
AC Dependency Pairs Revisited∗

Akihisa Yamada1, Christian Sternagel2, René Thiemann3, and
Keiichirou Kusakari4

1 University of Innsbruck, Austria
2 University of Innsbruck, Austria
3 University of Innsbruck, Austria
4 Gifu University, Japan

Abstract
Rewriting modulo AC, i.e., associativity and/or commutativity of certain symbols, is among the
most frequently used extensions of term rewriting by equational theories. In this paper we present
a generalization of the dependency pair framework for termination analysis to rewriting modulo
AC. It subsumes existing variants of AC dependency pairs, admits standard dependency graph
analyses, and in particular enjoys the minimality property in the standard sense. As a direct
benefit, important termination techniques are easily extended; we describe usable rules and the
subterm criterion for AC termination, which properly generalize the non-AC versions.

We also perform these extensions within IsaFoR – the Isabelle formalization of rewriting – and
thereby provide the first formalization of AC dependency pairs. Consequently, our certifier CeTA
now supports checking proofs of AC termination.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Equational Rewriting, Termination, Dependency Pairs, Certification

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.8

1 Introduction

The dependency pair (DP) method of Arts and Giesl [2] and its successor, the DP framework [7],
have become the de facto standard in termination proving for term rewrite systems, providing
the foundation of state-of-the-art termination provers.

Various authors extended the DP method/framework for proving termination modulo
AC, i.e., certain symbols are assumed to be associative and/or commutative. Each variant
has its own strengths and weaknesses: Kusakari and Toyama [12] introduced a version that
results in less dependency pairs than others, but requires a special treatment of AC symbols.
Marché and Urbain [13] introduced a version that considers flattened terms and results in
more dependency pairs than the Kusakari-Toyama version. However, their original version
was later pointed out to be incorrect [14]. As a specialization of their more general equational
DP method, Giesl and Kapur [6] mentioned a version that does not require flattening or a
special treatment of AC symbols, so that many techniques for the standard DP framework
can be incorporated without major modifications. However, Alarcón et al. [1] pointed out
that the minimality property, which is needed for some important techniques such as usable
rules and the subterm criterion [9], does not carry over to the AC case.

∗ This research was supported by the Austrian Science Fund (FWF) projects Y 757 and P 27502, and the
Japan Society for the Promotion of Science (JSPS) KAKENHI #24500012.

© Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 AC Dependency Pairs Revisited

In this paper, we introduce yet another AC-DP framework. Our approach enjoys the
strengths of both the Kusakari-Toyama approach and the Giesl-Kapur approach: the number
of generated dependency pairs is small and most techniques for the standard DP framework can
be integrated without major modifications. Moreover, our approach ensures the minimality
property in the standard sense, and thus both the usable rules technique and the subterm
criterion become available in our framework.

The key idea of our AC-DP framework is to consider AC axioms just as rewrite rules
and to take the dependency pairs of these rules. This choice allows us to reuse most of the
reasoning from the standard DP framework, including the notion of minimality.

The results of this paper are formalized using the Isabelle proof assistant [15]. The
formalization, consisting of 7069 lines of Isabelle code, is incorporated into our Isabelle
formalization of rewriting IsaFoR [23], and as it provides a formalized correctness proof of our
certifier CeTA, we can now formally validate AC termination proofs. Through experiments
CeTA revealed a long-lurking bug in AProVE [5] (in the computation of AC usable rules),
which is now fixed. IsaFoR, CeTA, and the experiments are accessible from

http://cl-informatik.uibk.ac.at/software/ceta/experiments/ac-dp

The paper is organized as follows. After preliminaries in Section 2, we describe our
AC-DP framework in Section 3. In Section 4 we show how to characterize AC termination in
our AC-DP framework. We present AC variants of usable rules and the subterm criterion in
Sections 5 and 6, respectively. The practical relevance of our work is discussed in Section 7,
whereas Section 8 contains a theoretical comparison to related work.

2 Preliminaries

We assume familiarity with term rewriting and only recall some notations required in the
remainder; for details on term rewriting, we refer to textbooks [3, 21].

Given a set F of function symbols with associated arities and a set V of variables such
that F ∩ V = ∅, a term is either a variable x ∈ V or of the form f(s1, . . . , sn), where n is the
arity of f ∈ F and the arguments s1, . . . , sn are terms. We often abbreviate a list of terms
s1, . . . , sn by ~sn. The root symbol of a term s = f(~sn) is f and denoted by root(s).

A substitution σ assigns each variable x a term xσ. For a term s, sσ denotes the term
obtained by replacing every variable x by xσ in s. A position in a term s is represented by a
sequence of natural numbers as usual. The subterm of a term s at position p is denoted by
s|p, and the term obtained by replacing the subterm by a term t is denoted by s[t]p.

A rewrite rule is a pair of terms, written l→ r, such that l /∈ V and variables appearing
in r also appear in l. A term rewrite system (TRS) is a set R of rewrite rules. There is an
R-rewrite step from s to t at position p, written s p−→

R
t, iff there exist a rule l→ r ∈ R and

a substitution σ such that s|p = lσ and t = s[rσ]p. We write s −→
R

t if p is irrelevant.
The associativity and commutativity of a binary symbol + ∈ F are respectively specified

by the following axioms, where we use infix notation for +:

x+ (y + z) ≈ (x+ y) + z (A) x+ y ≈ y + x (C)

We assume E to be a set of associativity and/or commutativity axioms, which we call an
AC theory. We write FA and FC for the set of symbols which are associative and commutative
in E , respectively, and write FAC for FA ∩ FC. The equivalence relation induced by E is
denoted by ≈

E
.

For a relation R, we denote its transitive closure by R+ and its reflexive transitive closure
by R∗. Given another relation S, we denote the relation S∗ ·R · S∗ by R/S.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/ac-dp

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:3

For a TRS R and an AC theory E , R-rewriting modulo E considers the relation −−−→
R/E

,
which is defined as −→

R
/≈
E
. A term s is R/E-nonterminating iff there exists an infinite sequence

s −−−→
R/E

s1 −−−→R/E s2 −−−→R/E · · · , and R/E-terminating otherwise. An R/E-nonterminating term
is minimal iff all its proper subterms are R/E-terminating.

If every term is R/E-terminating, then we say R is terminating modulo E , or R/E
is terminating. This terminology carries over to the non-AC case: we say a term is R-
terminating, R is terminating, etc., when the same holds for R/∅.

We extensively use the following notion in subsequent proofs.

I Definition 1 (Well-Founded Order Pair). A quasi-order pair on a set A is a pair 〈%,�〉
consisting of a quasi-order % and a transitive relation � on A, satisfying �/% ⊆ �. If
moreover � is well-founded, then we call 〈%,�〉 a well-founded order pair.

It is well known that a lexicographic composition of well-founded order pairs again
forms a well-founded order pair. Moreover, a well-founded order pair can be extended to a
well-founded order pair over multisets [4, 22]. Below] denotes the multiset union.

I Definition 2. The multiset extension of a quasi-order pair 〈%,�〉 on A is the quasi-order
pair 〈%mul, �mul〉 on multisets over A which is defined as follows: X %mul Y iff X and Y are of
the form X = {x1, . . . , xn}]X ′ and Y = {y1, . . . , yn}]Y ′ such that ∀i ∈ {1, . . . , n}. xi % yi,
and ∀y ∈ Y ′. ∃x ∈ X ′. x � y. We have X �mul Y if it also holds that X ′ 6= ∅.

3 An AC-Dependency Pair Framework

Before introducing our AC-DP framework, we first recall the basics of dependency pairs. We
say a symbol f ∈ F is defined in R if there is a rewrite rule f(~sn)→ r ∈ R, and denote the
set of defined symbols in R by DR. We assume a fresh marked symbol f] for every f ∈ DR,
and write s] to denote the term f](~sn) for s = f(~sn).

I Definition 3. A dependency pair of a TRS R is a rule l] → r|]p such that l→ r ∈ R and
root(r|p) ∈ DR. The set of all dependency pairs of R is denoted by DP(R).

The DP framework works on DP problems, which are just pairs of TRSs.

I Theorem 4 ([2]). A TRS R is terminating iff the DP problem 〈DP(R),R〉 is finite,
i.e., there is no infinite chain s0

ε−−−−→
DP(R)

t0 −→R
∗ s1

ε−−−−→
DP(R)

t1 −→R
∗ · · · where every ti is

R-terminating.

Our key idea towards an AC-DP framework is to represent an AC theory by a (nontermin-
ating) TRS. Commutativity is trivial: axiom (C) can be seen as the rewrite rule x+y → y+x.
For associativity, i.e., axiom (A), the following two rules obviously suffice:

x+ (y + z)→ (x+ y) + z (A1) (x+ y) + z → x+ (y + z) (A2)

The benefit of this approach is that now we can take the dependency pairs DP(E) of AC
axioms. Commutativity induces the following dependency pair

x+] y → y +] x (C])

and associativity yields the following dependency pairs:

x+] (y + z)→ (x+ y) +] z (x+ y) +] z → x+] (y + z) (A])
x+] (y + z)→ x+] y (x+ y) +] z → y +] z (a])

CSL 2016

8:4 AC Dependency Pairs Revisited

Note that there are other representations; e.g., if + is both associative and commutative,
then one of (A1) and (A2) may be dropped, since it is a consequence of the other and (C).
In the formalization, we only demand that an AC theory E is represented by a TRS E ′ such
that −→

E′
∗ = ≈

E
. In the rest of the paper, we identify E ′ with E .

I Definition 5. An AC-DP problem is a quadruple of TRSs P, Q, R, and E , denoted by
〈P/Q,R/E〉. A 〈P/Q,R/E〉-chain is a finite or infinite sequence of the form

s0
ε−−−→
P∪Q

t0 −−−→R∪E
∗ s1

ε−−−→
P∪Q

t1 −−−→R∪E
∗ · · ·

and is called minimal if every ti is R/E-terminating. An AC-DP problem is said to be finite
if it admits no minimal chain containing infinitely many P-steps.

We often write −−−→
P∪Q

instead of ε−−−→
P∪Q

if it is clear from the context that P and Q are
the first two components of an AC-DP problem.

Our AC-DP problems are quite similar to relative DP problems [19, Definition 1], which
form the basis of the formalized DP framework in IsaFoR; ignoring minimality, an AC-DP
problem 〈P/Q,R/E〉 corresponds to the relative DP problem 〈P,Q, ∅,R ∪ E〉. Hence all
techniques which do not rely on minimality, are immediately applicable.

The most important technique in proving the finiteness of DP problems is the reduction
pair processor [2, 7]: a reduction pair 〈%,�〉 is a well-founded order pair on terms such that
% and � are closed under substitutions and % is closed under contexts.

I Theorem 6. Let 〈%,�〉 be a reduction pair such that P∪Q∪R∪E ⊆ %. Then, 〈P/Q,R/E〉
is finite iff 〈P ′/Q′,R′/E〉 is, where P ′ = P \ �, Q′ = Q \ �, and R′ = R or R′ = R \ � if
� is closed under contexts.

The dependency graph processor [8, 7] is also easily adapted.

I Theorem 7. Let G be an (estimated) dependency graph, whose set of nodes is P ∪Q and
there is an arc from s → t to u → v whenever there exist substitutions σ and τ such that
tσ −−−→
R∪E

∗ uτ . Then 〈P/Q,R/E〉 is finite iff every AC-DP problem 〈P ∩ Ci/Q∩ Ci,R/E〉 is,
where C1, . . . , Cn are the strongly connected components (SCCs) of G.

More work has to be done if minimality is involved, since minimality in a relative DP
problem 〈P,Q,R, E〉 considers termination w.r.t. R∪ E , whereas we consider termination
w.r.t. R/E (cf. Sections 5 and 6). But before we can apply any technique, we first have to
construct an initial AC-DP problem whose finiteness corresponds to AC termination.

4 From AC Termination to AC-DP Problems

In this section we reduce the termination of a TRS R modulo an AC theory E to the finiteness
of certain AC-DP problems.

For the standard DP method, i.e., E = Q = ∅, Theorem 4 means that the finiteness of the
DP problem is equivalent to the termination of R. In the case of AC termination, however,
it is well known that the argument is not directly applicable.

I Example 8 (cf. [12]). Consider the TRS R = {x + x → a + b } with + ∈ FA. The DP
problem 〈DP(R)/DP(E),R/E〉 is finite; it is easy to see that DP(R) = {x+] x→ a +] b }
cannot constitute an infinite chain. However, R/E is nonterminating, as illustrated by

(a + a) + b −→
R

(a + b) + b ≈
E

a + (b + b) −→
R

a + (a + b) ≈
E
· · ·

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:5

Nevertheless, since we take dependency pairs of E , we can reuse the following key lemma
from the standard DP method. To be more precise, we will instantiate the lemma for both
R and E in the later development.

I Lemma 9. Let R be a TRS. If s ε−→
R

t for a minimal nonterminating term s and nonter-
minating t, then there is a minimal nonterminating subterm t′ of t with s] ε−−−−→

DP(R)
t′
].

The following lemma is a variant of [12, Lemma 3.16], but differs in the following way:
While [12, Lemma 3.16] requires the so-called head subterm relation in a chain to ensure
minimality, we employ the rules in DP(E), especially those of form (a]), for this purpose.

I Lemma 10. If s is a minimal nonterminating term, then there exist a minimal nonter-
minating term v and a minimal chain s] −−−−−→

E∪DP(E)
∗ · −−−−−−→
R∪DP(R)

v].

The lemma is proved by induction w.r.t. the following well-founded order pair. In the
formalization we prove its well-foundedness from the fact that E-equivalent terms have
the same size. The same result could be deduced also from a result by Jouannaud and
Kirchner [10].

I Definition 11 (Proof Ordering 1). We denote the weak and strict subterm relation by D
and B. The relations DE and BE are defined as

(
B ∪ ≈

E

)∗ and (B/≈
E

)+, respectively.

Proof of Lemma 10. Consider a minimal nonterminating term s. Then we have a sequence
s −→
E
n t −→

R
u for nonterminating u. We prove the claim by well-founded induction on 〈s, n〉

w.r.t. the lexicographic composition of BE and > on natural numbers.
Suppose s = t. If t ε−→

R
u, then by Lemma 9 we obtain a minimal nonterminating term v

and a minimal chain s] = t] −−−−→
DP(R)

v]. Otherwise u must also be minimal and thus by
taking v = u, we have a minimal chain s] = t] −→

R
v].

Suppose s −→
E
s′ −→
E
n−1 t. Obviously s] −−−−−→

DP(E)∪E
s′
]. Note also that s DE s′; hence, if s′ is

minimal, then the induction hypothesis for 〈s′, n− 1〉 yields a minimal nonterminating
term v and a minimal chain:

s] −−−−−→
E∪DP(E)

s′
] −−−−−→
E∪DP(E)

∗ · −−−−−−→
R∪DP(R)

v]

Now suppose s′ is not minimal, which is only possible if s ε−→
E
s′. By Lemma 9, we obtain

a minimal nonterminating subterm s′′ of s′ such that s] −−−−→
DP(E)

s′′
]. Since s′ is not yet

minimal, we know s′ B s′′, and hence s BE s′′. Since s′′ is nonterminating, we have a
derivation s′′ −→

E
m t′ −→

R
u′ for some nonterminating t′ and u′. To this sequence, we apply

the induction hypothesis for 〈s′′,m〉 and obtain a minimal chain

s] −−−−→
DP(E)

s′′
] −−−−−→
E∪DP(E)

∗ · −−−−−−→
R∪DP(R)

v]

with a minimal nonterminating term v. J

A repeated application of Lemma 10 converts any infinite R/E-rewrite sequence into an
infinite minimal 〈DP(R)/DP(E),R/E〉-chain. However, this AC-DP problem can be finite;
the resulting chain may have infinitely many R-steps connected by only DP(E)-steps.

We avoid this case via the finiteness of another AC-DP problem. To this end we employ
the notion of AC-extended rewriting [16].

CSL 2016

8:6 AC Dependency Pairs Revisited

I Definition 12. Let x and y be arbitrary fresh variables. The set RE of extended rules is
the TRS that consists of the following rule for each l→ r ∈ R with root(l) = + ∈ FAC

l + x→ r + x

and the following rules for each l→ r ∈ R with root(l) = + ∈ FA \ FC.

x+ l→ x+ r l + x→ r + x x+ l + y → x+ r + y

We write R]E for the TRS { l] → r] | l→ r ∈ RE }. Note that in this definition, RE does
not necessarily contain the rules in R.

Now we state the main theorem of this section.

I Theorem 13. A TRS R is terminating modulo an AC theory E iff both AC-DP problems
〈DP(R)/Q,R/E〉 and 〈R]E/Q,R/E〉 are finite, where Q = DP(E).1

Before proving the theorem we prepare several notions.

I Definition 14. A top position (also called a head position [12]) in an unmarked term
s = f(~sn) is the root position ε if f /∈ FA, or a position p such that root(s|q) = f for every
prefix q of p, if f ∈ FA. The top positions in a marked term s] are those in s. We denote a
rewrite step s p−→

R
t as s top−−→

R
t if p is a top position in s, and as s >top−−−→

R
t otherwise.

I Lemma 15. If s top−−→
R

t, then s ε−→
R

t or s ≈
E
· ε−−→
RE
· ≈
E
t.

As a measure for the inductive proof of the main theorem, we employ top-flattening [17]:
the top-flattening of a term s w.r.t. f ∈ FA is the multiset Of (s) defined inductively by

Of (s) =
{
{s} if root(s) 6= f

Of (s1)] Of (s2) if s = f(s1, s2)

For a term s = f(~sn), we define O(s) as Of (s) if f ∈ FA, and as {s1, . . . , sn} otherwise.
The top-flattenings are ordered by the multiset extension of the following quasi-order

pair:

I Definition 16 (Proof Ordering 2). We define the relations DR/E and BR/E as DR/E :=
(−→
R
∪B ∪ ≈

E
)∗ and BR/E := (≈

E
· −→
R
·D · ≈

E
)+.

The above relations form a well-founded order pair on R/E-terminating terms, which is
easily shown using the fact that the subterm relation preserves termination. It is also not
difficult to prove the following lemma.

I Lemma 17. The relations DR/E and BR/E satisfy the following properties:
1. If s] >top−−−→

R
t], then O(s) Bmul

R/E O(t).
2. If s] −→

E
t], then O(s) Dmul

R/E O(t).

We further require another well-founded order pair for the inductive proof of the main
theorem. We write s min−−→

P
t when s ε−→

P
t and t is R/E-terminating.

1 Our formalization shows that DP(E) can be generated w.r.t. only the defined symbols of R. To ease
readability, we do not introduce the definition of such restricted dependency pairs.

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:7

I Definition 18 (Proof Ordering 3). Let TRSs Q, R, and E be fixed. For a TRS P , we define
the relations %P and �P by

(min−−−→
P∪Q

∪ >ε−−−→
R∪E

)∗ and (min−−→
P

/ (min−−→
Q
∪ >ε−−−→
R∪E

)
)+, respectively.

It is easy to see that 〈%P ,�P〉 forms a quasi-order pair. On the other hand, its well-
foundedness depends on the finiteness of the underlying AC-DP problem.

I Lemma 19. If 〈P/Q,R/E〉 is finite, then 〈%P ,�P〉 is a well-founded order pair on
R/E-terminating terms.

Proof. We prove the well-foundedness of �P by contradiction: Suppose that it is not well-
founded on R/E-terminating terms. So we have an R/E-terminating term s that starts an
infinite reduction s �P · �P · · · , i.e.,

s
(min−−→
Q
∪ >ε−−−→
R∪E

)∗ · min−−→
P
·
(min−−→
Q
∪ >ε−−−→
R∪E

)∗ · min−−→
P
· · ·

This sequence is an infinite minimal chain, contradicting the finiteness of 〈P/Q,R/E〉. J

Now we are ready to prove the main theorem.

Proof of Theorem 13. The “only if” direction is proved as in the standard DP framework,
where we additionally use the fact that s] −−→

R]
E

t] implies s −→
R

t.

For the “if” direction, suppose that 〈DP(R)/Q,R/E〉 and 〈R]E/Q,R/E〉 are finite. We
prove that any minimal R/E-nonterminating term s derives a contradiction, by induction on
〈s], s],O(s)〉, which is ordered by the lexicographic composition of �DP(R), �R]

E
, and Bmul

R/E .
By Lemma 10, we obtain a minimal R/E-nonterminating term u and a minimal chain

s] −−−−−→
E∪DP(E)

∗ t] −−−−−−→
R∪DP(R)

u]. We distinguish the following cases:
Suppose t] −−−−→

DP(R)
u]. In this case, we have s] �DP(R) u

]. Hence, the induction hypothesis
for u on the first component derives a contradiction.
Suppose t] >top−−−→

R
u]. By definition we have s] %DP(R) u

] and s] %R]
E
u]. Using Lemma 17,

we also have O(s) Dmul
R/E O(t) Bmul

R/E O(u). Hence, the induction hypothesis for u on the
third component derives a contradiction.
Suppose t] top−−→

R
u]. By Lemma 15 we obtain a sequence t = t0 −→E · · · −→E tn

ε−−→
RE

v ≈
E
u.

If every ti is minimal, then we have

s] %DP(R) t] = t]0 %DP(R) t]n %DP(R) v]

and similarly, s] %R]
E
t]n �R]

E
v]. Thus the induction hypothesis for v on the second

component yields a contradiction.
Otherwise, for some i < n, t0, . . . , ti are minimal but ti+1 is not. Take a minimal
nonterminating subterm t′ of ti+1. Using Lemma 9, we get a minimal chain

s] −−−−−→
E∪DP(E)

∗ t] = t]0 −−−−−→E∪DP(E)
∗ t]i −−−−→DP(E)

t′
]

and thus, s] %DP(R) t
′] and s] %R]

E
t′
]. By Lemma 17 we have O(s) Dmul

R/E O(t) Dmul
R/E

O(ti), and due to the shape of AC axioms, O(ti) ⊃ O(t′). Hence, the induction
hypothesis for t′ on the third component derives a contradiction. J

In contrast to the non-AC case, Theorem 13 generates two AC-DP problems, where
DP(R) and R]E are separated. These two sets of pairs can be merged into one problem.

I Corollary 20. A TRS R is terminating modulo an AC theory E iff the AC-DP problem
〈(DP(R) ∪R]E)/DP(E),R/E〉 is finite.

CSL 2016

8:8 AC Dependency Pairs Revisited

Clearly, solving this merged AC-DP problem cannot be easier than tackling the smaller
AC-DP problems separately. Nevertheless, it remains open whether practically there is any
difference in power between Theorem 13 and Corollary 20.

5 Usable Rules

In this section, we prove that the usable rules technique is applicable within our AC-DP
framework. To this end, we generalize the currently most powerful variant of usable rules in
the DP framework [18] to the AC case. To be more precise, we adapt the statements and
proofs of the existing formalization in such a way that they become applicable both for the
DP framework and the AC-DP framework.

Let us first recapitulate the notions of (non-AC) usable rules. The following function
tcap is used to estimate the shape of a term after rewriting:

tcapR(x) = a fresh variable

tcapR(f(~sn)) =
{
a fresh variable if ∃l→ r ∈ R. l ∼ f(tcapR(~sn))
f(tcapR(~sn)) otherwise

Here, tcapR(~sn) is an abbreviation for tcapR(s1), . . . , tcapR(sn), and ∼ denotes unifiability:
s ∼ t iff there exist substitutions σ and τ such that sσ = tτ .

Let R and U be TRSs. An argument filter π assigns each function symbol a subset of its
argument positions, where i /∈ π(f) indicates that the argument si of any term f(~sn) will be
ignored for the usable rules. The formula urClosedπU,R(S) is defined as follows:

urClosedπU,R(x) = true

urClosedπU,R(f(~sn)) =
∧

i∈π(f)

urClosedπU,R(si) ∧
∧

l→r∈R

(
l ∼ f(tcapR(~sn)) =⇒ l→ r ∈ U

)
urClosedπU,R(S) =

∧
l→r∈S

urClosedπU,R(r)

Rewrite rules which might be invoked from the right-hand sides of dependency pairs
should be considered as usable rules. This is captured formally in the following definition.

I Definition 21 (from [18]). We say U is a set of usable rules for a DP problem 〈P,R〉 w.r.t.
an argument filter π iff the following formula is satisfied:

urClosedπU,R(P) ∧ urClosedπU,R(U)

The close connection between our AC-DP framework and the standard DP framework
admits reusing the above notions without major effort; we simply instantiate R to R ∪ E
and P to P ∪Q. A more precise alternative might integrate E-unification into tcap; however,
we refrain from this possibility as IsaFoR has no E-unification algorithm formalized yet.

I Definition 22 (Usable Rules for AC). We say U is a set of usable rules for an AC-DP
problem 〈P/Q,R/E〉 w.r.t. an argument filter π iff the following formula is satisfied:

urClosedπU,R∪E(P ∪Q) ∧ urClosedπU,R∪E(U)

The following theorem generalizes the corresponding theorem in the DP framework [18,
Theorem 4.6]. Instead of requiring a weak decrease for all rules in R∪E , one just has to look
at the usable rules U . Moreover, under certain conditions one can even delete all non-usable
rules from R. In the rest of this section, we assume a fresh infix function symbol ◦, and
denote the TRS {x ◦ y → x, x ◦ y → y } by Ce.

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:9

I Theorem 23. Let R be a finite TRS, π an argument filter, U a set of usable rules for
〈P/Q,R/E〉 w.r.t. π, and 〈%,�〉 a reduction pair such that
P ∪Q ∪ U ∪ Ce ⊆ %, and
% is π-compatible; i.e., f(s1, . . . , si, . . . , sn) % f(s1, . . . , s

′
i, . . . , sn) whenever i /∈ π(f).

Then 〈P/Q,R/E〉 is finite if 〈P ′/Q′,R′/E〉 is, where P ′ = P \ �, Q′ = Q \ �, and R′ = R
or R′ = (R∩ U) \ � if Ce ⊆ � and � is closed under contexts.

I Example 24. To illustrate the application of Theorem 23, consider an AC-DP problem
with FA = {+,×}, FC = {+,×, eq}, P consisting of

f](s(x), y, z)→ eq](x, y) f](s(x), y, z)→ f](p(s(x)), x+ y, x× z)

and R consisting of a standard rules for addition + and multiplication ×, some rules for f,
and the following two rules for p.

p(s(x))→ x (1) p(0)→ 0 (2)

If one applies the theorem with π(f]) = {1, 2}, then only (1) and the rules for + in R ∪ E
have to be marked as usable. One can ignore

rules in R∪ E for ×, since × occurs only in the third argument of f];
the other rule (2) for p, since its left-hand side does not unify with p(s(x)); and
rules in R∪ E for f and eq, since only the marked versions of these symbols occur.

It is also necessary to take into account the pairs in Q for determining usable rules.

I Example 25. Consider the AC-DP problem 〈P/Q,R/E〉 where E = {(A1)} and

P = {f(x) +] c→ a +] x} Q = {x+] (y + z)→ (x+ y) +] z} R = {a + b→ f(b + c)}

This AC-DP problem is not finite, as illustrated by the following chain:

f(b + c) +] c −→
P

a +] (b + c) −→
Q

(a + b) +] c −→
R

f(b + c) +] c −→
P
· · ·

Now assume one ignores usable rules from Q – then no rule is usable, and one could wrongly
deduce finiteness, e.g., with a polynomial interpretation A such that

x+]
A y = x+A y = x+ y fA(x) = x cA > aA

In the non-AC case, a key to proving Theorem 23 is a transformation I, that converts
any minimal 〈P,R〉-chain into a 〈P,U ∪ Ce〉-chain by applying I to all terms in the chain.
Here, minimality is essential since I is applicable only to R-terminating terms.

In the AC-DP framework, we cannot directly reuse I, since minimality ensures only
R/E-termination, but not R ∪ E-termination. Thus we base our soundness proof on the
following transformation · . Below, we write ~sn to denote the list s1, . . . , sn.

I Definition 26. Consider a finite TRS R, an AC theory E , and a set U of usable rules. For
an R/E-terminating term s, we define s as follows: x = x and for s = f(~sn),

s =
{

list
(
{g(~tn) | s ≈

E
g(~tn) } ∪ { t | s−−−→

R/E
t }
)
if ∃l→ r ∈ (R∪ E) \ U . l∼ f(tcapR∪E(~sn))

f(~sn) otherwise

Here, list({s1, . . . , sn}) denotes the term s1 ◦ · · · ◦ sn, where the elements are sorted w.r.t. an
arbitrary but fixed total order on terms.

CSL 2016

8:10 AC Dependency Pairs Revisited

It is easy to see that s is defined for every R/E-terminating s, using an inductive argument
and the fact that there are only finitely many E-equivalent terms.

Most of the existing proofs using transformation I can be immediately generalized to the
new transformation; various properties [18, Lemma 4.9] are satisfied after straightforward
modifications, e.g., replacing R-termination by R/E-termination.

Nevertheless, in order to prove Theorem 23 we have to add some new properties which
are required for simulating E-equivalence. In the following crucial property we rely upon
the fact that E is an AC theory; in many other places it was sufficient to know that E is
symmetric and has only finite equivalence classes. We omit presenting other details of the
proof of Theorem 23.

I Lemma 27. Suppose that E is an AC theory and urClosedπU,R∪E(U) is satisfied. If f(~tn)
is R/E-terminating, f(~tn) ≈

E
s, and f(~tn) 6= f(~tn), then f(~tn) = s.

Proof. By the preconditions s must be of the form f(~sn), and due to the symmetry of
≈
E
, f(~sn) ≈

E
f(~tn). Furthermore, there must be a rule l → r ∈ (R ∪ E) \ U such that

l ∼ f(tcapR∪E(~tn)). In particular, root(l) must be f .
The challenge is showing f(~sn) 6= f(~sn), i.e., finding a non-usable rule where the left-hand

side unifies with f(tcapR∪E(~sn)). Having proved this fact, the claim immediately follows by
the transitivity of ≈

E
and the definition of · .

To determine such a non-usable rule we consider the following two cases.
If si ≈E ti for all 1 ≤ i ≤ n, then f(tcapR∪E(~sn)) = f(tcapR∪E(~tn)). Hence, the above
l→ r is a desired non-usable rule.
Otherwise, we have a root E-step, i.e., for some AC rule u→ v ∈ E , f(~sn) ≈

E
f(~wn) = uσ

and vσ ≈
E
f(~tn). The properties of tcap guarantee u ∼ f(tcapR∪E(~sn)). By the shape of

the AC rules and urClosedπU,R∪E(U), we conclude u→ v /∈ U from the fact that l→ r /∈ U
and root(l) = f . Hence u→ v ∈ (R∪E)\U , and in combination with u ∼ f(tcapR∪E(~sn))
we have found the desired non-usable rule. J

6 Subterm Criterion

The subterm criterion [9] is an efficient technique for proving termination in the standard DP
framework. It is based on the notion of simple projections, i.e., a mapping π that assigns to
each marked symbol f] one of its argument positions π(f]). Simple projections are extended
to terms as follows: π(f](s1, . . . , sn)) = si for i = π(f]). For a relation A on terms, we
denote π(s) A π(t) by s Aπ t.

I Theorem 28 ([9]). Let 〈P,R〉 be a (standard) DP problem, and π a simple projection
such that P ⊆ Dπ. Then, 〈P,R〉 is finite iff 〈P \Bπ,R〉 is.

This technique however is not directly applicable if AC symbols appear. For commutative
symbols, neither of the argument positions can be projected.

I Example 29. For the TRS { s(x) + p(y)→ x+ y } with + ∈ FC we construct the following
pair for the TRS and in addition the pair (C]) for the equations.

s(x) +] p(y)→ x+] y (3)

We would like to delete (3) by the subterm criterion. However, projecting either argument of
+], (C]) cannot be oriented by Dπ. On the other hand, one cannot ignore (C]); e.g., consider
removing a pair s(x) +] x→ x+] s(x) via π(+]) = 1.

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:11

This motivates us to generalize the range of π to multisets of arguments. For instance, in
Example 29 one can choose π(+]) = {1, 2}. Then (3) ∈ Bπ and (C]) ⊆ Dπ.

Associativity rules also require a careful treatment. As in the commutative case, ignoring
(A]) is unsound, but (A]) ⊆ Dπ is impossible.

I Example 30 (Example 29 continued). If we assume that + ∈ FAC, the AC-DP problem
will contain dependency pairs from (A]) and (a]). For π(+]) = {1, 2}, the projected left- and
right-hand sides of (A]) are {x, y + z} and {x+ y, z}, which are incomparable.

This motivates us to also allow projections for unmarked symbols, e.g., + in the above
example, and perform the projection recursively.

I Definition 31. A multi-projection π for a set G of symbols is a mapping that assigns every
symbol f ∈ G a non-empty multiset π(f) of its argument positions. From π we define a
mapping from terms to multisets of terms, also denoted by π, as follows:

π(s) =
{
π(si1)] · · ·] π(sim) if s = f(~sn), f ∈ G and π(f) = {i1, . . . , im}
{s} otherwise

For a relation A on terms, we write s Aπ t for π(s) Amul π(t).

Now we can satisfy the constraints in Example 30: π(+]) = π(+) = {1, 2} will ensure
{(C]), (A])} ⊆ Dπ and {(3), (a])} ⊆ Bπ. However, allowing projections for a defined symbol –
no matter whether it is an AC symbol or not – requires a further side-condition.

I Example 32. Consider the TRS R = { f(s(x)) → f(g(x)), g(x) → s(x) } and the multi-
projection π(f]) = π(g]) = π(g) = {1}. We have DP(R) = { f](s(x))→ f](g(x)) } ⊆ Bπ, but
the DP problem 〈DP(R),R〉 is not finite.

Thus in the following theorem, we demand that whenever G contains a defined symbol f ,
the rules that define f should be oriented by Dπ.

I Theorem 33. Let E be a size preserving TRS and π a multi-projection over G such that
P ∪Q ⊆ Dπ and l Dπ r for every l→ r ∈ R∪E with root(l) ∈ G. Then 〈P/Q,R/E〉 is finite
iff 〈P ′/Q′,R/E〉 is, where P ′ = P \Bπ and Q′ = Q \Bπ.

In order to prove the theorem, we need to prove that both Bπ and Dπ are closed under
substitutions – a trivial property of B and D.

I Lemma 34. If s Dπ t then sσ Dπ tσ. If s Bπ t then sσ Bπ tσ.

The proof of the lemma is not so trivial, since substitutions may affect the recursive
application of π. Moreover, the restriction in Definition 31 that π(f) is nonempty for every
f ∈ G is crucial for Bπ to be closed under substitutions.

I Example 35. Let π(+) = {1, 2}. We have a + x Bπ a since {a, x} Bmul {a}. Consider
substituting x by f(a), and allowing π(f) = ∅. Then a + f(a) Bπ a does not hold, since
{a} Bmul {a} does not hold.

Proof of Theorem 33. Let S = P \ P ′ ∪ Q \ Q′. We only prove that there is no minimal
chain containing infinitely many S-steps; the remaining reasoning is trivial. So, assume to
the contrary that there is a minimal chain with infinitely many S-steps:

s0 −−−→P∪Q t0 −−−→R∪E
∗ s1 −−−→P∪Q t1 −−−→R∪E

∗ s2 −−−→P∪Q · · ·

CSL 2016

8:12 AC Dependency Pairs Revisited

Table 1 Experiments.

AProVE NaTT
certified full no ACDP Thm. 13 Cor. 20 full
time # time # time # time # time # time

yes 128 560.3 128 508.5 82 166.3 78 6.2 78 6.0 113 86.3
no 0 – 2 21.2 0 – 0 – 0 – 1 0.5

maybe 14 310.6 12 340.6 63 189.7 67 46.3 67 28.4 31 149.2
timeout 3 1080.0 3 1080.0 0 – 0 – 0 – 0 –

Let 〈%,�〉 be the quasi-order pair defined as % := −−−→
R∪E

∗ and � := (B/−−−→
R∪E

)+. By the
preconditions and Lemma 34 we can turn every step si −−−→P∪Q ti into π(si) Dmul π(ti),
and whenever si −→S

∗ ti then π(si) Bmul π(ti). Moreover, from ti −−−→R∪E
∗ si+1 we derive

π(ti) %mul π(si+1) by the conditions on the rules of R∪E . Hence, by using B ⊆ � we obtain

π(s0) %mul π(t0) %mul π(s1) %mul π(t1) %mul π(s2) %mul · · ·

with an infinite number of �mul steps. Thus, some element u ∈ π(t0) must start an infinite
derivation w.r.t. �. The size preservation of E implies that this derivation from u must contain
infinitely many R-steps; i.e., u is not R/E terminating. This contradicts the minimality of
the chain, since u is a subterm of t0, which is R/E terminating. J

Theorem 33 generalizes the subterm criterion even in the standard case; one may freely
include non-defined symbols into G, which was previously allowed only for marked defined
symbols. A similar generalization has been proposed for higher-order rewriting [11]. Never-
theless, in case marked associative symbols are involved, Theorem 33 may not work as one
expects from a subterm criterion, as shown in the following example.

I Example 36. Consider the TRS R = { s(x) + y → s(x+ y) } with + ∈ FA. We construct
the following dependency pair for R, in addition to (A]) and (a]):

s(x) +] y → x+] y (4)

One might expect deleting (4) by the subterm criterion; however, (A]) demands + ∈ G and
thus R ⊆ Dπ. This is possible only if s is also in G, resulting (4) ∈ Dπ but (4) /∈ Bπ. Hence,
on this example other techniques have to be applied, such as reduction pairs with usable
rules as in Theorem 23.

7 Experiments

We extended the certification problem format (CPF) [20] to our AC-DP framework. For
proving finiteness of AC-DP problems, all techniques of Sections 3 to 6 are supported. As a
benchmark we use 145 AC termination problems from various sources. Further details on
the experimental setup is available on the accompanying website.

We adjusted the termination prover AProVE, that already implements an (unpublished)
AC-DP framework based on the Giesl-Kapur variant, to comply to our new framework. We
also implemented our technique in NaTT [24], where both Theorem 13 and Corollary 20 are
available for comparison. Although any reduction pair supported by CeTA can be used also
for AC termination, we disabled the recursive path order (RPO) and Knuth-Bendix order

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:13

(KBO) in the termination provers, since CeTA does not support their AC-compatible variants
AC-RPO [17] and AC-KBO [25].

We tested three configurations of AProVE: the new “certified” mode, “full” mode that
uses all (uncertified) techniques implemented in AProVE, and “no ACDP” mode that is
limited to direct techniques that do not require dependency pairs, which is supported also by
an earlier version of CeTA that does not include the AC-DP framework.

The result is shown in the left half of Table 1, where runtime is measured in seconds.
Our AC-DP framework is clearly more powerful than “no ACDP” mode. Between “full”
and “certified” modes we observe no difference in power; for all examples where “full” mode
applied AC-RPO, there are alternative proofs via the AC-DP framework and non-linear
polynomial interpretations in “certified” mode. In earlier experiments CeTA rejected one
proof generated by a previous version of AProVE, where the usable rules computation in the
presence of commutative symbols was incorrect. The bug is now corrected – our work indeed
improved the reliability of a state-of-the-art termination prover.

The results for NaTT are shown in the right half of Table 1. Since non-linear polynomials
are not supported in NaTT, its “full” strategy is significantly better than the certifiable
strategies. For this difference, AC-RPO plays a crucial role.

In one example (RENAMED-BOOL_complete-noand), NaTT with Theorem 13 took 21.0sec
before it eventually gave up, while with Corollary 20 it gave up after only 0.6sec. This
however does not indicate that Theorem 13 is weaker or stronger than Corollary 20; the
latter configuration quickly failed due to a small SCC that stems from DP(E), which would
be handled later as another AC-DP problem in the former configuration.

8 Related Work

Kusakari and Toyama [12] introduced a term marking ·# that treats AC symbols specially.
If the root symbol of s is an AC symbol +, then s# puts marks on every + occurring at a
top position. For instance,

(
a + (x+ s(y + z))

)# = a +] (x+] s(y + z)). Note that rewriting
in such a deeply marked term may bring unmarked AC symbols to a top position; consider,
e.g., rewriting a→ b + b in the above term. Therefore, a chain must implicitly perform the
following rewriting (AC-mark) and, in order to maintain minimality, also (AC-del).

(x+ y) +] z ←→ (x+] y) +] z (AC-mark) (x+] y) +] z → x+] y (AC-del)

The rule (AC-del) is similar but not equal to (a]); besides the nested marks, notice the
difference in the right-hand sides.

The special behavior of marking causes major difficulties with respect to implement-
ation and formalization. We also tried but did not succeed to prove usable rules for the
Kusakari-Toyama formulation. Fortunately, such an effort is actually not necessary, since
our formulation subsumes the Kusakari-Toyama version, in the following sense:

I Proposition 37. If a TRS is shown to be AC terminating by the AC-DPs of Kusakari-
Toyama with some reduction pairs, then our version succeeds with the same reduction pairs.

Proof. Consider an AC-compatible reduction pair 〈%,�〉 weakly orienting (AC-mark) and
(AC-del). Whenever s# %() t

we have s] %() t
], because of (AC-mark). Also (a]) is at least

weakly oriented due to (AC-mark), (AC-del), and the fact that +] is assumed to be associative
in their formulation. J

The converse does not hold if estimated dependency graph techniques are allowed.

CSL 2016

8:14 AC Dependency Pairs Revisited

I Example 38. Consider the TRS R with the following three rules:

(a + a) + x→ (a + b) + x b + c→ d(a + c) c→ a + a

where + ∈ FA. The dependency pairs of R in terms of [12] are

(a +] a) +] x→ (a +] b) +] x (5)
(a +] a) +] x→ a +] b (6)

b +] c→ a +] c (7)
b +] c→ c] (8)

c] → a +] a (9)

and the extended rules are

((a +] a) +] x) +] z → ((a +] b) +] x) +] z (10) (b +] c) +] z → d(a + c) +] z (11)

A polynomial interpretation with cA = c]A = 1 and aA = 0 would easily remove (9), and
afterwards (8) does not constitute an SCC. The extended rule (11) would also be easy.

The remaining SCC is {(5), (6), (7), (10)}, where no AC-reduction pair technique we know
can be applied. Note that in the Kusakari-Toyama formulation, the dependency graph has
an edge from (5) to (7), and there is clearly one for the other direction.

In our formulation, the corresponding SCC (ignoring the nested marks) is {(5), (6),
(7), (a]), (A])}. From here (a]) can be removed, e.g., by a polynomial interpretation with
x+A y = x+ y + 1. Then (7) does not constitute an SCC, and remaining {(5), (6), (A])} is
easy. The AC-DP problem for the extended rules is also easy. Hence our formulation proves
the termination of R/E , while the Kusakari-Toyama formulation fails.

Marché and Urbain [13] considered flattened terms, which would require some extra form-
alization work. However, their original version (with marks) was reported to be unsound [14],
since it lacks a rule that corresponds to (AC-mark). They also do not impose a counterpart
of our (a]) or (AC-del) of Kusakari-Toyama; the price for this omission is that the minimality
of a chain becomes nontrivial to define [1]. It is indeed unclear, e.g., how to adapt the usable
rules technique; cf. Example 25. Apart from that, their formulation takes DP(R∪RE), which
is in general a superset of DP(R) and R]E and often imposes more dependency pairs.

Giesl and Kapur [6] considered a set E of more general equations than AC, and regarded
DP(InstE(R∪RE)) together with E], that is, (C]) and (A]) for AC. They further suggested
that for the AC case, taking InstE is not necessary and hence DP(R∪RE) suffices. For this
simplification, however, they remarked that the notion of minimality has to be modified [6].

Below we elaborate more on the problem, using an example inspired by Alarcón et al. [1].

I Example 39. Consider the TRS R consisting of the following three rules:

a · a→ a · b · c b · b→ a · b · c c · c→ a · b · c

where · ∈ FAC. We abbreviate s · t by st. Note that all subterms of abc, the common
right-hand side in R, are terminating. Hence, the only dependency pairs in DP(R ∪ RE)
that constitute an infinite chain are

aa ·] x→ abc ·] x bb ·] x→ abc ·] x cc ·] x→ abc ·] x

The TRS R is not terminating modulo E ; there are essentially six (modulo E) minimal
nonterminating terms, namely aab, aac, abb, bbc, acc, and bcc. Take, e.g., s = aab. Any
infinite chain from s] has the following prefix:

aa ·] b −→ abc ·] b ≈
E∪E]

bb ·] ac −→ abc ·] ac

From here, there are the following two ways to continue the chain:

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari 8:15

abc ·] ac ≈
E∪E]

aa ·] bcc −→ abc ·] bcc = t], or
abc ·] ac ≈

E∪E]
cc ·] aab −→ abc ·] aab = u].

Both t] and u] contain a nonterminating subterm bcc or aab. Due to symmetry, we cannot
have an infinite chain that satisfies the minimality in terms of Giesl and Kapur [6].

Alarcón et al. [1] proposed the notion of A∨C theories, which we simply call AC theories
in this paper. In order to define a suitable notion of minimality, they introduced the notion of
stable minimal terms: any subterm of any AC-equivalent of such a term should be terminating.
To maintain stable minimality in a chain, they re-invented (AC-del) without nested marks:

(x+ y) +] z → x+] y (12)

Note that this is still different from our (a]), and the difference is crucial: (12) is introduced to
extract a nonterminating subterm in a chain (an instance of x+ y) into the main component
of the chain (as x+] y). Thus a chain must admit nonterminating subterms, which disallow
adapting the proofs of usable rules.2 Besides, they choose DP(R ∪ RE) and E] following
Giesl and Kapur. As in Proposition 37, our approach subsumes also this formulation.

9 Conclusion

We have formalized an AC dependency pair framework for proving termination modulo AC
axioms. We extended techniques such as dependency graph estimations, reduction pairs with
usable rules, and the subterm criterion, for proving AC termination.

A formalization of reduction pairs like AC-RPO and experimental evaluation of the AC
subterm criterion is left as future work. Moreover, a formalized algorithm for E-unification
would enable more precise estimations of dependency graphs and usable rules.

Acknowledgments. We would like to thank Aart Middeldorp for helpful discussions, and
the anonymous referees for their helpful feedback. The benchmark problems were collected
by Sarah Winkler.

References
1 B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework for A∨C-termination.

In WRLA 2010, volume 6381 of LNCS, pages 36–52, 2010.
2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Compt.

Sci., 236(1-2):133–178, 2000.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
4 N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communica-

tions of the ACM, 22(8):465–476, 1979.
5 J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plucker, P. Schneider-

Kamp, T. Stroder, S. Swiderski, and R. Thiemann. Proving termination of programs
automatically with AProVE. In IJCAR 2014, LNAI 8562, pages 184–191, 2014.

6 J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In RTA 2001, volume
2051 of LNCS, pages 93–107, 2001.

2 Their unpublished report contains a proof of usable rules, which however incorrectly assumes that a
chain contains only terminating terms.

CSL 2016

8:16 AC Dependency Pairs Revisited

7 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Com-
bining techniques for automated termination proofs. In LPAR 2004, volume 3452 of LNAI,
pages 75–90, 2004.

8 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Inf. Comput.,
199(1,2):172–199, 2005.

9 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features.
Inf. Comput., 205(4):474–511, 2007.

10 J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM Journal on Computing, 15(4):1155–1194, 1986.

11 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability
in simply-typed term rewriting. Appl. Algebr. Eng. Comm. Compt., 18(5):407–431, 2007.

12 K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs. IEICE
T. Inf. Syst., E84-D(5):439–447, 2001.

13 C. Marché and X. Urbain. Termination of associative-commutative rewriting by dependency
pairs. In RTA 1998, volume 1379 of LNCS, pages 241–255, 1998.

14 C. Marché and X. Urbain. Modular and incremental proofs of AC-termination. J. Symb.
Comput., 38(1):873–897, 2004.

15 T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

16 G. Peterson and M. Stickel. Complete sets of reductions for some equational theories. J.
ACM, 28(2):233–264, 1981.

17 A. Rubio. A fully syntactic AC-RPO. Inf. Comput., 178(2):515–533, 2002.
18 C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable rules. In

RTA 2010, volume 6 of LIPIcs, pages 325–340, 2010.
19 C. Sternagel and R. Thiemann. A relative dependency pair framework. In WST 2012,

pages 79–83, 2012.
20 Christian Sternagel and Rene Thiemann. The certification problem format. In UITP 2014,

volume 167 of EPTCS, pages 61–72, 2014.
21 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
22 R. Thiemann, G. Allais, and J. Nagele. On the formalization of termination techniques

based on multiset orderings. In RTA 2012, volume 15 of LIPIcs, pages 339–354, 2012.
23 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs

2009, volume 5674 of LNCS, pages 452–468, 2009.
24 A. Yamada, K. Kusakari, and T. Sakabe. Nagoya Termination Tool. In RTA-TLCA 2014,

volume 8560 of LNCS, pages 466–475, 2014.
25 A. Yamada, S. Winkler, N. Hirokawa, and A. Middeldorp. AC-KBO revisited. Theor.

Pract. Log. Prog., 16(2):163–188, 2014.

	Introduction
	Preliminaries
	An AC-Dependency Pair Framework
	From AC Termination to AC-DP Problems
	Usable Rules
	Subterm Criterion
	Experiments
	Related Work
	Conclusion

