
Certification of Confluence Proofs using CeTA∗

Julian Nagele and René Thiemann

University of Innsbruck, Austria, {julian.nagele|rene.thiemann}@uibk.ac.at

1 Introduction

CeTA was originally developed as a tool for certifying termination proofs [5] which have to be
provided as certificates in the CPF-format. Its soundness is proven within IsaFoR, the Isabelle
Formalization of Rewriting.1 In the meantime, CeTA can also be used as a tool for certifying
confluence and non-confluence proofs. In the following system description, we give a short
overview on what kind of proofs are supported, and which information has to be put into the
certificates. As we will see, only a small amount of information is required, so that in the future
we hope that CSI [8] will not stay the only confluence tool which can produce certificates.

2 Terminating Term Rewrite Systems (TRSs)

It is well known that confluence of terminating TRSs is decidable by checking joinability of all
critical pairs. The latter can be decided by reducing both terms of a critical pair to an arbitrary
normal form and then compare whether these are equal. This technique is also supported in CeTA,
where in the certificate one just has to provide the termination proof, and CeTA automatically
constructs all critical pairs and checks their joinability by rewriting to normal forms.

Alternatively to this automatic mode via normal forms, there is also an automatic mode
which does a breadth-first search for joinability, or one can completely provide the joining
sequences within the certificate. Although the latter results in more verbose certificates which
are harder to produce, it might actually be faster to check. For example, for R = Rack ∪
{f(x) → x, a → ack(1000, 1000), a → f(ack(1000, 1000))} where Rack is a convergent TRS for
the Ackermann-function, all critical pairs are joinable, but rewriting them to normal form
definitely won’t work within a reasonable amount of time.

3 Certificates for Confluence

IsaFoR contains formalizations of two techniques which ensure confluence and do not demand
termination: strongly closed and linear TRSs as well as weakly orthogonal TRSs are confluent.

For the latter, the certificate only consists of the statement that the TRS is weakly orthog-
onal which is a syntactic criterion that can easily be checked by CeTA.

For the former criterion, the interesting part is to ensure that a given TRS R is strongly
closed, i.e., each (reversed) critical pair (s, t) must be joinable to a common reduct u such that
s →∗R u and t →=

R u. Clearly, rewriting to normal forms is of little use here, so we just offer
a breadth-first search within CeTA. In the certificate one just has to provide a bound on the
length of the joining derivations within the certificate. The reason for requiring the explicit
bound is that all functions within Isabelle have to be total. In contrast to Section 2, at this
point R is not necessarily terminating, and thus an unbounded breadth-first search might be

∗Supported by the Austrian Science Fund (FWF), projects P22467 and P22767.
1At http://cl-informatik.uibk.ac.at/software/ceta/ one can access CeTA, IsaFoR, and the CPF-format.

1

http://cl-informatik.uibk.ac.at/software/ceta/


Certification of Confluence Proofs using CeTA Julian Nagele and René Thiemann

nonterminating, whereas an explicit bound on the depth easily ensures totality.
At this point, let us recall our notions of TRSs and critical pairs: a TRS R is just a set of

rules which does not necessarily satisfy the following standard variable conditions.

VC lhs(R) = ∀`→ r ∈ R. ` /∈ V VC⊇(R) = ∀`→ r ∈ R.V(`) ⊇ V(r)

The critical pairs of a TRS R are defined as

CP(R) = {(rσ, C[r′]σ) | `→ r ∈ R, `′ → r′ ∈ R, ` = C[u], u /∈ V,mgu(u, `′) = σ}

where it is assumed that the variables in ` → r and `′ → r′ have been renamed apart. We do
not exclude root overlaps of a rule with itself, which gives rise to several trivial critical pairs
(rσ, rσ). Therefore, most techniques within IsaFoR that rely on critical pairs immediately try to
removal all trivial critical pairs, i.e., they consider {(s, t) ∈ CP(R) | s 6= t} instead of CP(R).
So, in practice these additional critical pairs do not play any role. However, for TRSs that do
not satisfy the variable conditions, it is essential to include them. For example, for the TRS
R1 = {a → y} we have CP(R) = {(x, y)}, whereas without root-overlaps with the same rule
there wouldn’t be any critical pair and we might wrongly conclude confluence via orthogonality.

The confluence criterion of weak orthogonality not only implicitly demands VC⊇(R), but
explicitly demands VC lhs(R). In contrast, none of the variable conditions is required for
strongly closed and linear TRSs. Hence, the following two TRSs are confluent via this cri-
terion: R2 = {x → f(x), y → g(y)} is strongly closed as there are no critical pairs, and
R3 = {a → f(x), f(x) → b} is strongly closed as the only non-trivial critical pair is (f(x), f(y))
which is obviously joinable in one step to b. Also R4 = {a → f(x), f(x) → b, x → f(g(x))}—
which satisfies neither of the variable conditions—is strongly closed and linear, and thus con-
fluent. Similarly as for weak orthogonality, the addition of root overlaps w.r.t. the same rule
are essential, as otherwise the non-confluent and linear TRS R1 would be strongly closed.

4 Disproving Confluence via Non-Joinable Forks

One way to disprove confluence of an arbitrary, possibly non-terminating TRS R is to provide
a non-joinable fork, i.e., s →∗R t1 and s →∗R t2 such that t1 and t2 have no common reduct.
To certify these proofs, in CeTA we demand the concrete derivations from s to t1 and t2 and
additionally a certificate that t1 and t2 are not joinable, which is clearly the more interesting
part. To this end, we generalize the notion of non-joinability to two TRSs which allows us to
conveniently and modularly formalize several existing techniques for non-joinability.

NJR1,R2(t1, t2) = (¬∃u. t1 →∗R1
u ∧ t2 →∗R2

u)

4.1 Different Normal Forms (NF)

Obviously, if ti ∈ NF (Ri) for i = 1, 2 and t1 6= t2, then NJR1,R2(t1, t2). The certificate for this
kind of non-joinability proof does not require any information. Note that for this technique
only VC lhs(Ri) has to be satisfied for both i—otherwise, there would not be any normal form.

4.2 Tcap and Unification

The function tcapR can approximate an upper part of a term where no rewriting with R is
possible, and thus, remains unchanged by rewriting. Hence, it suffices to check that tcapR1

(t1)
is not unifiable with tcapR2

(t2) to ensure NJR1,R2(t1, t2).
Since tcapRi

replaces variables by fresh ones, it is more precise to consider the terms t1σ

2



Certification of Confluence Proofs using CeTA Julian Nagele and René Thiemann

and t2σ instead of t1 and t2, where σ substitutes each variable by a different fresh constants [8].
Obviously, NJR1,R2

(t1σ, t2σ) implies NJR1,R2
(t1, t2) for every substitution σ, and therefore

CeTA always constructs a suitable substitution σ and then applies tcapRi
and the unification

algorithm. The certificate does not demand any additional information for this technique.

4.3 Usable Rules for Reachability

In [1] the usable rules for reachability Ur have been defined (via some inductive definition of
auxiliary usable rules U0). They have the crucial property that t →∗R s implies t →∗Ur(R,t) s.
This property immediately shows the following theorem.

Theorem 1. NJUr(R1,t1),Ur(R2,t2)(t1, t2) implies NJR1,R2
(t1, t2).

Whereas the crucial property was easily formalized within IsaFoR following the original proof,
it was actually more complicated to provide an implementation of usable rules which turns the
inductive definition of U0 into executable code.

The implementation is a standard working list algorithm which moves non-usable rules into
the set of usable rules until no new usable rules occur. The major problem was that cyclic
reasoning like a → b is usable, since b → a is usable, since a → b is usable, . . . is perfectly
fine in the inductive definition, but it cannot be represented in the working list algorithm. To
this end, the crucial idea was to internally built a proof object why some rule is usable which
explicitly contains all involved rules. Afterwards, by a minimality argument one can remove
all cycles and then soundness of the algorithm is easily proven. Note that we did not had this
problem in previous work on usable rules [3] where we explicitly demand that the set of usable
rules is provided in the certificate. However, due to our implementation of usable rules, we no
longer require the set of usable rules in the certificate.

4.4 Discrimination Pairs

In [1] term orders are utilized to prove non-joinability. To be precise, (%,�) is a discrimination
pair iff % is a rewrite order, � is irreflexive, and % ◦ � ⊆ �.2 We formalized the following
theorem which in combination with Theorem 1 completely simulates [1, Theorem 12].

Theorem 2. If (%,�) is a discrimination pair, R−11 ∪R2 ⊆ %, and t1 � t2 then NJR1,R2(t1, t2).

Proof. We perform a proof by contradiction, so assume t1 →∗R1
u and t2 →∗R2

u, hence
t2 →∗R−1

1 ∪R2
t1. Then by the preconditions we obtain t2 %∗ t1 � t2. By iteratively using

% ◦ � ⊆ � we achieve t2 � t2 in contradiction to irreflexivity of �.

We have also proven within IsaFoR that every reduction pair is a discrimination pair, and
thus one can use all reduction pairs that are available in CeTA within the certificate.

4.5 Argument Filters

In [1] it is shown that argument filters π are useful for non-confluence proofs. The essence is

Observation 3. NJπ(R1),π(R2)(π(t1), π(t2)) implies NJR1,R2
(t1, t2).

Consequently, one may show non-joinability by applying an argument filter and then con-
tinue on the filtered problem. At this point we can completely simulate [1, Theorem 14]: apply
usable rules, apply argument filter, apply usable rules, apply discrimination pair.

2Note, that unlike what is said in [1], one does not require � ◦ % ⊆ �.

3



Certification of Confluence Proofs using CeTA Julian Nagele and René Thiemann

4.6 Interpretations

Let F be some signature. Let A be some weakly monotone F-algebra (A, (fA)f∈F ,≥), i.e.,
fA : An → A for each n-ary symbol f ∈ F , ≥ is a partial order, and for each a, b, f , a ≥ b
implies fA(. . . , a, . . . ) ≥ fA(. . . , b, . . . ). A is a quasi-model for R iff [[`]]A,α ≥ [[r]]A,α for each
` → r ∈ R and valuation α : V → A. Let a be some arbitrary but fixed element of A. This
allows us to define αa(x) = a as some default valuation.

Theorem 4. If A is a quasi-model of R−11 ∪R2 and [[t2]]A,αa
6≥ [[t1]]A,αa

then NJR1,R2
(t1, t2)

Proof. Similar as for Theorem 2. Given t2 →∗R−1
1 ∪R2

t1 and the quasi-model condition we

conclude [[t2]]A,αa
≥ [[t1]]A,αa

. This is an immediate contradiction to [[t2]]A,αa
6≥ [[t2]]A,αa

.

This proof was easy to formalize as it could reuse the formalization on semantic labeling
[4], which also includes algorithms to check the quasi-model conditions. Here, CeTA is currently
restricted to algebras on finite domains.

Note that in contrast to [1, Theorem 10], we only require [[t2]]A,αa
6≥ [[t1]]A,αa

instead
of [[t2]]A,αa

6≥ [[t1]]A,αa
∧ [[t1]]A,αa

≥ [[t2]]A,αa
. This has an immediately advantage, namely

that we can derive [1, Corollary 6] as a consequence: instantiate ≥ by equality, then weak-
monotonicity is always guaranteed, the quasi-model condition becomes a model condition, and
[[t2]]A,αa 6≥ [[t1]]A,αa is equivalent to [[t1]]A,αa 6= [[t2]]A,αa . Moreover, the usable rules can easily
be integrated as a preprocessing step in the same way as we did for discrimination pairs.

Further note that [1, Corollary 6] can also simulate [1, Theorem 5], by just taking the
quotient algebra. Therefore, by Theorems 1, 2, and 4, and Observation 3 we can now simulate
all non-joinability criteria of [1] and CeTA can also certify all example proofs of [1].

4.7 Tree Automata

A bottom-up tree automata A is a quadruple (Q,F ,∆,Qf ) with states Q, signature F , tran-
sitions ∆, and final states Qf , and L(A) ⊆ T (F) denotes the accepted regular tree language.
We say that A is closed under R if {t | s ∈ L(A), s→R t} ⊆ L(A).

Observation 5. Let A1 and A2 be tree automata. If ti ∈ L(Ai) and Ai is closed under Ri for
i = 1, 2, and L(A1) ∩ L(A2) = ∅ then NJR1,R2(t1, t2).

For checking these non-joinability proofs, CeTA implemented standard tree automata algo-
rithms for membership, intersection, and emptiness. The most difficult part is checking whether
A is closed under R for some A and R. Here, CeTA provides three alternatives. One can refer
to Genet’s criterion of compatibility, or use the more liberal condition of state-compatibility [2]
which requires an additional compatibility relation in the certificate, or one can just refer to the
decision procedure [2] which currently requires a deterministic automaton as input. Since all of
the conditions have been formalized under the condition VC⊇(R), Observation 5 can only be
applied if both TRSs satisfy this variable condition.

Example 6. Let R5 = {a→ b1, a→ b2, x→ f(x)}. Non-confluence can easily be shown since
the critical pair (b1, b2) is not joinable: E.g., take the automata Ai = ({1},F , {f(1)→ 1, bi →
1}, {1}), which satisfy all conditions of Observation 5.

5 Modularity of Confluence

In [6] it was proven that confluence is a modular property for disjoint unions of TRSs. Whereas
a certificate for applying this proof technique is trivial by just providing the decomposition, we

4



Certification of Confluence Proofs using CeTA Julian Nagele and René Thiemann

cannot certify these proofs since currently a formalization of this modularity result is missing.
However, at least we proved the easy direction of the modularity theorem that non-confluence

of one of the TRSs implies non-confluence of the disjoint union, and we can thus certify non-
confluence proofs in a modular way. We base our certifier on the following theorem. Here, we
assume an infinite set of symbols and finite signature F(R) and F(S) of the TRSs.

Theorem 7. Let F(R) ∩ F(S) = ∅, let VC⊇(R), let VC lhs(S). Then ¬CR(R) implies
¬CR(R∪ S).

Proof. By assuming ¬CR(R) there are s, t, u such that s →∗R t, s →∗R u, and NJR,R(t, u).
Since F(R) ∩ F(S) = ∅, w.l.o.g. we assume F(s) ∩ F(S) = ∅.3 By VC⊇(R) we conclude that
also (F(t)∪F(u))∩F(S) = ∅ must hold. Assume that t and u are joinable by R∪S. By looking
at the function symbols and using VC lhs(S) we conclude that the joining sequences cannot use
any rule from S. Hence, t and u are joinable by R, a contradiction to NJR,R(t, u).

There is an asymmetry in the modularity theorem, namely that R and S have to satisfy
different variable conditions. Note that in general it is not possible to weaken these conditions
as can be seen by the following two examples of [7, Example 20 and example in Section 5.3]. If
R = {a → b, a → c} and S = {x → d} (or if R = {f(x, y) → f(z, z), f(b, c) → a, b → d, c → d}
and S = {g(y, x, x) → y, g(x, x, y) → y}) then ¬CR(R), but CR(R ∪ S). Hence VC lhs(S) (or
VC⊇(R)) cannot be dropped from Theorem 7.

The relaxation on the variable conditions sometimes is helpful:

Example 8. Consider the non-confluent R5 of Example 6 and S = {g(x)→ y}. By Theorem 7
and ¬CR(R5) we immediately conclude ¬CR(R5 ∪S). Note that the proof in Example 6 is not
applicable on R5 ∪ S, since VC⊇(R5 ∪ S) does not hold.

Acknowledgments We thank Thomas Sternagel for his formalized breadth-first search al-
gorithm, and Bertram Felgenhauer and Harald Zankl for integrating CPF-export into CSI. The
authors are listed in alphabetical order regardless of individual contributions or seniority.

References

[1] T. Aoto. Disproving confluence of term rewriting systems by interpretation and ordering. In FroCoS,
volume 8152 of LNCS, pages 311–326, 2013.

[2] B. Felgenhauer and R. Thiemann. Reachability analysis with state-compatible automata. In LATA,
volume 8370 of LNCS, pages 347–359, 2014.

[3] C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable rules. In RTA,
volume 6 of LIPIcs, pages 325–340, 2010.

[4] C. Sternagel and R. Thiemann. Modular and certified semantic labeling and unlabeling. In RTA,
volume 10 of LIPIcs, pages 329–344, 2011.

[5] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs, volume
5674 of LNCS, pages 452–468, 2009.

[6] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal
of the ACM, 34(1):128–143, 1987.

[7] V. van Oostrom. Modularity of confluence. In IJCAR, volume 5195 of LNCS, pages 348–363, 2008.

[8] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In CADE, volume 6803 of
LNAI, pages 499–505, 2011.

3Here is exactly the point where in the formalization we use the assumptions of finite signatures and an
infinite set of symbols. Then it is always possible to rename all symbols in F(s) ∩ F(S) into fresh ones.

5


	Introduction
	Terminating Term Rewrite Systems (TRSs)
	Certificates for Confluence
	Disproving Confluence via Non-Joinable Forks
	Different Normal Forms (NF)
	Tcap and Unification
	Usable Rules for Reachability
	Discrimination Pairs
	Argument Filters
	Interpretations
	Tree Automata

	Modularity of Confluence

