
Signature Extensions Preserve Termination

An Alternative Proof via Dependency Pairs

Christian Sternagel? and René Thiemann
{christian.sternagel,rene.thiemann}@uibk.ac.at

University of Innsbruck

Abstract. We give the first mechanized proof of the fact that for show-
ing termination of a term rewrite system, we may restrict to well-formed
terms using just the function symbols actually occurring in the rules
of the system. Or equivalently, termination of a term rewrite system is
preserved under signature extensions. We did not directly formalize the
existing proofs for this well-known result, but developed a new and more
elegant proof by reusing facts about dependency pairs.
We also investigate signature extensions for termination proofs that use
dependency pairs. Here, we were able to develop counterexamples which
demonstrate that signature extensions are unsound in general. We fur-
ther give two conditions where signature extensions are still possible.

1 Introduction

Our main objective is to formally show that the termination behavior of (first-
order) term rewrite systems (TRSs) [2] does not change under signature ex-
tensions. This is an important part of a bigger development inside IsaFoR (an
Isabelle Formalization of Rewriting) which is used to generate CeTA (a tool
for Certified Termination Analysis) [10].1 All our results have been formalized
and machine-checked in the interactive proof assistant Isabelle/HOL [6]. In the
following, whenever we speak about formalizing something, we mean a machine-
checked formalization using Isabelle/HOL.

In the literature, termination of R (denoted by SN(R)), is usually only de-
fined for terms that do exclusively incorporate function symbols from the signa-
ture F of R. Often, it is implicitly assumed that this is equivalent to termination
for terms over arbitrary extensions F ′ ⊇ F . This is legitimate, since it has been
shown that termination is modular under certain conditions (see [5,7] for de-
tails) and signature extensions satisfy these conditions. A property P is called
modular, whenever P R and P S, for TRSs R and S over disjoint signatures F
and G, implies P (R ∪ S). (Note that P x is Isabelle/HOL’s way of writing a
function or predicate P applied to an argument x.) Now, to use modularity of

? This research is supported by FWF (Austrian Science Fund) project P18763.
1 http://cl-informatik.uibk.ac.at/software/ceta

termination to achieve SN(R) over the signature F ′ ⊇ F , we choose S = ∅ and
G = F ′−F . Then, the above mentioned conditions are trivially satisfied and we
obtain SN(R) =⇒ SN(R ∪ S), where the latter system has the same rules as R,
but the signature F ′.

In this way, the two aforementioned proofs (which both use rather similar
proof techniques), can be used to obtain termination preservation under sig-
nature extensions. However, the first proof [5] is quite long and complicated
even on paper (10 pages, neglecting preliminaries). Concerning the second proof
[7]—although short on paper—there are two reasons for not going that way:

1. This proof would require to formalize concepts that are currently not avail-
able in our library but are assumed as preliminaries in the paper proof (which
is the only reason that the proof is short). This includes, e.g., multi-hole con-
texts, and functions like rank , top, etc. Furthermore, some of those concepts
seem bulky to formalize, e.g., multi-hole contexts would require that a con-
text having n holes is always applied to exactly n terms. This cannot be
guaranteed on the type level without having dependent types and would
lead to side-conditions that had to be added to all proofs using multi-hole
contexts.

2. We do already have a formalization of many term rewriting related concepts.
Thus, it seems only natural to build on top of those available results.

Hence, we take a different road (that may seem as a detour in the beginning).
We use F(R) to denote the signature just containing function symbols that do
actually occur in some rule of R. By þR we denote the rewrite relation induced
by R just using terms over F(R) and by →R the same relation but for terms
over arbitrary extensions of F(R) (i.e., þR is a restriction of →R). Hence, our
first main result can be written as

Theorem 1. SN(þR) ←→ SN(→R)

In the proof, we concentrate on the direction from left to right, since the converse
trivially holds. Before we give our general proof idea, we want to show why “the
direct approach” is difficult. By “direct” we mean:

Assume that there is an infinite sequence in→R and construct an infinite
sequence in þR out of it.

For this purpose we would have to provide a function f such that f s þR f t
is implied by s →R t for arbitrary terms s and t. This requires that f some-
how removes all function symbols that are not in F(R) from its argument but
still preserves any redexes (i.e., subterms where rules are applicable). For exam-
ple the simple idea to clean terms by replacing all subterms f(. . .) where f /∈
F(R) by the same variable, does not work. The reason is that a given infinite
→R-derivation might take place strictly below a symbol f /∈ F(R) and then,
after turning f(. . .) into a variable, those reductions can no longer be simulated.
To cut a long story short, we stopped at some point to investigate this direc-
tion further, since all our approaches became awfully complicated (especially for
mechanizing the proof).

2

Our salvation appeared in the form of dependency pairs (DPs). By redirect-
ing the course of our proof into the DP setting [1] and back again, we were
able to give a short and (in our opinion) elegant proof of Theorem 1, using
the simple technique of cleaning. The reason is that by using DPs we obtain a
derivation which contains infinitely many reductions at the root position. And all
these root reductions are still possible after cleaning. Note that this also shows
that signature extensions are sound for termination problems in the DP setting
(Lemma 8)—our second main result.

However, after trying to extend our proof to the DP setting with minimal
chains, we discovered a counterexample demonstrating that signature extensions
are unsound for non-left-linear TRSs. A small modification of this counterexam-
ple also shows that the technique of root-labeling [8] in the DP setting with
minimal chains—which relies on signature extensions—is also only sound for
left-linear TRSs. This refutes the corresponding result in [8] which does not de-
mand left-linearity. (As the modularity results of [5,7] do not consider minimal
chains, these results are not affected by our counterexample.)

In total, in this paper we show that signature extensions are possible for
termination of TRSs and that they can be used in the DP setting for left-linear
TRSs or for non-minimal chains. We also show that the soundness proofs of
root-labeling can be repaired by additionally demanding left-linearity.

The structure of our discourse is as follows: In Section 2 we recall some nec-
essary definitions of term rewriting (as used in our formalization). Afterwards,
in Section 3, we give some results on DPs. Two of our main results are given in
Section 4, where we also formally prove completeness of DPs. Then, in Section 5
we show some applications—including root-labeling—and limitations of our re-
sults. Here, we also discuss the problem of signature extensions in combination
with minimal chains and show that there is no problem in the left-linear case.
We finally conclude in Section 6.

Since all facts we are using have been machine-checked, we do not give any
proofs for results from Sections 2 and 3 and refer the interested reader to the
IsaFoR sources (freely available from its website). Our formalization of Theo-
rem 1 can be found under the name SN wfrstep SN rstep conv in the theory
DpFramework. Also in Section 4 we try to skip technical details and give a high-
level overview of our proofs.

2 Preliminaries

In IsaFoR we are concerned with first-order terms defined by the data type:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

Hence, a term is either a variable, or a function symbol applied to a list of argu-
ment terms. Note that this definition does not incorporate any well-formedness
conditions. In particular, there is no signature that terms are restricted to. We
identify a function symbol by its representation together with its arity. Hence,
the function symbol f in the term Fun f [] is different from the function symbol

3

f in the term Fun f [Var x] (the former has arity 0 and the latter arity 1). To
increase readability we write terms like the previous two as f (a constant with-
out arguments) and f(x), respectively. A (rewrite) rule is a pair of terms and
a TRS is a set of rules. A TRS is well-formed iff all left-hand sides of rules are
non-variable terms and for each rule every variable occurring in the right-hand
side also occurs in the left-hand side. We write wf trs R to indicate that the
TRS R is well-formed.

Example 2. The TRS { add(0, y) → y, add(s(x), y) → s(add(x, y)) }, encoding
addition on Peano numbers, is well-formed.

The rewrite relation induced by a TRS R is obtained by closing R under
substitutions and contexts, i.e., →R is defined inductively by the rules:

(l , r) ∈ R
l →R r

s →R t
sσ →R tσ

s →R t
C [s] →R C [t]

Here, tσ denotes the application of a substitution σ to a term t and C [t] denotes
substituting the hole in the context C by the term t. Whenever s →R t, we say
that s rewrites (in one step) to t.

A TRS is terminating/strongly normalizing iff the rewrite relation →R in-
duced by R is well-founded—denoted by SN(→R). (We sometimes write SN(R)
instead of SN(→R) to stress that termination is a property depending merely on
R.) Termination of a specific term is written as SNR(t), i.e., there is no infinite
→R-derivation starting from t.

Using the definition of →R, termination is formalized as SN(→R) ≡ @ t.
∀ i . ti →R ti + 1. Here, we use functions from natural numbers to some type
τ , to encode infinite sequences over elements of type τ , which are written by t
in contrast to terms t. We use subscripts to indicate positions in such infinite
sequences, i.e., we write ti to denote the i-th element in the infinite sequence t.

Remember that by F(R) we denote the signature of function symbols actu-
ally occurring in some rule of R. Using the function

F(x) = ∅,
F(f (~ts)) = {(f , |~ts|)} ∪

⋃
{F(t) | t ∈ ~ts}.

F(R) is obtained by extending F(·) to TRSs in the obvious way.

Example 3. The signature of the TRS from Example 2 is {(add, 2), (s, 1), (0, 0)}.

3 Dependency Pairs

To get hold of the (recursive) function calls in a TRS, the so called dependency
pairs are used [1,3].

Definition 4. The DPs of a TRS R are defined by

DP(R) = {(l], f](~ts)) | ∃ r . (l , r) ∈ R ∧ f ∈ D(R) ∧ r D f (~ts) ∧ l 7 f (~ts)}

4

where (B) D denotes the (proper) subterm relation on terms and D(R) is the set
of defined function symbols in R.2 By ·] we denote the operation of marking the
root symbol of a term with the special marker]. In examples we use capitalization
and hence write F instead of f].

Example 5. Since the TRS of Example 2 contains just one “recursive call,” we
get the single DP ADD(s(x), y)→ ADD(x, y).

Note how DPs get rid of context information. This is exactly what makes them
so useful in our proof.

Having DPs, we can use an alternative characterization of nontermination
using DP problems and chains. A DP problem (P,R) just consists of two TRSs
P and R. Then a (P,R)-chain is an infinite sequence of the following shape:

∀ i . (si, ti) ∈ P ∧ tiσi →∗R si + 1σi + 1.

We use the abbreviation ichain (P, R) s t σ for such a sequence. The soundness
result of DPs then states that a (well-formed) TRS R is terminating if there is
no infinite (DP(R),R)-chain where the formalization was described in [10].

Lemma 6. wf trs R =⇒ ¬ SN(→R) =⇒ ∃ s t σ. ichain (DP(R), R) s t σ ut

Sometimes, we are interested in minimal (P,R)-chains. The only difference
between min ichain (P, R) s t σ and ichain (P, R) s t σ, is the additional
requirement in minimal chains that SNR(tiσi) for all i.

4 Main Results

Since our term data type does not take care of building only terms corresponding
to a specific signature, by default any rewrite relation →R in our formalization
is defined over terms containing arbitrary function symbols. Our first goal is
to show that once we have shown termination for terms using only function
symbols from F(R), this implies that →R does terminate for arbitrary terms.
Before doing that, we need means to identify well-formed terms. To this end we
use the inductively defined set T (F), containing all terms that are well-formed
with respect to the signature F .

Definition 7 (Well-Formed Terms).

x ∈ T (F)
(f , |~ts|) ∈ F ∀ t∈~ts. t ∈ T (F)

f (~ts) ∈ T (F)

Using this definition we can define the well-formed rewrite relation induced by
a TRS R:

þR ≡ {(s, t) | s →R t ∧ s ∈ T (F(R)) ∧ t ∈ T (F(R))}.
2 A function symbol is defined in a TRS, if it occurs as the root of a left-hand side.

5

Further, let C(F) denote the set of well-formed contexts with respect to the
signature F . What we want to show is SN(þR) =⇒ SN(→R). For the proof
we need a way to remove unwanted function symbols from terms. This is the
purpose of the following cleaning function:

JyKF = y
Jf(~ts)KF = if (f , |~ts|) ∈ F then f (map J·KF ~ts) else z

where z denotes an arbitrary but fixed variable. Intuitively, every subterm of a
term whose root is not in the given signature, is replaced by z. Having this, the
proof of SN(þR) =⇒ SN(→R) (actually we prove its contrapositive) is done in
three stages:

1. First, we assume ¬ SN(→R). Then by the soundness of DPs (Lemma 6) we
obtain an infinite (DP(R), R)-chain.

2. Next, we show that every infinite chain can be transformed into an infinite
clean chain.

3. And finally, we show completeness of the DP-transformation for well-formed
terms, i.e., that an infinite clean (DP(R), R)-chain can be transformed into
an infinite derivation w.r.t. þR. Hence, ¬ SN(þR), concluding the proof.

In total we get wf trs R =⇒ SN(þR) =⇒ SN(→R) and since every non-well-
formed TRS is nonterminating, we finally have a proof of Theorem 1. Note that
the second step also shows the second main result: signature extensions are valid
when performing termination proofs using DPs (without minimality).

It remains to prove the following two lemmas:

Lemma 8 (Signature Restrictions for Chains).
F(P, R) ⊆ F =⇒ ichain (P, R) s t σ =⇒ ichain (P, R) s t JσKF

Lemma 9 (Completeness of DPs for þR).
ichain (DP(R), R) s t JσK](R) =⇒ ¬ SN(þR)

where we use the abbreviations F(P, R) ≡ F(P) ∪ F(R) and](R) ≡ F(R) ∪
F](R) with F](R) ≡ {(f], n) | (f , n) ∈ F(R)}, and the cleaning function is
extended to sequences of substitutions in the obvious way.

Note that by applying first Lemma 8 and then Lemma 9, we also obtain the
classical completeness result of DPs.

Lemma 10 (Completeness of DPs). ichain (DP(R), R) s t σ =⇒ ¬ SN(→R)

Proof. Obviously, we have F(DP(R), R) ⊆](R). Together with the assump-
tion ichain (DP(R), R) s t σ, this yields ichain (DP(R), R) s t JσK](R), using
Lemma 8. Then, from Lemma 9, we obtain ¬ SN(þR) and thus ¬ SN(→R). ut

Proof (of Lemma 8). From the assumptions of Lemma 8 we obtain

∀i. si ∈ T (F) ∧ ti ∈ T (F), (1)
∀i. tiσi →∗R si+1σi+1, (2)
∀i. (si, ti) ∈ P. (3)

6

Further note that whenever there is an R-step from s to t, then either this step
is also possible in the cleaned versions of s and t, or the cleaned versions are
equal, i.e.,

s→R t =⇒ JsKF(R) →
=
R JtKF(R).

From this and (2) we may conclude

∀i. JtiσiKF →
∗
R Jsi+1σi+1KF

by induction over the length of the rewrite sequence (remember that F(R) ⊆ F).
Using (1) we may push the applications of the clean function inside, resulting in

∀i. JtiKFJσiKF →
∗
R Jsi+1KFJσi+1KF .

Together with (3) we obtain the desired clean infinite chain as (1) shows JsiKF =
si and JtiKF = ti for all i. ut

Proof (of Lemma 9). Again, we show the lemma in its contrapositive form. Thus,
we assume SN(þR). Now, let F denote the signature of R and u(·) the operation
of ‘unsharping,’ i.e., removing]s from terms:

u(t) =

{
f(map u(·) ~ts) if t = f](~ts) or t = f(~ts), and
t otherwise.

The extension of u to substitutions is defined as u(σ)(x) = u(σ(x)). For the
sake of a contradiction, assume that there is an infinite (DP(R),R)-chain over
s, t, and JσK](R). Since cleaning does not affect s and t, this implies an infinite
(DP(R),R)-chain over JsK](R), JtK](R), and JσK](R), i.e.,

∀i. (JsiK](R), JtiK](R)) ∈ DP(R) (4)

∀i. JtiK](R)JσiK](R) →
∗
R Jsi+1K](R)Jσi+1K](R) (5)

Then from (4) we obtain

∀i.∃C.C ∈ C(F) ∧ Ju(si)KF →R C[Ju(ti)KF]

by construction of DP(R). Using the Axiom of Choice we hence obtain a sequence
of contexts C, such that Ci is the context employed in the i-th step of (4), i.e.,

∀i.Ci ∈ C(F) ∧ Ju(si)KF →R Ci[Ju(ti)KF] (6)

Let D denote the following sequence:

Di =

{
� if i = 0,
Di−1 ◦ (CiJu(σi)KF) otherwise.

7

Where ◦ denotes the composition of contexts, i.e., the right context replaces
the hole of the left one. This function gives for the i-th DP-step in the infinite
chain, all the contexts that have been lost due to using DP(R) instead of R and
additionally applies all the necessary substitutions. For the sake of brevity we
define:

s′i = Di[Ju(si)KFJu(σi)KF]
t′i = Di+1[Ju(ti)KFJu(σi)KF]

Then by (6) we have s′i →R t′i, since rewriting is closed under contexts and sub-
stitutions. From (5) we conclude Ju(ti)KFJu(σi)KF →∗R Ju(si+1)KFJu(σi+1)KF ,
since removing]s does not destroy any redexes of R. By wrapping this deriva-
tion in the context Di+1 we obtain t′i →∗R s′i+1. Combining this with s′i →R t′i
yields

s′i →+
R s′i+1

From our assumption SN(þR) we conclude that R is well-formed. Moreover, it
is apparent from the definitions of J·KF and Di, together with (6) that all the
s′is are well-formed, i.e., s′i ∈ T (F). Together with the well-formedness of R one
can prove that also all intermediate terms in all derivations s′i →

+
R s′i+1 are in

T (F). Thus we have an infinite þR-sequence which contradicts our assumption
SN(þR). ut

5 Applications

In most termination tools, termination techniques are freely combined within
a complex termination proof. For example, it is a standard procedure to first
remove some rules from R, resulting in R′, and then prove SN(R′) without
caring about any changes in the signature. I.e., proving termination of SN(R′) is
performed as if the signature were F(R′) and not the original signature F(R).
The soundness of this approach relies upon Theorem 1.

At first view, Theorem 1 might not seem important, as there are several
termination techniques which do not rely upon the signature. For example, when
using polynomial interpretations, it always suffices to give the interpretations for
the function symbols occurring in the TRS, no matter if the signature contains
other symbols. The reason is that the interpretation of any other symbol has no
impact when computing the polynomials for the left-hand sides and right-hand
sides of the rules. Similar situations occur for other reduction orders and other
termination techniques, like semantic labeling [11].

However, we are aware of at least two termination techniques where the
signature is essential.

String Reversal. If we restrict terms in rewriting to employ only unary function
symbols, we are in the setting of string rewriting. For notational convenience
we write abc instead of a(b(c(x))), where the variable x is implicit. There are

8

several termination techniques that work only/better for strings. One of them is
string reversal. This technique uses the fact that a string rewrite system (SRS)
S is terminating iff rev(S) is terminating. Here, rev(S) denotes the mapping of
the function

rev(t) =

{
rev(t′)a if t = at′,
t otherwise,

over all left-hand sides and right-hand sides of S. In practice, this often helps to
automatically find a termination proof.

Example 11. Consider the following TRS

a(b(b(x)))→ a(b(a(a(a(a(x))))))
f(x, y)→ x

which is not an SRS. One can remove the second rule by a polynomial order
which maps a(x) and b(x) to x, and f(x, y) to x+ y + 1. Then the SRS

abb→ abaaaa

remains, where the signature still contains the binary symbol f. As string reversal
is only defined for unary symbols, the presence of f forbids the application of
string reversal. But after applying the signature restriction to a and b we are
allowed to forget about f and apply string reversal to obtain the following SRS:

bba→ aaaaba

Note that in this reversed SRS there are no dependency pairs as ba is a proper
subterm of bba. Therefore, termination is now trivially proven.

Root-Labeling. Root-labeling [8] is a special version of semantic labeling [11]. We
start with a short description of semantic labeling. We interpret a TRS R by an
F-algebra M = (M, {fM}f∈F). That is, we interpret every function symbol f
of arity n, by a function fM : Mn → M , over the carrier M . Then, the inter-
pretation of a term with respect to a given variable assignment µ, is given by:
[µ]M(x) = µ(x) and [µ]M(f(t1, . . . , tn)) = fM([µ]M(t1), . . . , [µ]M(tn)). We say
that M is a model of R iff for all assignments µ and all rules l → r ∈ R, we
have [µ]M(l) = [µ]M(r).

Now, we can label the function symbols of R according to the interpreta-
tion of their arguments. For every n-ary function symbol f , we choose a set
of labels Lf 6= ∅ in combination with a mapping πf : Mn → Lf . The la-
beling is extended to terms as follows: labµ(x) = x and labµ(f(t1, . . . , tn)) =
fm(labµ(t1), . . . , labµ(tn)) with m = πf ([µ]M(t1), . . . , [µ]M(tn)). Then, the la-
beled TRS Rlab consists of the rules labµ(l) → labµ(r) for all l → r ∈ R and
assignments µ. Zantema [11] has shown that for every model of R, the TRS R
is terminating iff the TRS Rlab is terminating.

The difficult part of applying semantic labeling for proving termination, is
to find a proper model. This is solved in the special case of root-labeling by

9

fixing the interpretation. Every function symbol is interpreted by itself (i.e.,
fM(x1, . . . , xn) = f) and the labeling is fixed to tuples of function symbols (i.e.,
πf (x1, . . . , xn) = (x1, . . . , xn)). Now, to satisfy the necessary model condition,
we close the rules of a TRS under the so called flat contexts before labeling. This
makes sure that for every resulting rule l→ r, the root symbol of l is the same as
the root symbol of r and thus, [µ]M(l) = [µ]M(r) for every assignment µ. Here,
the flat contexts are determined solely by the signature. Again, Theorem 1 shows
that one can reduce the possibly infinite set of flat contexts (if the signature F
is infinite) to a finite set of flat contexts (if F(R) is finite).

Example 12. Consider the TRS {a(b(x)) → b(a(a(x)))}. This yields the set of
flat contexts {a(�), b(�)}. After closing the TRS under flat contexts we obtain
the two rules {a(a(b(x))) → a(b(a(a(x)))), b(a(b(x))) → b(b(a(a(x))))}.3 Now,
root-labeling results in the following labeled TRS:

aa(ab(ba(x)))→ ab(ba(aa(aa(x))))
aa(ab(bb(x)))→ ab(ba(aa(ab(x))))
ba(ab(ba(x)))→ bb(ba(aa(aa(x))))
ba(ab(bb(x)))→ bb(ba(aa(ab(x))))

The advantage of root-labeling or semantic labeling is that afterwards one
can distinguish different occurrences of symbols as they might have different
labels. For example, the last but one symbols of the left- and right-hand sides
are ab and aa, respectively, whereas in the original TRS these symbols were
just a and could not be distinguished. That such a distinction can be helpful is
demonstrated in several examples [8,11].

Note that root-labeling is also applied in the DP setting. Here, Lemma 8 can
be used to show that it suffices to build the flat contexts w.r.t. the signature of
the given DP problem.

However, many termination tools base their termination analysis on DPs
where always minimal chains are considered. The reason to work with mini-
mal chains is that many powerful termination techniques are only sound when
regarding minimal chains [4,9].

Unfortunately, when trying to lift Lemma 8 to minimal chains, we figured out
that this is impossible. It is easy to show that cleaning terms might introduce
nontermination if non-left-linear rules are present. For example if a and b are
not in the signature and there is a rule f(x, x) → f(x, x), then this rule cannot
be applied on f(a, b). However, it is applicable on the cleaned term f(z, z).

Moreover, we even found a counter-example where there is an infinite minimal
(P,R)-chain, but no infinite minimal (P,R)-chain if only terms over F(P ∪R)
may be used. Hence, there cannot be any function that transforms an infinite
3 If the signature would be larger, e.g., if there would be an additional ternary symbol

c, then the flat contexts would include {c(�, x2, x3), c(x1, �, x3), c(x1, x2, �)} and for
each of these contexts one would get another rule. Hence, the signature restriction
is essential to get few flat contexts and therefore small systems.

10

minimal (P,R)-chain over an arbitrary signature into an infinite minimal chain
which only contains terms over F(P ∪ R). In other words, Lemma 8 does not
hold if one would replace infinite chains by minimal infinite chains.

Example 13 (Restricting the signature to F(P ∪ R) is unsound for minimal
chains). To present a counter-example we give a “termination proof” for a non-
terminating TRS where the only unsound step is the signature restriction to the
signature of the current DP problem. Here, we make use of the DP-framework
[4] in which one proves termination by simplifying the initial DP problems by
termination techniques until one obtains a DP problem that does not admit an
infinite minimal chain. For soundness it is only required that whenever (P,R)
is simplified to (P ′,R′) then an infinite minimal (P,R)-chain must imply the
existence of an infinite minimal (P ′,R′)-chain.

So, let R be the following nonterminating TRS.

g(f(x, y, x′, z, z, u))→ g(f(x, y, x, x, y, h(y, x′)))
a→ b

a→ c

h(x, x)→ h(x, x)
h(a, x)→ h(x, x)
h(b, x)→ h(x, x)
h(c, x)→ h(x, x)

h(h(x1, x2), x)→ h(x, x)
h(f(x1, . . . , x6), x)→ h(x, x)

The initial DP problem (DP(R),R) can be simplified to (P,R) where P =
{G(f(x, y, x′, z, z, u))→ G(f(x, y, x, x, y, h(y, x′)))}. The reason is that there is a
minimal infinite (P,R)-chain: choose every si and ti to be the left-hand side
and right-hand side of the only rule in P, respectively. Further, choose σi = σ
for σ(x) = g(a), σ(y) = σ(z) = g(b), σ(x′) = g(c), and σ(u) = h(g(b), g(c)).

Note that this chain is also a minimal (P,R′)-chain where R′ is like R but
without the g(. . .)→ g(. . .)-rule. Thus, (P,R) can be simplified to (P,R′).

Using the argument filter processor [9, Theorem 4.37], it is shown that there
also is an infinite minimal chain when collapsing G to its first argument. Hence,
the same substitution σ can be used to obtain an infinite minimal chain for the
DP problem (P ′,R′) where P ′ = {f(x, y, x′, z, z, u)→ f(x, y, x, x, y, h(y, x′))}.

Now, if it would be sound to restrict the signature of (P ′,R′) to F(P ′∪R′) =
{a, b, c, f, h} then we can conclude termination. The reason is that over this
signature there are no infinite minimal (P ′,R′)-chains anymore.

We prove this last statement by contradiction. Suppose there is an infinite
minimal (P ′,R′)-chain over s, t, and δ, where δi instantiates all variables by
terms over F(P ′∪R′), si = f(x, y, x′, z, z, u), and ti = f(x, y, x, x, y, h(y, x′)), for
all i. δi. Then all tiδi are terminating w.r.t. R′. Hence, δ1(y) must be a variable
(otherwise, h(y, x′)δ1 would not be terminating due to the six h-rules of R′).
Moreover, by using that δ1(y) is a variable, the derivation t1δ1 →∗R′ s2δ2 shows

11

that δ1(y) = δ2(y) and δ1(y) = δ2(z). Note that since R′ is not collapsing,
whenever a term rewrites to a variable then the term must be identical to the
variable. Hence, since δ2(z) is a variable and δ1(x)→∗R′ δ2(z) we obtain δ1(x) =
δ2(z) and for a similar reason we obtain δ1(x) = δ2(x′). In total, we can conclude
δ2(y) = δ2(x′). This finally yields a contradiction as there is the nonterminating
subterm h(y, x′)δ2 = h(δ2(y), δ2(y)).

The consequences are severe: termination proofs relying upon techniques that
require minimal chains and also use signature restrictions are unsound without
further restrictions.

And indeed, for the technique of root-labeling—which performs a signature
restriction within the soundness proof—we were able to construct a counter-
example which refutes the main theorem for root-labeling with DPs.

Example 14 (Root-labeling is unsound for minimal chains). We use a similar
TRS as in Example 13 to show the problem of root-labeling with minimal chains.
Let R consist of the following rules.

g(f(x, y, x′, z, z, u))→ g(f(x, y, x, x, y, h(y, x′)))
a→ b

a→ c

h(x, x)→ h(x, x)
h(a, x)→ h(x, x)
h(x, a)→ h(x, x)

f(x1, . . . , a, . . . , x5)→ f(x1, . . . , a, . . . , x5)

Here, the last rule represents 6 rules where the a can be at any position.
We again can simplify the initial DP-problem (DP(R),R) to (P,R) for the

same P = {G(f(x, y, x′, z, z, u))→ G(f(x, y, x, x, y, h(y, x′)))} that we had in the
previous example. The reason is again that there is an infinite minimal chain
by choosing σi = σ for σ(x) = g(a), σ(y) = σ(z) = g(b), σ(x′) = g(c), and
σ(u) = h(g(b), g(c)).

Note that by using this substitution we also get an infinite minimal (P,R′)-
chain where R′ = R \ {g(. . .) → g(. . .)}. Hence, it is sound to simplify (P,R)
to (P,R′).

Now, in [8, proofs of Lemmas 13 and 17] it is wrongly stated4 that for this
example, w.l.o.g. one can restrict to substitutions over the signature {a, b, c, f, h}:
With a similar reasoning as in Example 13 one can prove that there is no infinite
minimal (P,R′)-chain using this restricted class of substitutions. We further
show in detail that Lemma 17 of [8] itself is wrong, not only its proof.

The result of Lemma 17 states that if there is an infinite minimal (P,R′)-
chain then there also is an infinite minimal chain for the DP problem (P ′,R′′)
that is obtained by the flat context closure. In our example we obtain P ′ =
4 In detail, in [8] our upcoming Lemma 17 is used without the requirement of left-

linearity.

12

P ∪ {G(a) → G(b),G(a) → G(c)} and R′′ = (R′ \ {a → b, a → c}) ∪ R′′′ where
R′′′ consists of the following rules:

h(a, x)→ h(b, x)
h(a, x)→ h(c, x)
h(x, a)→ h(x, b)
h(x, a)→ h(x, c)

f(x1, . . . , a, . . . , x5)→ f(x1, . . . , b, . . . , x5)
f(x1, . . . , a, . . . , x5)→ f(x1, . . . , c, . . . , x5)

We show that for this DP problem (P ′,R′′) there are no infinite minimal chains
anymore. So, if Lemma 17 of [8] would be sound, we could wrongly “prove”
termination of R. Again, we assume there is an infinite minimal (P ′,R′′)-chain
where δi are the corresponding substitutions and where we do not even restrict
the signature of any δi. Obviously, all (si, ti) are taken from P and not from
one of the additional rules in P ′. Since every left-hand side of R′′ also is a
left-hand side of a nonterminating rule in R′′, we know that every terminating
term w.r.t. R′′ is also a normal form w.r.t. R′′. Hence, from t1δ1 →∗R′′ s2δ2

we conclude t1δ1 = s2δ2. Thus, δ2(x′) = δ1(x) = δ2(z) = δ1(y) = δ2(y).
Therefore, we obtain the nonterminating subterm h(y, x′)δ2 = h(δ2(y), δ2(y))
which is a contradiction to the minimality of the chain.

To conclude, the current applications of root-labeling in termination tools
which rely upon DPs with minimal chains are wrong for two reasons: first, one
cannot restrict the signature to the implicit signature of the given DP-problem,
and second, root-labeling is unsound in the DP setting with minimal chains.

However, for signature restrictions in combination with minimal chains we
were able to prove soundness, provided that the TRS R of a DP problem (P,R)
is left-linear.

Lemma 15 (Signature Restrictions for Minimal Chains).
left linear R =⇒
F(P, R) ⊆ F =⇒ min ichain (P, R) s t σ =⇒ min ichain (P, R) s t JσKF

The proof of Lemma 15 is similar to the proof of Lemma 8. The only miss-
ing step is to prove that left-linearity ensures that cleaning does not introduce
nontermination.

Lemma 16 (Cleaning of Left-Linear TRSs Preservers SN).

1. left linear R =⇒ F(R) ⊆ F =⇒ SNR(s) =⇒ JsKF →R t =⇒ ∃ u. JuKF = t
∧ s →R u

2. left linear R =⇒ F(R) ⊆ F =⇒ SNR(s) =⇒ SNR(JsKF)

Proof. 1. We prove this fact via induction over s. In the base case, s is a
variable. Then we have the rewrite step s →R t, since cleaning does not

13

change variables. But then, there is a variable left-hand side, implying that
R is not terminating and thus contradicting SNR(s).
In the step case we have s = f(~ss). Now, we proceed by a case distinction.
If (f, |~ss|) /∈ F then cleaning will transform s into the variable z. Again,
there would be a variable left-hand side, contradicting strong normalization
of s. Thus, (f, |~ss|) ∈ F . Hence, f(map J·KF ~ss) →R t. If this is a non-root
step, the result follows from the induction hypothesis. Otherwise, this is a
root rewrite step. Thus we obtain a rule (l, r) ∈ R and a substitution σ,
such that, Jf(~ss)KF = lσ and rσ = t. Additionally, we know that this rule
is left-linear and that its left-hand side is well-formed. It can be shown that
this implies the existence of a substitution τ , such that, JτVar(l)KF = σ|Var(l)

and f(~ss) = lτ (we omit the rather technical proof). Here, σ|V denotes the
restriction of a substitution σ to a set of variables V, i.e., all variables that
are not in V, are no longer modified by the restricted substitution. Then
JrτKF = JrKFJτKF = rJτVar(l)KF = rσ|Var(l) = rσ = t and s = f(~ss) =
lτ →R rτ . Here, we needed to use the property Var(r) ⊆ Var(l), which must
be valid since otherwise SNR(s) does not hold.

2. Assume that JsKF is not terminating. Thus, there is an infinite sequence of
R-steps, starting from JsKF . By iteratively applying the previous result, we
obtain an infinite R-sequence starting at s. ut

We were also able to formally show that the signature restriction that is
done in root-labeling (which is exactly the upcoming Lemma 17 without the
requirement of left-linearity) is sound for minimal chains with the requirement of
left-linearity. Hence, with the following lemma one can repair the paper proofs of
[8, Lemmas 13 and 17] by demanding left-linearity. Essentially, the lemma states
that one can restrict to the symbols that occur below the root in P (F>ε(P)),
together with the symbols of R, under the additional assumption that neither
left-hand sides nor right-hand sides of P are variables and the roots of P are not
defined in R.

Lemma 17 (Signature Restrictions Ignoring Roots).
left linear R =⇒
F>ε(P) ∪ F(R) ⊆ F =⇒
∀ s t . (s, t) ∈ P −→ s /∈ Var ∧ t /∈ Var ∧ ¬ root(t) ∈ D(R) =⇒
min ichain (P, R) s t σ =⇒ min ichain (P, R) s t JσKF

The lemma is proven in the same way as Lemma 15, except that one only applies
cleaning strictly below the root. By cleaning below the root one can also proof
a variant of Lemma 17 where minimal chains are replaced by arbitrary chains,
and where left-linearity is no longer required.5

Using Lemma 17 and the original proofs of [8] it is shown that root-labeling
is sound in combination with minimal chains if we restrict to left-linear R-
components. Hence, the main example of [8, Touzet’s SRS] is still working, since
it applies root-labeling on a DP problem with left-linear R.

5 However, one needs the additional requirement that left-hand sides of R are not
variables, which in Lemma 17 follows from the minimality of the chain.

14

6 Conclusion

We presented an alternative, and more importantly, the first mechanized proof
of the fact that termination is preserved under signature extensions. We have
also shown that signature extensions are possible when using DPs, but only if
one considers arbitrary chains or left-linear TRSs. For minimal chains we have
given a counterexample which shows that for non-left-linear TRSs one cannot
restrict to the signature of the current DP problem.

We believe these results to be interesting in their own. However, we developed
these results with a certain goal in mind. In the end we want to apply our
main positive results to be able to certify termination proofs which rely upon
techniques where the signature is essential: string reversal and root-labeling. If
one applies these techniques directly on a TRS, then both techniques can now be
certified in the way they are used in current termination tools. For root-labeling
in the DP setting with minimal chains, we have shown that it is unsound for
arbitrary DP problems. We have further shown how to repair the existing proofs
by demanding left-linearity. It remains as future work, to also formalize the
remaining proof for root-labeling in the DP setting.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. N. Dershowitz. Termination dependencies. In Proc. WST ’03, pages 27–30, 2003.
4. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-

proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.
5. A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije

Universiteit, Amsterdam, 1990.
6. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS 2283. Springer, 2002.
7. E. Ohlebusch. A simple proof of sufficient conditions for the termination of the

disjoint union of term rewriting systems. Bulletin of the EATCS, 50:223–228, 1993.
8. C. Sternagel and A. Middeldorp. Root-Labeling. In Proc. RTA ’08, LNCS 5117,

pages 336–350, 2008.
9. R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.

PhD thesis, RWTH Aachen University, 2007. Available as Technical Report AIB-
2007-17, http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf.

10. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
Proc. TPHOLs ’09, LNCS 5674, pages 452–468, 2009.

11. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24(1/2):89–105, 1995.

15

