
A Formalization of the
LLL Basis Reduction Algorithm

Jose Divasón1, Sebastiaan Joosten2, René Thiemann3, and Akihisa Yamada4

1 University of La Rioja, Spain
2 University of Twente, the Netherlands

3 University of Innsbruck, Austria
4 National Institute of Informatics, Japan

Abstract. The LLL basis reduction algorithm was the first polynomial-
time algorithm to compute a reduced basis of a given lattice, and hence
also a short vector in the lattice. It thereby approximates an NP-hard
problem where the approximation quality solely depends on the dimen-
sion of the lattice, but not the lattice itself. The algorithm has several
applications in number theory, computer algebra and cryptography.
In this paper, we develop the first mechanized soundness proof of the LLL
algorithm using Isabelle/HOL. We additionally integrate one application
of LLL, namely a verified factorization algorithm for univariate integer
polynomials which runs in polynomial time.

1 Introduction

The LLL basis reduction algorithm by Lenstra, Lenstra and Lovász [8] is a re-
markable algorithm with numerous applications. There even exists a 500-page
book solely about the LLL algorithm [10]. It lists applications in number the-
ory and cryptology, and also contains the best known polynomial factorization
algorithm that is used in today’s computer algebra systems.

The LLL algorithm plays an important role in finding short vectors in lattices:
Given some list of linearly independent integer vectors f0, . . . , fm−1 ∈ Zn, the
corresponding lattice L is the set of integer linear combinations of the fi; and
the shortest vector problem is to find some non-zero element in L which has the
minimum norm.

Example 1. Consider f1 = (1, 1 894 885 908, 0), f2 = (0, 1, 1 894 885 908), and
f3 = (0, 0, 2 147 483 648). The lattice of f1, f2, f3 has a shortest vector (−3, 17, 4).
It is the linear combination (−3, 17, 4) = −3f1+5 684 657 741f2+5 015 999 938f3.

Whereas finding a shortest vector is NP-hard [9], the LLL algorithm is a
polynomial time algorithm for approximating a shortest vector: The algorithm
is parametric by some α > 4

3 and computes a short vector, i.e., a vector whose

norm is at most α
m−1

2 times as large than the norm of any shortest vector.
In this paper, we provide the first mechanized soundness proof of the LLL

algorithm: the functional correctness is formulated as a theorem in the proof

assistant Isabelle/HOL [11]. Regarding the complexity of the LLL algorithm, we
did not include a formal statement which would have required an instrumenta-
tion of the algorithm by some instruction counter. However, from the termination
proof of our Isabelle implementation of the LLL algorithm, one can easily infer
a polynomial bound on the number of arithmetic operations.

In addition to the LLL algorithm, we also verify one application, namely a
polynomial-time5 algorithm for the factorization of univariate integer polyno-
mials, that is: factorization into the content and a product of irreducible in-
teger polynomials. It reuses most parts of the formalization of the Berlekamp–
Zassenhaus factorization algorithm, where the main difference is the replacement
of the exponential-time reconstruction phase [1, Section 8] by a polynomial-time
one based on the LLL algorithm.

The whole formalization is based on definitions and proofs from a textbook
on computer algebra [16, Chapter 16]. Thanks to the formalization work, we
figured out that the factorization algorithm in the textbook has a serious flaw.

The paper is structured as follows. We present preliminaries in Section 2.
In Section 3 we describe an extended formalization about the Gram–Schmidt
orthogonalization procedure. This procedure is a crucial sub-routine of the LLL
algorithm whose correctness is verified in Section 4. Since our formalization of
the LLL algorithm is also executable, in Section 5 we compare it against a
commercial implementation. We present our verified polynomial-time algorithm
to factor integer polynomials in Section 6, and describe the flaw in the textbook.
Finally, we give a summary in Section 7.

Our formalization is available in the archive of formal proofs (AFP) [2,3].

2 Preliminaries

We assume some basic knowledge of linear algebra, but recall some notions
and notations. The inner product of two real vectors v = (c0, . . . , cn) and w =
(d0, . . . , dn) is v • w =

∑n
i=0 cidi. Two real vectors are orthogonal if their inner

product is zero. The Euclidean norm of a real vector v is ||v|| =
√
v • v. A linear

combination of vectors v0, . . . , vm is
∑m
i=0 civi with c0, . . . , cm ∈ R, and we

say it is an integer linear combination if c0, . . . , cm ∈ Z. Vectors are linearly
independent if none of them is a linear combination of the others. The span –
the set of all linear combinations – of linearly independent vectors v0, . . . , vm−1
forms a vector space of dimension m, and v0, . . . , vm−1 are its basis. The lattice
generated by linearly independent vectors v0, . . . , vm−1 ∈ Zn is the set of integer
linear combinations of v0, . . . , vm−1.

The degree of a polynomial f(x) =
∑n
i=0 cix

i is degree f = n, the leading
coefficient is lc f = cn, the content is the GCD of coefficients {c0, . . . , cn}, and the
norm ||f || is the norm of its corresponding coefficient vector, i.e., ||(c0, . . . , cn)||.

If f = f0 · . . . · fm, then each fi is a factor of f , and is a proper factor if f is
not a factor of fi. Units are the factors of 1, i.e., ±1 in integer polynomials and

5 Again, we only mechanized the correctness proof and not the proof of polynomial
complexity.

non-zero constants in field polynomials. By a factorization of polynomial f we
mean a decomposition f = c ·f0 · . . . ·fm into the content c and irreducible factors
f0, . . . , fm; here irreducibility means that each fi is not a unit and admits only
units as proper factors.

Our formalization has been carried out using Isabelle/HOL, and we follow
its syntax to state theorems, functions and definitions. Isabelle’s keywords are
written in bold. Throughout Sections 3–4, we present Isabelle sources in a way
where we are inside some context which fixes a parameter n, the dimension of
the vector space.

3 Gram–Schmidt Orthogonalization

The Gram–Schmidt orthogonalization (GSO) procedure takes a list of linearly
independent vectors f0, . . . , fm−1 from Rn or Qn as input, and returns an or-
thogonal basis g0, . . . , gm−1 for the space that is spanned by the input vectors.
In this case, we also write that g0, . . . , gm−1 is the GSO of f0, . . . , fm−1.

We already formalized this procedure in Isabelle as a function gram schmidt
when proving the existence of Jordan normal forms [15]. That formalization uses
an explicit carrier set to enforce that all vectors are of the same dimension. For
the current formalization task, the usage of a carrier-based vector and matrix
library is important: Harrison’s encoding of dimensions via types [5] is not ex-
pressive enough for our application; for instance for a given square matrix of
dimension n we need to multiply the determinants of all submatrices that only
consider the first i rows and columns for all 1 ≤ i ≤ n.

Below, we summarize the main result that is formally proven about gram
schmidt [15]. To this end, we open a context assuming common conditions for
invoking the Gram–Schmidt procedure, namely that fs is a list of linearly in-
dependent vectors, and that gs is the GSO of fs. Here, we also introduce our
notion of linear independence for lists of vectors, based on an existing definition
of linear independence for sets coming from a formalization of vector spaces [7].

definition lin indpt list fs =

(set fs ⊆ carrier vec n ∧ distinct fs ∧ lin indpt (set fs))

context

fixes fs gs m

assumes lin indpt list fs and length fs = m and gram schmidt n fs = gs

begin

lemma gram schmidt:

shows span (set fs) = span (set gs) and orthogonal gs

and set gs ⊆ carrier vec n and length gs = m

Unfortunately, lemma gram schmidt does not suffice for verifying the LLL
algorithm: We need to know how gs is computed, that the connection between

fs and gs can be expressed via a matrix multiplication, and we need recursive
equations to compute gs and the matrix. In the textbook the Gram–Schmidt
orthogonalization on input f0, . . . , fm−1 is defined via mutual recursion.

gi := fi −
∑
j<i

µi,jgj (1)

where

µi,j :=


1 if i = j

0 if j > i
fi•gj
||gj ||2 if j < i

(2)

and the connection between these values is expressed as the equality f0
...

fm−1

 =

 µ0,0 . . . µ0,m−1
...

. . .
...

µm−1,0 . . . µm−1,m−1

 ·
 g0

...
gm−1

 (3)

by interpreting the fi’s and gi’s as row vectors.
Whereas there is no conceptual problem in expressing these definitions and

proving the equalities in Isabelle/HOL, there still is some overhead because of the
conversion of types. For instance in lemma gram schmidt, gs is a list of vectors;
in (1), g is a recursively defined function from natural numbers to vectors; and
in (3), the list of gi’s is seen as a matrix.

Consequently, the formalized statement of (3) contains these conversions like
mat and mat of rows which convert a function and a list of vectors into matrices,
respectively. Note that in the formalization an implicit parameter to µ – the input
vectors f0, . . . , fm−1 – is made explicit as fs.

lemma mat of rows n fs = mat m m (λ(i, j). µ fs i j) · mat of rows n gs

A key ingredient in reasoning about the LLL algorithm are projections. We
say w ∈ Rn is a projection of v ∈ Rn into the orthocomplement of S ⊆ Rn,
or just w is an oc-projection of v and S, if v − w is in the span of S and w is
orthogonal to every element of S:

definition is oc projection w S v =

(w ∈ carrier vec n ∧ v − w ∈ span S ∧ (∀u ∈ S. w • u = 0))

A nice property of oc-projections is that they are unique up to v and the span
of S. Back to GSO, since gi is the oc-projection of fi and {f0, . . . , fi−1}, we con-
clude that gi is uniquely determined in terms of fi and the span of {f0, . . . , fi−1}.
Put differently, we obtain the same gi even if we modify some of the first i input
vectors of the GSO: only the span of these vectors must be preserved.

The connection between the Gram–Schmidt procedure and short vectors be-
comes visible in the following lemma: some vector in the orthogonal basis gs
is shorter than any non-zero vector h in the lattice generated by fs. Here, 0v n
denotes the zero-vector of dimension n.

lemma gram schmidt short vector:

assumes h ∈ lattice of fs − {0v n}
shows ∃ gi ∈ set gs. ||gi||2 ≤ ||h||2

Whereas this short-vector lemma requires only a half of a page in the text-
book, in the formalization we had to expand the condensed paper-proof into 170
lines of more detailed Isabelle source, plus several auxiliary lemmas.

For instance, on papers one easily multiplies two sums (
∑
. . . •

∑
. . . =

∑
. . .)

and directly omits quadratically many neutral elements by referring to orthog-
onality, whereas we first had to prove this auxiliary fact in 34 lines.

The short-vector lemma is the key to obtaining a short vector in the lattice.
It tells us that the minimum value of ||gi||2 is a lower bound for the norms of
the non-zero vectors in the lattice. If ||g0||2 ≤ α||g1||2 ≤ . . . ≤ αm−1||gm−1||2 for
some α ∈ R, then the basis is weakly reduced w.r.t. α. If moreover α ≥ 1, then
f0 = g0 is a short vector in the lattice generated by f0, . . . , fm−1: ||f0||2 = ||g0||2 ≤
αm−1||gi||2 ≤ αm−1||h||2 for any non-zero vector h in the lattice.

In the formalization, we generalize the property of being weakly reduced
by adding an argument k, and only demand that the first k vectors satisfy
the required inequality. This is important for stating the invariant of the LLL
algorithm. Moreover, we also define a partially reduced basis which additionally
demands that the first k elements of the basis are nearly orthogonal, i.e., the
µ-values are small.

definition weakly reduced α k gs = (∀i. Suc i < k −→ ||gs ! i||2 ≤ α · ||gs ! Suc i||2)

definition reduced α k gs µ = (weakly reduced α k gs ∧ ∀ j < i < k. |µ i j| ≤ 1
2)

lemma weakly reduced imp short vector:

assumes weakly reduced α m gs

and h ∈ lattice of fs − {0v n}
and 1 ≤ α

shows ||fs ! 0||2 ≤ αm−1 · ||h||2

end (* close context about fs, gs, and m *)

The GSO of some basis f0, . . . , fm−1 will not generally be (weakly) reduced,
but this problem can be solved with the LLL algorithm.

4 The LLL Basis Reduction Algorithm

The LLL algorithm modifies the input f0, . . . , fm−1 ∈ Zn until the corresponding
GSO is reduced, while preserving the generated lattice. It is parametrized by
some approximation factor6 α > 4

3 .

6 The formalization also shows soundness for α = 4
3
, but then the polynomial runtime

is not guaranteed.

Algorithm 1: The LLL basis reduction algorithm, readable version

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4
3

Output: A basis that generates the same lattice as f0, . . . , fm−1 and has
reduced GSO w.r.t. α

1 i := 0; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

2 while i < m do
3 for j = i− 1, . . . , 0 do
4 fi := fi − bµi,je · fj ; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then
6 (i, fi−1, fi) := (i− 1, fi, fi−1); g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

else
7 i := i+ 1

8 return f0, . . . , fm−1

A readable, but inefficient, implementation of the LLL algorithm is given by
Algorithm 1, which mainly corresponds to the algorithm in the textbook [16,
Chapters 16.2–16.3]: the textbook fixes α = 2 and m = n. Here, it is important
to know that whenever the algorithm mentions µi,j , it is referring to µ as defined
in (2) for the current values of f0, . . . , fm−1 and g0, . . . , gm−1. In the algorithm,
bxe denotes the integer closest to x, i.e., bxe := bx+ 1

2c.
Let us have a short informal view on the properties of the LLL algorithm. The

first required property is maintaining the lattice of the original input f0, . . . , fm−1.
This is obvious, since the basis is only changed in lines (4) and (6), and since
swapping two basis elements, and adding a multiple of one basis element to a
different basis element will not change the lattice. Still, the formalization of these
facts required 190 lines of Isabelle code.

The second property is that the resulting GSO should be weakly reduced.
This requires a little more argumentation, but is also not too hard: the algorithm
maintains the invariant of the while-loop that the first i elements of the GSO
are weakly reduced w.r.t. approximation factor α. This invariant is trivially
maintained in line (7), since the condition in line (5) precisely checks whether
the weakly reduced property holds between elements gi−1 and gi. Moreover,
being weakly reduced up to the first i vectors is not affected by changing the
value of fi, since the first i elements of the GSO only depend on f0, . . . , fi−1.
So, the modification of fi in line (4) can be ignored w.r.t. being weakly reduced.

Hence, formalizing the partial correctness of Algorithm 1 w.r.t. being weakly
reduced is not too difficult. What makes it interesting, are the remaining prop-
erties we did not yet discuss. The most difficult part is the termination of the
algorithm, and it is also nontrivial that the final basis is reduced. Both of these
properties require equations which precisely determine how the GSO will change
by the modification of f0, . . . , fm−1 in lines 4 and 6.

Once having these equations, we can drop the recomputation of the full GSO
within the while-loop and replace it by local updates. Algorithm 2 is a more
efficient algorithm to perform basis reduction, incorporating this improvement.

Algorithm 2: The LLL basis reduction algorithm, verified version

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4
3

Output: A basis that generates the same lattice as f0, . . . , fm−1 and has
reduced GSO w.r.t. α

1 i := 0; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

2 while i < m do
3 for j = i− 1, . . . , 0 do
4 fi := fi − bµi,je · fj
5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then
6 g′i−1 := gi + µi,i−1 · gi−1

7 g′i := gi−1 −
fi−1•g

′
i−1

||g′i−1||
2 · g′i−1

8 (i, fi−1, fi, gi−1, gi) := (i− 1, fi, fi−1, g
′
i−1, g

′
i)

else
9 i := i+ 1

10 return f0, . . . , fm−1

Note that the GSO does not change in line 4, which can be shown with the help
of oc-projections.

Concerning the complexity, each µi,j can be computed with O(n) arithmetic
operations using its defining equation (2). Also, the updates of the GSO after
swapping basis elements require O(n) arithmetic operations. Since there are at
most m iterations in the for-loop, each iteration of the while-loop in Algorithm 2
requires O(n ·m) arithmetic operations. As a consequence, if n = m and I is the
number of iterations of the while-loop, then Algorithm 2 requires O(n3 + n2 ·
I) many arithmetic operations, where the cubic number stems from the initial
computation of the GSO in line 1.

To verify that Algorithm 2 computes a weakly reduced basis, it “only” re-
mains to verify its termination, and the invariant that the updates of gi’s indeed
correspond to the recomputation of the GSOs. These parts are closely related,
because the termination argument depends on the explicit formula for the new
value of gi−1 as defined in line 6 as well as on the fact that the GSO remains
unchanged in lines 3–4.

Since the termination of the algorithm is not at all obvious, and since it
depends on valid inputs (e.g., it does not terminate if α ≤ 0) we actually modeled
the while-loop as a partial function in Isabelle [6]. Then in the soundness proof
we only consider valid inputs and use induction via some measure which in turn
gives us an upper bound on the number of loop iterations.

The soundness proof is performed via the following invariant. It is a simplified
version of the actual invariant in the formalization, which also includes a property
w.r.t. data refinement. It is defined in a context which fixes the lattice L, the
number of basis elements m, and an approximation factor α ≥ 4

3 . Here, the
function RAT converts a list of integer vectors into a list of rational vectors.

context ... begin

definition LLL invariant (i, fs, gs) = (

gram schmidt n fs = gs ∧
lin indpt list (RAT fs) ∧
lattice of fs = L ∧
length fs = m ∧
reduced α i gs (µ (RAT fs)) ∧
i ≤ m)

Using this invariant, the soundness of lines 3–4 is expressed as follows.

lemma basis reduction add rows:

assumes LLL invariant (i, fs, gs)

and i < m

and basis reduction add rows (i, fs, gs) = (i ′, fs ′, gs ′)

shows LLL invariant (i ′, fs ′, gs ′) and i ′ = i and gs ′ = gs

and ∀ j < i. |µ fs ′ i j| ≤ 1
2

In the lemma, basis reduction add rows is a function which implements lines 3–
4 of the algorithm. The lemma shows that the invariant is maintained and the
GSO is unchanged, and moreover expresses the sole purpose of lines 3–4: they
make the values µi,j small.

For the total correctness of the algorithm, we must prove not only that the
invariant is preserved in every iteration, but also that some measure decreases for
proving termination. This measure is defined below using Gramian determinants,
a generalization of determinants which also works for non-square matrices. This
is also the point where the condition α > 4

3 becomes important: it ensures that
the base 4α

4+α of the logarithm is strictly larger than 1.7

definition Gramian determinant fs k =

(let M = mat of rows n (take k fs) in det (M ·MT))

definition D fs = (
∏

k < m. Gramian determinant fs k)

definition LLL measure (i, fs, gs) = max 0 (2 · b log (4·α
4+α) (D fs)c + m − i)

In the definition, the matrix M is the k× n submatrix of fs corresponding to
the first k elements of fs. Note that the measure solely depends on the index i
and the basis fs. However, for lines 3–4 we only proved that i and gs remain
unchanged. Hence the following lemma is important: it implies that the measure
can also be defined purely from i and gs, and that D fs will be positive.

lemma Gramian determinant:

assumes LLL invariant (i, fs, gs) and k ≤ m

shows Gramian determinant fs k = (
∏

j<k. ||gs ! j||2)

and Gramian determinant fs k > 0

7 4α
4+α

= 1 for α = 4
3

and in that case one has to drop the logarithm from the measure.

With these preparations we are able to prove the most important property of
the LLL algorithm, namely that each loop iteration – implemented as function
basis reduction step – preserves the invariant and decreases the measure.

lemma basis reduction step:

assumes LLL invariant (i, fs, gs) and i < m

and basis reduction step α (i, fs, gs) = (i ′, fs ′, gs ′)

shows LLL invariant (i ′, fs ′, gs ′)

and LLL measure (i ′, fs ′, gs ′) < LLL measure (i, fs, gs)

Our correctness proofs for basis reduction add rows and basis reduction step
closely follows the description in the textbook, and we mainly refer to the for-
malization and the textbook for more details: the presented lemmas are based
on a sequence of technical lemmas that we do not expose at this point.

Here, we only sketch the termination proof: The value of the Gramian deter-
minant for parameter k 6= i stays identical when swapping fi and fi−1, since it
just corresponds to an exchange of two rows which will not modify the absolute
value of the determinant. The Gramian determinant for parameter k = i will
decrease by using the first statement of lemma Gramian determinant, the explicit
formula for the updated gi−1 in line 6, the condition ||gi−1||2 > α · ||gi||2, and the
fact that |µi,i−1| ≤ 1

2 .
The termination proof together with the measure function shows that the

implemented algorithm requires a polynomial number of arithmetic operations:
we prove an upper bound on the number of iterations which in total shows
that executing Algorithm 2 for n = m requires O(n4 · logA) many arithmetic
operations for A = max {||fi||2 | i < m}.

lemma LLL measure approx:

assumes LLL invariant (i, fs, gs) and α > 4/3

and ∀ i < m. ||fs ! i||2 ≤ A

shows LLL measure (i, fs, gs) ≤ m + 2 ·m ·m · log (4·α
4+α) A

end (* context of L, m, and α *)

We did not formally prove the polynomial-time complexity in Isabelle. This
task would at least require two further steps: since Isabelle/HOL functions are
mathematical functions, we would need to instrument them by an instruction
counter and hence make its usage more cumbersome; and we would need to
formally prove that each arithmetic operation can be performed in polynomial
time by giving bounds for the numerators and denominators in fi, gi, and µi,j .

Note that the reasoning on the number bounds should not be under-estimated.
To illustrate this, consider the following modification to the algorithm, which we
described in the submitted version of this paper: Since the termination proof only
requires that |µi,i−1| must be small, for obtaining a weakly reduced basis one
may replace the for-loop in lines 3–4 by a single update fi := fi−bµi,i−1e · fi−1.
Then the total number of arithmetic operations will reduce to O(n3 ·logA). How-
ever, we figured out experimentally that this change is a bad idea, since then the

bit-lengths of the norms of fi are no longer polynomially bounded: some input
lattice of dimension 20 with 20 digit numbers led to the consumption of more
than 64 GB of memory so that we had to abort the computation.

This indicates that formally verified bounds would be valuable. And indeed,
the textbook contains informal proofs for bounds, provided that each µi,j is
small after executing lines 3–4. Here, a weakly reduced basis does not suffice.

With the help of basis reduction step it is now trivial to formally verify the
correctness of the LLL algorithm, which is defined as reduce basis in the sources.

Finally, recall that the first element of a (weakly) reduced basis fs is a short
vector in the lattice. Hence, it is easy to define a wrapper function short vector
around reduce basis, which is a verified algorithm to compute short vectors.

lemma short vector:

assumes α ≥ 4/3 and lin indpt list (RAT fs)

and short vector α fs = v and length fs = m and m 6= 0

shows v ∈ lattice of fs − {0v n}
and h ∈ lattice of fs − {0v n} −→ ||v||2 ≤ αm−1 · ||h||2

5 Experimental Evaluation of the Verified LLL algorithm

We formalized short vector in a way that permits code generation [4]. Hence,
we can evaluate the efficiency of our verified LLL algorithm. Here, we use a
fixed approximation factor α = 2, we map Isabelle’s integer operations onto the
unbounded integer operations of the target language Haskell, and we compile
the code with ghc version 8.2.1 using the -O2 parameter.

We consider the LatticeReduce procedure of Mathematica version 11.2 as an
alternative way to compute short vectors. The documentation does not specify
the value of α, but mentions that Storjohann’s variant [12] of the LLL basis
reduction algorithm is implemented.

For the input, we use lattices of dimension n where each of the n basis vectors
has n-digit random numbers as coefficients. So, the size of the input basis is cubic
in n; for instance the bases for n = 1, 10, and 100 are stored in files measured
in bytes, kilo-bytes, and mega-bytes, respectively.

Figure 1 displays the execution times in seconds for increasing n. The exper-
iments have all been run on an iMacPro with a 3.2 GHz Intel Xeon W running
macOS 10.13.4. The execution times of both algorithms can both be approxi-
mated by a polynomial c · n6 – the gray lines behind the dots – where the ratio
between the constant factors c is 306.5, which is also reflected in the diagrams
by using different scales for the time-axis.

Note that for n ≥ 50, our implementation spends between 28–67 % of its
time to compute the initial GSO on rational numbers, and 83–85 % of the
total time of each run is used in integer GCD-computations. The GCDs are
required for the verified implementation of rational numbers in Isabelle/HOL,
which always normalizes rational numbers. Hence, optimizing our verified im-
plementation for random lattices is not at all trivial, since a significant amount

� �� �� �� �� ���

�

�

�

�

�

��

��

�

���
�
��
�

(a) Mathematica 11.2

� �� �� �� �� ���

�

����

����

����

����

�

���
�
��
�

(b) Verified code of Algorithm 2

Fig. 1: Execution time of short vector computation on random lattices

of time is spent in the cubic number of rational-number operations required in
line 1 of Algorithm 2. Integrating and verifying known optimizations of GSO
computations and LLL [10, Chapter 4] also looks challenging, since they depend
on floating-point arithmetic. A corresponding implementation outperforms our
verified algorithm by far: the tool fplll version 5.2.0 [13] can reduce each of our
examples in less than 0.01 seconds.

Besides efficiency, it is worth mentioning that we did not find bugs in fplll’s
or Mathematica’s implementation: the short vectors that are generated by both
tools have always been as short as our verified ones, but not much shorter: the
average ratio between the norms is 0.74 for fplll and 0.93 for Mathemathica.

Under http://cl-informatik.uibk.ac.at/isafor/LLL_src.tgz one can
access the sources and the input lattices for the experiments.

6 Factorization of Polynomials in Polynomial Time

In this section we first describe how the LLL algorithm helps to factor integer
polynomials, by following the textbook [16, Chapters 16.4–16.5].

We only summarize how we tried to verify the corresponding factorization
Algorithm 16.22 of the textbook. Indeed, we almost finished it: after 1 500 lines
of code we had only one remaining goal to prove. However, we were unable
to figure out how to discharge this goal and then also started to search for
inputs where the algorithm delivers wrong results. After a while we realized that
Algorithm 16.22 indeed has a serious flaw, with details provided in Section 6.2.

Therefore, we derive another algorithm based on ideas from the textbook,
which also runs in polynomial-time, and prove its soundness in Isabelle/HOL.

6.1 Short Vectors for Polynomial Factorization

In order to factor an integer polynomial f , we may assume a modular factoriza-
tion of f into several monic factors ui: f ≡ lc f ·

∏
i ui modulo m where m = pl

is some prime power for user-specified l. In Isabelle, we just reuse our verified
modular factorization algorithm [1] to obtain the modular factorization of f .

http://cl-informatik.uibk.ac.at/isafor/LLL_src.tgz

We briefly explain how to compute non-trivial integer polynomial factors h
of f based on Lemma 1, as also informally described in the textbook.

Lemma 1 ([16, Lemma 16.20]). Let f, g, u be non-constant integer polyno-
mials. Let u be monic. If u divides f modulo m, u divides g modulo m, and
||f ||degree g · ||g||degree f < m, then h = gcd f g is non-constant.

Let f be a polynomial of degree n. Let u be any degree-d factor of f mod-
ulo m. Now assume that f is reducible, so f = f1 · f2 where w.l.o.g., we assume
that u divides f1 modulo m and that 0 < degree f1 < n. Let the lattice Lu,k
be the set of all polynomials of degree below d + k which are divisible by u
modulo m. As degree f1 < n, clearly f1 ∈ Lu,n−d.

In order to instantiate Lemma 1, it now suffices to take g as the polynomial
corresponding to any short vector in Lu,k: u will divide g modulo m by definition
of Lu,k and moreover degree g < n. The short vector requirement will provide
an upper bound to satisfy the assumption ||f1||degree g · ||g||degree f1 < m.

||g|| ≤ 2(n−1)/2 · ||f1|| ≤ 2(n−1)/2 · 2n−1||f || = 23(n−1)/2||f || (4)

||f1||degree g·||g||degree f1 ≤ (2n−1||f ||)n−1 · (23(n−1)/2||f ||)n−1 (5)

= ||f ||2(n−1) · 25(n−1)
2/2

Here, the first inequality in (4) is the short vector approximation (f1 ∈ Lu,k).
The second inequality in (4) is Mignotte’s factor bound (f1 is a factor of f).
Finally, Mignotte’s factor bound and (4) are used as approximations of ||f1|| and
||g|| in (5), respectively.

Hence, if l is chosen large enough so that m = pl > ||f ||2(n−1) ·25(n−1)2/2 then
all preconditions of Lemma 1 are satisfied, and h1 := gcd f1 g will be a non-
constant factor of f . Since f1 divides f , also h := gcd f g will be a non-constant
factor of f . Moreover, the degree of h will be strictly less than n, and so h is a
proper factor of f .

6.2 Bug in Modern Computer Algebra

In the previous section we have chosen the lattice Lu,k for k = n − d to find
a polynomial h that is a proper factor of f . This has the disadvantage that h
is not necessarily irreducible. In contrast, Algorithm 16.22 tries to directly find
irreducible factors by iteratively searching for factors w.r.t. the lattices Lu,k for
increasing k from 1 up to n− d.

We do not have the space to present Algorithm 16.22 in detail, but just
state that the arguments in the textbook and the provided invariants all look
reasonable. Luckily, Isabelle was not so convinced: We got stuck with the goal
that the content of the polynomial g corresponding to the short vector is not
divisible by the chosen prime p, and this is not necessarily true.

The first problem occurs if the content of g is divisible by p. Consider f1 =
x12 + x10 + x8 + x5 + x4 + 1 and f2 = x. When trying to factor f = f1 · f2, then
p = 2 is chosen, and at a certain point the short vector computation is invoked

for a modular factor u of degree 9 where Lu,4 contains f1. Since f1 itself is a
shortest vector, g = p · f1 is a short vector: the approximation quality permits
any vector of Lu,4 of norm at most αdegree f1/2 · ||f1|| = 64 · ||f1||. For this valid
choice of g, the result of Algorithm 16.22 will be the non-factorization f = f1 ·1.

We informed the authors of the textbook about this first problem. They
admitted the flaw and it is easy to fix.

There is however a second potential problem. If g is even divisible by pl,
then Algorithm 16.22 will again return wrong results. In the formalization we
therefore integrate the check |lc g| < pl into the factorization algorithm8, and
then this modified version of Algorithm 16.22 is correct.

We could not conclude the question whether the additional check is really
required, i.e., whether |lc g| ≥ pl can ever happen, and just give some indication
that the question is non-trivial. For instance, when factoring f1 above, then pl

is a number with 124 digits, ||u|| > pl, so in particular all basis elements of Lu,1
will have a norm of at least pl. Note that Lu,1 also does not have quite short
vectors: any vector in Lu,1 will have norm of at least 111 digits. However, since
the approximation factor in this example is only two digits long, the short vector
computation must result in a vector whose norm has at most 113 digits, which
is not enough for permitting pl with its 124 digits as leading coefficient of g.

6.3 A Verified Factorization Algorithm

To verify the factorization algorithm of Section 6.1, we formalize the two key
facts to relate lattices and factors of polynomials: Lemma 1 and the lattice Lu,k.

To prove Lemma 1, we partially follow the textbook, although we do the
final reasoning by means of some properties of resultants which were already
proved in the previous development of algebraic numbers [14]. We also formalize
Hadamard’s inequality, which states that for any square matrix A having rows
vi, then |det A| ≤

∏
||vi||. Essentially, the proof of Lemma 1 consists of showing

that the resultant of f and g is 0, and then deduce degree (gcd f g) > 0. We
omit the full-detailed proof, the interested reader can see it in the sources.

To define the lattice Lu,k for a degree d polynomial u and integer k, we
define the basis v0, . . . , vk+d−1 of the lattice Lu,k such that each vi is the (k +
d)-dimensional vector corresponding to polynomial u(x) · xi if i < k, and to
monomial m · xk+d−i if k ≤ i < k + d.

We define the basis in Isabelle/HOL as factorization lattice u k m as follows:

definition factorization lattice u k m = (let d = degree u in

map (λi. vec of poly n (u · monom 1 i) (d + k)) [k >..0] @

map (λi. vec of poly n (monom m i) (d + k)) [d >..0])

Here vec of poly n p n is a function that transforms a polynomial p into
a vector of dimension n with coefficients in the reverse order and completing

8 When discussing the second problem with the authors, they proposed an even more
restrictive check.

with zeroes if necessary. We use it to identify an integer polynomial f of degree
< n with its coefficient vector in Zn. We also define its inverse operation, which
transforms a vector into a polynomial, as poly of vec. [a>..b] denotes the reversed
sorted list of natural elements from b to a−1 (with b < a) and monom a b denotes

the monomial axb. To visualize the definition, for u(x) =
∑d
i=0 uix

i we have

vT0
...

vTk−1
vTk
...

vTk+d−1


=



ud ud−1 · · · u0
. . .

. . .
. . .

ud ud−1 · · · u0
m

. . .

m

 =: S (6)

and factorization lattice (x+ 1 894 885 908) 2 231 is precisely the basis (f1, f2, f3)
of Example 1.

There are some important facts that we must prove about factorization lattice.

– factorization lattice u k m is a list of linearly independent vectors as required
for applying the LLL algorithm to find a short vector in Lu,k.

– Lu,k characterizes the polynomials which have u as a factor modulo m:

g ∈ poly of vec (Lu,k)⇐⇒ degree g < k + d and u divides g modulo m

That is, any polynomial that satisfies the right hand side can be transformed
into a vector that can be expressed as integer linear combination of the vec-
tors of factorization lattice. Similarly, any vector in the lattice Lu,k can be ex-
pressed as integer linear combination of factorization lattice and corresponds
to a polynomial of degree < k + d which is divisible by u modulo m.

The first property is a consequence of obvious facts that the matrix S is upper
triangular, and its diagonal entries are non-zero if both u and m are non-zero.
Thus, the vectors in factorization lattice u k m are linearly independent.

Now we look at the second property. For one direction, we see the matrix S
in (6) as (a generalization of) the Sylvester matrix of polynomial u and constant
polynomial m. Then we generalize an existing formalization about Sylvester
matrices as follows:

lemma sylvester sub poly:

assumes degree u ≤ d and degree q ≤ k and c ∈ carrier vec (k+d)

shows poly of vec ((sylvester mat sub d k u q)T ∗v c) =

poly of vec (vec first c k) · u + poly of vec (vec last c d) · q

We instantiate q by the constant polynomial m. So for every c ∈ Zk+d we get

poly of vec (STc) = r · u+m · s ≡ ru modulo m

for some polynomials r and s. As every g ∈ Lu,k is represented as STc for
some integer coefficient vector c ∈ Zk+d, we conclude that every g ∈ Lu,k is

divisible by u modulo m. The other direction requires the use of the division
with remainder by the monic polynomial u. Although we closely follow the text-
book, the actual formalization of these reasonings requires some more tedious
work, namely the connection between the matrix-to-vector multiplication (∗v)
of Matrix.thy and linear combinations (lincomb) of HOL-Algebra. The former
is naturally described as a summation over lists (sumlist which we define via
foldr), while the latter is set-based finsum. We follow the existing connection
between sum list and sum of the class-based world to the locale-based world,
which demands some generalizations of the standard library.

Once those properties are proved, we implement an algorithm for the recon-
struction of factors within a context that fixes p and l :9

function LLL reconstruction f us =

(let u = choose u us; (* pick any element of us *)

g = LLL short polynomial (degree f) u;

f2 = gcd f g (* candidate factor *)

in if degree f2 = 0 then [f] (* f is irreducible *)

else let f1 = f div f2; (* f = f1 * f2 *)

(us1, us2) = partition (λ ui. poly mod.dvdm p ui f1) us

in LLL reconstruction f1 us1 @ LLL reconstruction f2 us2)

LLL reconstruction is a recursive function which receives two parameters: the
polynomial f that has to be factored and us, which is the list of modular factors of
the polynomial f . LLL short polynomial computes a short vector (and transforms
it into a polynomial) in the lattice generated by a basis for Lu,k and suitable k,
that is, factorization lattice u (degree f − degree u). us1 is the list of elements of
us that divide f1 modulo p, and us2 contains the rest of elements of us. LLL
reconstruction returns the list of irreducible factors of f . Termination follows
from the fact that the degree decreases, that is, in each step the degree of both
f1 and f2 is strictly less than the degree of f .

In order to formally verify the correctness of the reconstruction algorithm for
a polynomial F we use the following invariants. They consider invocations LLL
reconstruction f us for every intermediate factor f of F .

1. f divides F
2. degree f > 0
3. lc f ·

∏
us is the unique modular factorization of f modulo pl

4. lc F and p are coprime, and F is square-free in Zp[x]

5. pl is sufficently large: ||F||2(N−1)25(N−1)2/2 < pl where N = degree F

Concerning complexity, it is easy to see that if f splits into i factors, then
LLL reconstruction invokes the short vector computation for exactly i + (i − 1)
times: i− 1 invocations are used to split f into the i irreducible factors, and for
each of these factors one invocation is required to finally detect irreducibility.

9 The corresponding Isabelle/HOL implementation contains some sanity checks which
are solely used to ensure termination. We present here a simplified version.

Finally, we combine the new reconstruction algorithm with existing results
(the algorithms for computing an appropriate prime p, the corresponding expo-
nent l, the factorization in Zp[x] and its Hensel-lifting to Zpl [x]) presented in
the Berlekamp–Zassenhaus development to get a polynomial-time factorization
algorithm for square-free and content-free polynomials.

lemma LLL factorization:

assumes LLL factorization f = gs

and square free f and content free f and degree f 6= 0

shows f = prod list gs and ∀g ∈ set gs. irreducible g

We further combine this algorithm with a pre-processing algorithm of earlier
work [1]. This pre-processing splits a polynomial f into c · f11 · . . . · fkk where c is
the content of f which is not further factored. Each fi is square-free and content-
free, and will then be passed to LLL factorization. The combined algorithm factors
arbitrary univariate integer polynomials into its content and a list of irreducible
polynomials.

When experimentally comparing our verified LLL-based factorization algo-
rithm with the verified Berlekamp–Zassenhaus factorization algorithm [1] we see
no surprises. On the random polynomials from the experiments in [1], Berlekamp–
Zassenhaus’s algorithm performs much better: it can factor each polynomial
within a minute, whereas the LLL-based algorithm already fails on the smallest
example. It is an irreducible polynomial with 100 coefficients where the LLL
algorithm was aborted after a day when trying to compute a reduced basis for
a lattice of dimension 99 with coefficients having up to 7 763 digits.

7 Summary

We formalized the LLL algorithm for finding a basis with short, nearly orthog-
onal vectors of an integer lattice, as well as its most famous application to get
a verified factorization algorithm for integer polynomials which runs in polyno-
mial time. The work is based on our previous formalization of the Berlekamp–
Zassenhaus factorization algorithm, where the exponential reconstruction phase
is replaced by the polynomial-time lattice-reduction algorithm. The whole for-
malization consists of about 10 000 lines of code, including a 2 200-line theory
which contains generalizations and theorems that are not exclusive to our de-
velopment. This theory can extend the Isabelle standard library and up to six
different AFP entries. As far as we know, this is the first formalization of the
LLL algorithm and its application to factor polynomials in any theorem prover.
This formalization led us to find a major flaw in a textbook.

There are some possibilities to extend the current formalization, e.g., by
verifying faster variants of the LLL algorithm or by integrating other applications
like the more efficient factorization algorithm of van Hoeij [10, Chapter 8]: it uses
simpler lattices to factor polynomials, but its verification is much more intricate.

Acknowledgments

This research was supported by the Austrian Science Fund (FWF) project Y757.
Jose Divasón is partially funded by the Spanish projects MTM2014-54151-P and
MTM2017-88804-P. Akihisa Yamada is supported by ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), JST. Some of
the research was conducted while Sebastiaan Joosten and Akihisa Yamada were
working in the University of Innsbruck. We thank Jürgen Gerhard and Joachim
von zur Gathen for discussions on the problems described in Section 6.2, and
Bertram Felgenhauer for discussions on gaps in the paper proofs. The authors
are listed in alphabetical order regardless of individual contributions or seniority.

References

1. J. Divasón, S. J. C. Joosten, R. Thiemann, and A. Yamada. A formalization of the
Berlekamp–Zassenhaus factorization algorithm. In CPP 2017, pages 17–29. ACM,
2017.

2. J. Divasón, S. Joosten, R. Thiemann, and A. Yamada. A verified factorization
algorithm for integer polynomials with polynomial complexity. Archive of For-
mal Proofs, Feb. 2018. http://isa-afp.org/entries/LLL_Factorization.html,
Formal proof development.

3. J. Divasón, S. Joosten, R. Thiemann, and A. Yamada. A verified LLL algorithm.
Archive of Formal Proofs, Feb. 2018. http://isa-afp.org/entries/LLL_Basis_

Reduction.html, Formal proof development.
4. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems.

In FLOPS 2010, volume 6009 of LNCS, pages 103–117, 2010.
5. J. Harrison. The HOL light theory of Euclidean space. J. Autom. Reasoning,

50(2):173–190, 2013.
6. A. Krauss. Recursive definitions of monadic functions. In PAR 2010, volume 43

of EPTCS, pages 1–13, 2010.
7. H. Lee. Vector spaces. Archive of Formal Proofs, 2014.
8. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261:515–534, 1982.
9. D. Micciancio. The shortest vector in a lattice is hard to approximate to within

some constant. SIAM J. Comput., 30(6):2008–2035, 2000.
10. P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm – Survey and Applications.

Information Security and Cryptography. Springer, 2010.
11. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
12. A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical

Report 249, Department of Computer Science, ETH Zurich, 1996.
13. The FPLLL development team. fplll, a lattice reduction library. Available at

https://github.com/fplll/fplll, 2016.
14. R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In ITP 2016,

volume 9807 of LNCS, pages 391–408, 2016.
15. R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Isabelle/HOL.

In CPP 2016, pages 88–99. ACM, 2016.
16. J. von zur Gathen and J. Gerhard. Modern computer algebra (3rd ed.). Cambridge

University Press, 2013.

http://isa-afp.org/entries/LLL_Factorization.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html
https://github.com/fplll/fplll

	A Formalization of the LLL Basis Reduction Algorithm
	Jose Divasón, Sebastiaan Joosten, René Thiemann, and Akihisa Yamada

