇐ 𝑏 ↠ 𝑎} and the reachability problem 𝑎 ↠ 𝑏,
which is unsatisfiable. In order to prove the latter, we use an
algebra A that evaluates 𝑎, 𝑏 to two unrelated elements and
a non-total precedence such that 𝑎 ⪯̸ 𝑏 and 𝑏 ⪯̸ 𝑎. For such
an algebra and precedence we obtain both 𝑏 ⊏WPO 𝑎 for the
rule of R and 𝑎 ⊏WPO 𝑏 for the reachability atom. Therefore,
we can conclude the unsatisfiability from Theorem 3.3 and
Proposition 5.3.

Our formalization of co-WPO is based on the generalized
formalization of WPO as it was discussed in Section 5.1.
Note that locale cowpo just fixes the different parameters
that are occurring in Proposition 5.3. The later locales de-
scribe co-WPO and co-WPO with the required assumptions,
respectively.
locale cowpo = ✓
fixes 𝑛 ::𝑛𝑎𝑡
and 𝜋 ::"′ 𝑓 𝑠𝑡𝑎𝑡𝑢𝑠"
and 𝑐 ::"′ 𝑓 × 𝑛𝑎𝑡 ⇒ 𝑜𝑟𝑑𝑒𝑟_𝑡𝑎𝑔"
and 𝑛𝑙𝑒𝐴 𝑛𝑙𝑡𝐴 ::"(′ 𝑓 , ′𝑣) 𝑡𝑒𝑟𝑚 𝑟𝑒𝑙"
and 𝑆 𝑁𝑆 ::"(′ 𝑓 , ′𝑣) 𝑡𝑒𝑟𝑚 𝑟𝑒𝑙"
and 𝑛𝑙𝑒_𝑝𝑟𝑐 𝑛𝑙𝑡_𝑝𝑟𝑐::"′ 𝑓 × 𝑛𝑎𝑡 ⇒′ 𝑓 × 𝑛𝑎𝑡 ⇒ 𝑏𝑜𝑜𝑙"
and 𝑔𝑡_𝑝𝑟𝑐 𝑔𝑒_𝑝𝑟𝑐 ::"′ 𝑓 × 𝑛𝑎𝑡 ⇒′ 𝑓 × 𝑛𝑎𝑡 ⇒ 𝑏𝑜𝑜𝑙"

begin
sublocale 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 :
𝑤𝑝𝑜 𝑛 𝑆 𝑁𝑆 "(𝜆 𝑓 𝑔. (𝑔𝑡_𝑝𝑟𝑐 𝑓 𝑔, 𝑔𝑒_𝑝𝑟𝑐 𝑓 𝑔))" · · · .

sublocale 𝑐𝑜 :

𝑤𝑝𝑜 𝑛 𝑛𝑙𝑒𝐴 𝑛𝑙𝑡𝐴 "(𝜆 𝑓 𝑔. (𝑛𝑙𝑒_𝑝𝑟𝑐 𝑓 𝑔, 𝑛𝑙𝑡_𝑝𝑟𝑐 𝑓 𝑔))" · · · .
· · ·
Above, in order to construct co-rewrite pairs using WPO

and co-WPO, we add the sublocale 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 for specifying
a formal version of ⊒WPO via the wpo locale. Here, the strict
and non-strict relation of the algebra are provided as param-
eters 𝑆 and 𝑁𝑆 , so (𝑆, 𝑁𝑆) in Isabelle corresponds to the pair
of relations (>, ≥) in the algebra. Similarly, the expression
"(𝜆 𝑓 𝑔. (𝑔𝑡_𝑝𝑟𝑐 𝑓 𝑔, 𝑔𝑒_𝑝𝑟𝑐 𝑓 𝑔))" in the formalization en-
codes the precedence (≻, ⪰). In the same way, we add the
sublocale 𝑐𝑜 in order to specify a formal version of the co-
WPO relation ⊐WPO. Here, we use the relations containing
the letter 𝑛 for negation, e.g., 𝑛𝑙𝑡𝐴 abbreviates "not-less-than
in the algebra," i.e., the relation ≮.

In the next locale, cowpo_with_assms, we enforce various
properties on the parameters that have been specified in the
locale wpo.
locale cowpo_with_assms = 𝑜𝑟𝑑𝑒𝑟_𝑝𝑎𝑖𝑟 ′ + 𝑐𝑜𝑤𝑝𝑜 + · · · + ✓
assumes 𝑠𝑢𝑏𝑠𝑡_𝑆 : "(𝑠, 𝑡) ∈ 𝑆 =⇒ (𝑠 · 𝜎, 𝑡 · 𝜎) ∈ 𝑆"
and 𝑠𝑢𝑏𝑠𝑡_𝑁𝑆 : "(𝑠, 𝑡) ∈ 𝑁𝑆 =⇒ (𝑠 · 𝜎, 𝑡 · 𝜎) ∈ 𝑁𝑆"
and 𝑛𝑙𝑒𝐴 : "𝑛𝑙𝑒𝐴 = {(𝑠, 𝑡). ∀𝜎. (𝑡 · 𝜎, 𝑠 · 𝜎) ∉ 𝑁𝑆}"
and 𝑛𝑙𝑡𝐴 : "𝑛𝑙𝑡𝐴 = {(𝑠, 𝑡). ∀𝜎. (𝑡 · 𝜎, 𝑠 · 𝜎) ∉ 𝑆}"
and 𝑛𝑙𝑒_𝑝𝑟𝑐_𝑐𝑜𝑚𝑝 : "𝑛𝑙𝑒_𝑝𝑟𝑐 𝑓 𝑔 = (¬ 𝑔𝑒_𝑝𝑟𝑐 𝑔 𝑓 )"
and 𝑛𝑙𝑡_𝑝𝑟𝑐_𝑐𝑜𝑚𝑝 : "𝑛𝑙𝑡_𝑝𝑟𝑐 𝑓 𝑔 = (¬ 𝑔𝑡_𝑝𝑟𝑐 𝑔 𝑓 )"

begin
. . .

In this locale the standard properties of the relations from
the algebras are enforced, e.g., closure under substitution.
Additionally, it is demanded that the parameters of the four
negated relations𝑛𝑙𝑒𝐴,𝑛𝑙𝑡𝐴,𝑛𝑙𝑒_𝑝𝑟𝑐 , and𝑛𝑙𝑡_𝑝𝑟𝑐 are indeed
defined as negated relations.With these assumptions in place,
we formalize the existing paper proofs. Here, we reuse the
available results about WPO whenever possible, and also
establish the required connection between ⊐WPO and ⊒WPO
within Isabelle. Eventually we arrive at the formal version
of Proposition 5.3.

Let us now consider a potential extension of (co-)WPO.
The existingWPO formalization [32] (for termination) allows
multiset comparisons instead of lexicographic comparisons,
as it is possible in recursive path orders. Namely, for ev-
ery function symbol, one can select between comparing the
arguments lexicographically or via multiset comparison.

Definition 5.5. [31, Definition 2.2] Let ⊐ and ⊒ be relations
on a set 𝐴. For multisets 𝑋,𝑌 consisting elements of 𝐴, we
write 𝑋 ⊒mul 𝑌 if there are some (disjoint) partitions 𝑋 =

{𝑥1, . . . , 𝑥𝑛} ⊎𝑋 ′ and 𝑌 = {𝑦1, . . . , 𝑦𝑛} ⊎𝑌 ′ such that 𝑥𝑖 ⊒ 𝑦𝑖
for all 0 ≤ 𝑖 ≤ 𝑛 and moreover for all 𝑦 ∈ 𝑌 ′ there is some
𝑥 ∈ 𝑋 ′ such that 𝑥 ⊐ 𝑦. We also write𝑋 ⊐mul 𝑌 if in addition
𝑋 ′ is not empty.

Of course, we also tried to integrate multiset compar-
isons into co-WPO, to obtain a more powerful order for non-
reachability. However, during the formalization it turned
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out that it is unsound to allow multiset comparisons in co-
WPO: we got stuck in proving certain cases of this modified
co-WPO, and these cases led us to a counter-example.

Example 5.6. Assume that co-WPO uses multiset compar-
isons instead of lexicographic comparisons. Consider F =

{𝑓 , 𝑎, 𝑏, 𝑐}, where A is a trivial algebra such that >A = ∅
and ≥A = T (F ,V) × T (F ,V). The precedence is de-
fined by 𝑎 ≻ 𝑏 and ⪰ is the reflexive closure of ≻. Let
𝑠 = 𝑓 (𝑎, 𝑐) and 𝑡 = 𝑓 (𝑏, 𝑐). We first conclude 𝑠 ⊒WPO 𝑡 ,
since {𝑎, 𝑐} ⊒mul

WPO {𝑏, 𝑐} as 𝑎 ⊐WPO 𝑏. But we further con-
clude 𝑐 ⊐WPO 𝑎 (since 𝑐 ⪯̸ 𝑎) and 𝑏 ⊐WPO 𝑐 (since 𝑏 ⪯̸ 𝑐)
and therefore, {𝑏, 𝑐} = {𝑐, 𝑏} ⊐mul

WPO
{𝑎, 𝑐}. This finally shows

𝑡 = 𝑓 (𝑏, 𝑐) ⊐WPO 𝑓 (𝑎, 𝑐) = 𝑠 and hence 𝑠 ⊏WPO 𝑡 , i.e., the
modified version of (⊐WPO, ⊒WPO) with multiset compar-
isons is not a co-rewrite pair, since it violates the condition
⊒WPO ∩ ⊏WPO = ∅.

The problem in the example is that the relevant property of
co-compatibility is not preserved by a multiset comparison,
in contrast to a lexicographic comparison [35, Lemma 5].
(Two pairs of relations, say (⊐𝑃 , ⊒𝑃 ) and (⊐𝑄 , ⊒𝑄 ), are co-
compatible if ⊒𝑃 ∩ ⊏𝑄 = ⊒𝑄 ∩ ⊏𝑃 = ∅.) The upcoming
example shows that co-compatibility is lost, even if ⊐𝑃 and
⊐𝑄 are transitive.

Example 5.7. Let 𝐷 = {𝑎, 𝑏, 𝑐, 𝑑}. Define the relations ⊐𝑃

and ⊐𝑄 on 𝐷 as follows: 𝑎 ⊐𝑃 𝑐 , 𝑏 ⊐𝑃 𝑑 , 𝑐 ⊐𝑄 𝑏, and
𝑑 ⊐𝑄 𝑎. Let ⊒𝑃 and ⊒𝑄 be the reflexive closures of ⊐𝑃 and
⊐𝑄 , respectively. We can confirm that (⊐𝑃 , ⊒𝑃 ) and (⊐𝑄 , ⊒𝑄 )
are co-compatible. On the other hand, {𝑎, 𝑏} ⊒mul

𝑃
{𝑐, 𝑑} but

also {𝑎, 𝑏} ⊏mul
𝑄

{𝑐, 𝑑}. So (⊐mul
𝑃

, ⊒mul
𝑃

) and (⊐𝑄
mul, ⊒mul

𝑄
) are

not co-compatible.

6 Certification
After having formalized the theory of co-rewrite pairs, the
next step is to utilize this formalization to develop a verified
checker that can certify untrusted proofs of non-reachability.
To this end, we extend CeTA [33], a checker that is able to
certify various kinds of proofs specified in the certification
problem format (CPF) [28]. (CeTA is a verified checker, in
the sense that the code is automatically generated from the
formalization IsaFoR.) Prior to our presented developments,
CeTA and CPF cover termination proofs and confluence proofs
for TRSs. Also non-reachability proofs are already supported,
but not those based on co-rewrite pairs.

For polynomial interpretations overN, nearly all the work
has actually been done previously: we just need to utilize the
lemma that every reduction pair is a co-rewrite pair and then
rely upon the existing formalization of reduction pairs in
CeTA. Here, under a given interpretationN , order constraints
ℓ ⊒N 𝑟 are converted into polynomial constraints [𝛼]N (ℓ) ≥
[𝛼]N (𝑟 ) and are then passed to the polynomial library of
CeTA [29]. That library implements “check”-functions, i.e.,
sufficient criteria to validate polynomial inequalities over N.

In order to add support for polynomial interpretations
on Z≤0, we convert the arising polynomial inequalities over
Z≤0 into inequalities where the variables range over N. For
instance, the following Isabelle code implements a “check”-
function to ensure whether a polynomial is greater or equal
to another, w.r.t. a polynomial interpretation on Z≤0.
definition check_poly_neg_ge where

"𝑐ℎ𝑒𝑐𝑘_𝑝𝑜𝑙𝑦_𝑛𝑒𝑔_𝑔𝑒 𝑝 𝑞 = (𝑙𝑒𝑡 𝑝′ = 𝑝𝑜𝑙𝑦_𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑝;
𝑞′ = 𝑝𝑜𝑙𝑦_𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑞 𝑖𝑛 𝑐ℎ𝑒𝑐𝑘_𝑝𝑜𝑙𝑦_𝑔𝑒 𝑝′ 𝑞′)"

Above, check_poly_ge is the existing “check”-function for
polynomial inequalities on N, and poly_convert is simply de-
fined for converting a polynomial 𝑝 into another polynomial
𝑝′ using the substitution 𝑣 ↦→ −𝑣 for each variable 𝑣 in 𝑝 .
definition poly_convert where

"𝑝𝑜𝑙𝑦_𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑝 = 𝑝𝑜𝑙𝑦_𝑠𝑢𝑏𝑠𝑡 (𝜆𝑣.[(𝑣𝑎𝑟_𝑚𝑜𝑛𝑜𝑚 𝑣,−1)]) 𝑝"

In essence, in order to ensure 𝑝 (𝑥1, . . . , 𝑥𝑛) ≥ 𝑞(𝑥1, . . . , 𝑥𝑛)
for all 𝑥1, . . . , 𝑥𝑛 ∈ Z≤0, we test whether 𝑝 (−𝑥1, . . . ,−𝑥𝑛) ≥
𝑞(−𝑥1, . . . ,−𝑥𝑛) for all 𝑥1, . . . , 𝑥𝑛 ∈ N by the existing poly-
nomial library on N.

Similar to polynomial interpretations, we also reuse the
existing “check”-function for WPO in CeTA [32]. However,
instead of using the naive recursive implementation of WPO
from the original formalization, we avoid the exponential
runtime by using a more efficient memoized implementation
of WPO [34].

Concerning co-WPO,we can nearly fully reuse the existing
WPO implementation, as co-WPO is just an instance of WPO
with other parameters. However, here a complication arises
as there are negative occurrences of relations in the definition
of co-WPO. For instance, the first rule of co-WPO requires
A |= 𝑠 ≰ 𝑡 . Since the weakly monotone algebras in CeTA do
not offer such negated checks, we instead use the positive
inverted relation (A |= 𝑠 > 𝑡 ). This switch is an equivalence
transformation for polynomial interpretations over N and
Z≤0, but it is just an under-approximation in the general
case, since the order in the weakly monotone algebra is not
necessarily total.
In order to test our extensions of CeTA, we have imple-

mented a prototype non-reachability tool that can generate
certificates in CPF and conducted experiment using non-
reachability problems from the ARI-COPS database.4 (In the
database, the problems are called infeasibility problems.) In
the current version of CeTA, the following proposition (a
variant of Theorem 3.2) is the only way to use co-rewrite
pairs for non-reachability:

Proposition 6.1. Let R be a CTRS and 𝑠1 ↠ 𝑡1, · · · , 𝑠𝑛 ↠ 𝑡𝑛
a reachability problem. The problem is unsatisfiable if there
is a co-rewrite pair (⊐, ⊒) such that R′ ⊆ ⊒ and 𝑠𝑖 ⊏ 𝑡𝑖 for
some 𝑖 ∈ {1, . . . , 𝑛}, where R′ is the TRS obtained from R by
discarding all condition parts of the rules, namely

{ℓ → 𝑟 | ℓ → 𝑟 ⇐ 𝜑 ∈ R}.
4https://ari-cops.uibk.ac.at

279

https://ari-cops.uibk.ac.at


An Isabelle Formalization of Co-rewrite Pairs for Non-reachability in Term Rewriting CPP ’25, January 20–21, 2025, Denver, CO, USA

Table 1. Comparison using the 146 non-reachability prob-
lems in ARI-COPS with 60 seconds time limit.

p-nat p-neg wpol nonreach Moca
proved 21 24 22 43 49
certified 21 24 22 31 32

We illustrate the overall process from proof search to cer-
tification. Given a non-reachability problem, the prototype
tool reduces it to a reachability problem by Proposition 6.1.
If it succeeds to find a witness of non-reachability (namely
a co-rewrite pair), CeTA confirms if the witness for Proposi-
tion 6.1 indeed gives a non-reachability proof to the original
problem.

In the experiment,5 our prototype tool uses Proposition 6.1
with three kinds of co-rewrite pairs (as indicated in Table 1),
namely:

1. p-nat: polynomial orders on N (Lemma 4.1)
2. p-neg: polynomial orders on Z≤0 (Theorem 4.3)
3. wpol: WPO with polynomial on N as algebras (Theo-

rem 5.1)
In all these co-rewrite pairs, only polynomials of the form
𝑓A (𝑥1, . . . , 𝑥𝑛) = 𝑓0 + 𝑓1𝑥1 + · · · + 𝑓𝑛𝑥𝑛 with 𝑓1, . . . , 𝑓𝑛 ∈ {0, 1}
are considered. In addition, for WPO, only strict total prece-
dences are considered, i.e., there are no different function
symbols 𝑓 , 𝑔 with 𝑓 ⪰ 𝑔 and 𝑔 ⪰ 𝑓 . Under these restrictions,
for all the three methods, it is decidable whether, given (fi-
nite) order constraints, there is a co-rewrite pair that satisfies
the constraints. The point is the restriction 𝑓1, . . . , 𝑓𝑛 ∈ {0, 1}
on coefficients of polynomials. Thanks to this, we can encode
constraints into linear arithmetic with if-then-else expres-
sions and use SMT solvers such as Z3 [7] that have decision
procedures for this.
In Table 1, the experimental data shows that, within the

time limit of 60 seconds, the methods 1, 2 and 3 of our proto-
type tool (in combinationwith Z3) gives certified proofs to 21,
24 and 22 problems, respectively, among all of the 146 non-
reachability problems inARI-COPS. There already exist other
non-reachability tools (nonreach [17, 18] andMoca [24]) that
can generate certified proofs for non-reachability in CPF. On
the same problem set and within the same time limit, non-
reach reports non-reachability of 43 problems, and among
them 31 are certified by CeTA, while the remaining 12 proofs
are rejected;Moca finds 49 problems infeasible and succeeds
to synthesize valid certificates for 32 of them. Their meth-
ods are based on syntactical analysis (such as term-cap and
equational completion), and these are complementary to our
semantical ordering-based approach. In fact, our tool has
found first certified proofs ever to eight problems in ARI-
COPS, to which neither nonreach nor Moca are able to give

5See http://cl-informatik.uibk.ac.at/experiments/CPP2025/exp/
for details.

certified proofs. Below is an example from the eight problems
where the ordering approach shines.

Example 6.2. Consider the following TRS R of the Ack-
ermann function, together with the predicate isNat(𝑡) that
decides whether an input term 𝑡 is a natural number:

𝐴(0, 𝑛) → 𝑠 (𝑛)
𝐴(𝑠 (𝑚), 0) → 𝐴(𝑚, 𝑠 (0))

𝐴(𝑠 (𝑚), 𝑠 (𝑛)) → 𝐴(𝑚,𝐴(𝑠 (𝑚), 𝑛))
isNat(0) → true

isNat(𝑠 (𝑛)) → isNat(𝑛)
isNat(true) → false

isNat(false) → false

The problem ARI-COPS#1613 asks to prove that the atom

isNat(𝐴(𝑠7 (0), 𝑠7 (0))) ↠ false

is unsatisfiable, where 𝑠7 (0) denotes seven times applica-
tion of 𝑠 to 0, i.e., 𝑠 (𝑠 (𝑠 (𝑠 (𝑠 (𝑠 (𝑠 (0))))))). A naive syntactical
approach is to rewrite 𝐴(𝑠7 (0), 𝑠7 (0)) to the normal form,
which cannot be done in a reasonable amount of time since
the Ackermann function grows very rapidly. Actually, be-
cause Moca is based on equational completion, it indeed
tries to normalize the term and exceeds the time limit of the
experiment. Unfortunately, nonreach also gives up on this
problem. On the other hand, our prototype tool finds the fol-
lowing simple proof of non-reachability by the polynomial
interpretation N over natural numbers:

0N = 0
𝑠N (𝑥) = 𝑥

trueN = 1
falseN = 2

𝐴N (𝑥,𝑦) = 𝑥

isNatN (𝑥) = 𝑥 + 1

It is easy to confirm R ⊆ ⩾N and also

false >N isNat(𝐴(𝑠7 (0), 𝑠7 (0)))
so we can conclude the non-reachability.

7 Summary and Future Work
In this paper, we have formalized co-WPO and polynomials
on the domain Z≤0 for non-reachability as a part of IsaFoR.
As a by-product, CeTA is now able to certify non-reachability
proofs by co-rewrite pairs. We conclude the paper with dis-
cussion about future work.

One of the possibilities to strengthen the support for cer-
tified non-reachability proofs lies in the addition of fur-
ther classes of co-rewrite pairs. Here, in particular tuple-
interpretations [36] are of interest: these co-rewrite pairs are
already implemented in automated non-reachability tools,
but are not yet supported by any certifier for non-reachability.
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Finally, one might also consider to use IsaFoR’s new ex-
tensive interface for term orderings for related certification
tasks. For instance, discrimination pairs [2] are another kind
of generalization of reduction pairs, and they can be used
for certifying non-confluence proofs.
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