
Noname manuscript No.
(will be inserted by the editor)

SAT Solving for Termination Proofs with Recursive
Path Orders and Dependency Pairs

Michael Codish · Jürgen Giesl ·
Peter Schneider-Kamp · René Thiemann

the date of receipt and acceptance should be inserted later

Abstract This paper introduces a propositional encoding for recursive path orders

(RPO), in connection with dependency pairs. Hence, we capture in a uniform setting

all common instances of RPO, i.e., lexicographic path orders (LPO), multiset path

orders (MPO), and lexicographic path orders with status (LPOS). This facilitates the

application of SAT solvers for termination analysis of term rewrite systems (TRSs).

We address four main inter-related issues and show how to encode them as sat-

isfiability problems of propositional formulas that can be efficiently handled by SAT

solving: (A) the lexicographic comparison w.r.t. a permutation of the arguments; (B)

the multiset extension of a base order; (C) the combined search for a path order to-

gether with an argument filter to orient a set of inequalities; and (D) how the choice of

the argument filter influences the set of inequalities that have to be oriented (so-called

usable rules).

We have implemented our contributions in the termination prover AProVE. Ex-

tensive experiments show that by our encoding and the application of SAT solvers

one obtains speedups in orders of magnitude as well as increased termination proving

power.

Keywords Termination · SAT Solving · Term Rewriting · Recursive Path Order ·
Dependency Pairs

Supported by the G.I.F. under grant 966-116.6 and by the DFG under grant GI 274/5-3.

M. Codish
Department of Computer Science, Ben-Gurion University of the Negev, PoB 653, Beer-Sheva,
Israel 84105, E-mail: mcodish@cs.bgu.ac.il

J. Giesl
LuFG Informatik 2, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany, E-mail:
giesl@informatik.rwth-aachen.de

P. Schneider-Kamp
Department of Mathematics & Computer Science, University of Southern Denmark, Cam-
pusvej 55, DK-5230 Odense M, Denmark, E-mail: petersk@imada.sdu.dk

R. Thiemann
Institute of Computer Science, University of Innsbruck, Techniker Str. 21a, A-6020 Innsbruck,
Austria, E-mail: rene.thiemann@uibk.ac.at

1 Introduction

One of the the most fundamental decision problems in computer science is the halting

problem, i.e., given a program and an input, decide whether the program terminates

after finitely many steps. While Turing showed this problem to be undecidable in

general, developing analysis techniques that can automatically prove termination for

many programs is of great practical interest.

In this paper, we focus on methods to prove termination of term rewrite systems.

The main theme when proving termination of TRSs is the use of well-founded orders

(i.e., orders � where there is no infinite decreasing sequence t0 � t1 � . . .). Roughly

speaking, if all rules of a TRS R are decreasing w.r.t. some well-founded order �, then

termination is proven. This directly yields a general strategy to prove termination: set

up a constraint ` � r for each rule `→ r and try to find a suitable well-founded order

� satisfying all constraints. Hence, proving termination becomes a search problem.

Recent techniques for termination proving involve iterative methods. Here, one

generates constraints which allow to identify some rules which do not cause non-

termination and removes them. The termination proof then continues iteratively until

all rules have been removed. Usually, all rules have to be at least weakly decreasing

(i.e., all rules `→ r of the TRS R have to satisfy ` % r for a quasi-order % that is “com-

patible” with �). Then one can remove those rules that are strictly decreasing (i.e.,

those rules ` → r satisfying ` � r). If the constraints can be solved, one can continue

to prove termination of the simplified system, searching for other orders until no rules

remain. In this setting, the front-end of the termination prover produces the following

Constraint (1), where the disjunction enforces that at least one rule can be removed.

Then the back-end of the termination prover has to search for a well-founded order

which satisfies the constraint. We note that here, � has to be closed under contexts.

We call this constraint the rule removal constraint.^
`→r∈R

` % r ∧
_

`→r∈R
` � r (1)

An improvement of this approach is the so-called dependency pair (DP) method [1,22,

24,26] used in most TRS termination tools. Here, one regards both the rules of the

TRS R and a set P of additional rules called dependency pairs (which result from

recursive function calls). In this approach all rules R and all DPs P have to be weakly

decreasing and one can remove those DPs that are strictly decreasing. In this approach,

the front-end of the termination prover generates the following constraint where � is

no longer required to be closed under contexts. We call this constraint the dependency

pair constraint. ^
`→r∈P ∪R

` % r ∧
_

`→r∈P
` � r (2)

This can be improved further by observing that under certain conditions, one does not

have to require ` % r for all rules `→ r of R. Instead, it suffices to require ` % r only

for a certain subset of R, viz. the so-called usable rules U(P,R, π) [1,24,27]. This leads

to the following constraint which we call the usable rule constraint.^
`→r∈P ∪U(P,R,π)

` % r ∧
_

`→r∈P
` � r

(3)

2

Note that here, the constraint itself depends on the order that is searched for (since the

order � determines which rules are considered to be “usable”, i.e., the set U(P,R, π)

depends on �).

So a main problem for termination analysis of TRSs is to solve constraints like

(1)–(3). In other words, given a constraint of one of these forms, one has to search

(automatically) for a well-founded order satisfying the constraint.

A class of orders which are often used to find solutions for such constraints are

recursive path orders (RPO) [12,29,36]. These orders are based on a precedence rela-

tion >Σ on the function symbols occurring in terms. A recursive path order between a

pair of terms s = f(s1, . . . , sn) and t = g(t1, . . . , tm) is then defined as a statement on

the precedence relation (e.g., f >Σ g) between the root symbols of s and t, together

with an inductive statement on the relation between the arguments 〈s1, . . . , sn〉 and

〈t1, . . . , tm〉 of the two terms. In an RPO definition, every function symbol f is associ-

ated with a status which indicates if the arguments of terms rooted with f should be

compared lexicographically w.r.t. some permutation of the arguments, or as multisets.

Allowing symbols to have either lexicographic or multiset status increases the num-

ber of possible RPOs exponentially, and allowing the status of a symbol to be defined

in terms of a permutation of arguments leads to an additional exponential increase.

The search for an RPO becomes even more complex when introducing argument fil-

ters [1]. This can be done when the desired well-founded order is not required to be

closed under contexts, as in the case of the dependency pair constraint (2) and the

usable rule constraint (3). With argument filters one may specify for each function

symbol f a set of argument positions that should be ignored when comparing terms

rooted with f . Combining RPOs with argument filters increases power substantially.

As stated in [26]: “the dependency pair method derives much of its power from the

ability to use argument filterings to simplify constraints”. While the addition of ar-

gument filters to RPO is often needed to solve the constraints, it increases the search

space by another exponential factor.

This enormous search space is the main reason why dedicated solvers often use

restricted forms of RPO. Examples are the lexicographic path order (LPO [29]) where

arguments are always compared lexicographically from left to right, or the multiset

path order (MPO [12]) where arguments are always compared as multisets. Moreover,

even when using restricted classes of RPO, additional incomplete heuristics are often

applied to prune the search space when argument filters are integrated. Typically, these

choices limit the amount of argument filters to a number that is linear in the arity of

the function symbols. For example, for every function symbol f one only allows to

either filter away all arguments but one or not to filter away any of f ’s arguments, cf.

[26].

The decision problem for RPO is the following: given a constraint of the forms

(1)–(3), does there exist an RPO which satisfies the constraint? This decision problem

is NP-complete [31] and it remains NP-complete when restricted to LPO, or to MPO,

as well as when regarding RPO in combination with argument filters. In this paper

we take a SAT-based approach to solve the RPO decision problem: the constraint is

encoded into a propositional formula ϕ which is satisfiable iff the constraint is satisfied

by some RPO. Satisfiability of ϕ is tested using any SAT solver and the order satisfying

the constraint can be reconstructed from a satisfying assignment of ϕ. However, it is

not straightforward to find a “good” SAT encoding, i.e., an encoding which really leads

to significant speedups. In particular, one has to develop polynomially sized encodings

which are also small in practice.

3

In [32] the authors address the class of lexicographic path orders and propose an

encoding to propositional logic. Based on the use of BDDs, this pioneering work already

outperformed dedicated solvers. A significant improvement is described in [10] which

presents an efficient SAT-based implementation of LPO which outperforms dedicated

solvers by orders of magnitude. This SAT-based approach provides a starting point for

the work presented in the current paper.

While RPO is a powerful and fundamental class of orders used for termination

proofs of TRSs, there also exist other important classes of orders based on interpre-

tations. The power of these orders is “orthogonal” to RPO, i.e., there exist TRSs

where termination can be proved by RPO but not by any of these orders based on

interpretations, and vice versa. In related work by other researchers and ourselves,

it has been shown that SAT solving is also useful for orders based on interpretations

like polynomial orders (possibly with “maximum”) [8,17–19], increasing interpretations

[45], matrix orders [15], Knuth-Bendix orders [44], and also for variants of semantic

labelling [30] and of the size-change principle [4].

The current paper introduces the first SAT-based encoding for full RPO. Our goal is

to determine suitable “parameters” (i.e., a suitable precedence, status of the function

symbols, and argument filter), such that the resulting order is compatible with the

given rewrite system or rather with the given constraint of type (1)–(3). The first two

contributions of this paper are

(A) an encoding for the lexicographic comparison w.r.t. permutations and

(B) an encoding for the multiset extension of the base order.

The extension for permutations is of course not obtained by a mere (correct but naive)

enumeration of permutations combined with the encoding for the fixed (left to right)

order of arguments that is used in LPO. Instead, the idea is to encode the search

for a permutation as part of the search for the other parameters of the RPO. The

propositional formula resulting from the encoding is satisfiable iff there exists an RPO

satisfying the original constraint.

The third contribution of this paper concerns the combined search for an RPO

and an argument filter to solve dependency pair constraints (2) and usable rule con-

straints (3), i.e., we present

(C) an encoding of the combination of RPO with argument filters.

This extension of the RPO encoding is non-trivial as the choice of the argument filter

influences the structure of the terms that have to be oriented by the RPO. Again,

the encoding is of course not obtained by a mere (correct but naive) enumeration

which considers each possible argument filter and builds the SAT encoding for all

(exponentially many) corresponding RPO decision problems. Instead, the idea is to

encode the search for an argument filter together with the search for the RPO.

The fourth contribution is concerned with the encoding of usable rules which occur

in usable rule constraints of the form (3), i.e., we give

(D) an encoding of the set of usable rules.

Here, the challenge stems from the mutual dependencies between the various parts of

the decision problem: A particular choice of an argument filter modifies the constraints

on the desired RPO (less subterms are compared by the RPO). But at the same time,

the choice of the argument filter may render certain rules non-usable, which relaxes the

constraints on the order (less rules need to be oriented). With less rules to orient, it

4

is often possible to solve a decision problem which would not have been solvable when

using a weaker argument filter (which filters less subterms), etc. So to summarize, we

encode the following aspects of an RPO decision problem to SAT:

• the search for the precedence on function symbols.

• the search for the status of the function symbols that decides whether arguments

are compared as multisets or lexicographically. In the latter case, the status also

determines the permutation of arguments that is used for the lexicographic com-

parison.

• the search for the argument filter, where the argument filter influences both the

resulting RPO and the set of rules that have to be oriented.

To obtain an efficient SAT-based search procedure, the overall SAT encoding must

encode all these aspects at once. This overall encoding captures all-in-one the synergy

between precedences, statuses, and argument filters. In this way, the task of finding

a solution for all of the search problems simultaneously is delegated to the under-

lying search strategy of the SAT solver. To define the encoding, we first translate

the definitions of the underlying termination techniques into “inductive” form. Then

these inductive definitions are transformed into recursive generators for corresponding

propositional formulas. To this end, we use the well-known idea of reification, i.e., of

introducing fresh Boolean variables which represent different parts of the definition.

The challenge is to design an encoding of all the different aspects of the overall search

problem which leads to “small” SAT problems that can be solved efficiently in practice.

Often this means keeping track of which Boolean variables correspond to which parts

of a definition and reusing these variables instead of re-encoding recurring parts of the

definition.

Reification is widely applied in many different types of encoding (or modeling)

problems. For some recent examples see: Jefferson in [28] to model sophisticated prop-

agators for constraint programming problems, Feydy et al. in [16] to model difference

constraints and to design finite domain propagators, Lescuyer and Conchon in [37]

to provide proofs by reflection in the Coq theorem prover, Gotlieb in [25] to model a

verification problem (where it is illustrated that constraint programming can compete

with other techniques based on SAT and SMT solvers), Bofill et al. in [7] to model

Max-SAT problems and to encode them as pseudo-Boolean constraints, and there are

many more.

We start with the necessary preliminaries on term rewriting in Section 2. In Section

3, we first give a definition of RPO specifically tailored towards the encoding. After-

wards we show how to encode rule removal constraints like (1), including both multiset

comparisons and lexicographic comparisons w.r.t. permutations (Contributions (A)

and (B)). Required notions about dependency pairs are recapitulated in Section 4. In

this section, we also introduce and discuss our novel encoding for dependency pair

constraints like (2), where the order is a combination of RPO with some argument

filter (Contribution (C)). After recalling the concept of usable rules, in Section 5 we

show how to extend our encoding to usable rule constraints like (3) where the set of

constraints depends on the argument filter (Contribution (D)). For all Contributions

(A)–(D), and for all three forms of Constraints (1)–(3), throughout Sections 3–5 we

prove that our encoding introduces a propositional formula of polynomial size (more

precisely, of size O(n3), where n is the size of the constraint). In Section 6 we describe

the implementation of our results in the termination prover AProVE [23]. It turns out

that the combination of a termination prover with a SAT solver yields a surprisingly

5

fast implementation of RPO. We provide extensive experimental evidence indicating

speedups in orders of magnitude as well as an impressive increase in the power of

automated termination analysis. Finally, we conclude in Section 7.

This paper extends the preliminary work presented in [9] and [40] substantially.1

It contains the details for the complete SAT encoding of RPO, including the use of

RPO for constraints like (1) and (3), and a formal analysis of the size of the encoding.

We also provide a more extensive experimental evaluation including experiments where

RPO is integrated with other termination techniques in order to obtain an approach

as powerful as possible.

2 Preliminaries

In this section we recapitulate basic notions of term rewriting. For further details on

term rewriting we refer to [3], for example.

A signature Σ is a finite set of function symbols. A term over Σ is either a variable

from the set V = {x, y, . . . }, or it is a function application f(t1, . . . , tn) where f is

some n-ary symbol in Σ and t1, . . . , tn are terms. The root of t = f(t1, . . . , tn) is

root(t) = f . The set of all terms over Σ and V is denoted by T (Σ,V). Finally, for

any term t ∈ T (Σ,V), let V(t) be the set of all variables from V occurring in t, i.e.,

V(x) = {x} for x ∈ V and V(f(t1, . . . , tn)) =
S

16i6n V(ti).

A substitution is a function δ : V → T (Σ,V). Substitutions are homomorphically

extended to mappings from terms to terms by applying them to all variables occurring

in the input term. Instead of δ(t) we often write tδ. A context is a term C with exactly

one hole (�) in it. Then C[t] is the term which is obtained by replacing � in C by t.

Now we define TRSs and introduce the notion of the rewrite relation. A term rewrite

system R is a finite set of rules `→ r with `, r ∈ T (Σ,V), V(r) ⊆ V(`), and ` /∈ V. The

rewrite relation for R is denoted →R: for s, t ∈ T (Σ,V) we have s→R t iff s = C[`δ]

and t = C[rδ] for some rule ` → r ∈ R, some substitution δ, and come context C. A

term t0 is terminating for R iff there is no infinite sequence t0 →R t1 →R . . . A TRS

R is terminating iff →R is terminating for all terms.

Most techniques to prove termination are based on well-founded orders. A rewrite

order is a relation that is transitive, stable (closed under substitutions), and monotonic

(closed under contexts). A reduction order is a well-founded rewrite order and a reduc-

tion quasi-order is a reflexive rewrite order. An order pair is a pair (%,�) where � is

well founded and % and � are compatible, i.e., % ◦ � ⊆ � or � ◦ % ⊆ �. A reduction

pair is an order pair (%,�) where � is stable and % is a reduction quasi-order. A

reduction pair (%,�) is monotonic iff � is a reduction order.

The most classic termination criterion for TRSs states that a TRS R is terminating

iff there is a reduction order � which orients all rules of R (i.e., ` � r for all `→ r ∈ R
or, in set notation, R ⊆ �) [38]. This can easily be refined to the following “rule

removal” technique (which goes back to [5,20,34] and which can also be used for

relative termination proofs). It relaxes this criterion by just requiring a weak decrease

of all rules w.r.t. %. Then all strictly decreasing rules can be removed. Formally, R
is terminating if R \ � is terminating where (%,�) is a monotonic reduction pair

satisfying R ⊆ %. Whereas the former condition (i.e., termination of R\�) is ensured

1 In [9] we introduced an encoding for argument filters (as in Contribution (C)) in connection
with LPO. Independently, a similar encoding was presented in [43,44] where it is applied to
Knuth-Bendix orders.

6

by recursively applying termination techniques on the smaller TRS R \ �, the latter

condition (i.e., R ⊆ %) can be seen as a set of constraints that have to be satisfied by

some monotonic reduction pair. Since each application of the rule removal technique

should at least delete one rule to really obtain a smaller TRS, this requirement is

exactly the rule removal constraint (1) from the introduction.

Example 1 As an example, consider the TRS with the two rules plus(0, y) → y and

plus(s(x), y) → plus(x, s(y)) for adding numbers. Here, the rule removal constraint (1)

is the following formula:

plus(0, y) % y ∧ plus(s(x), y) % plus(x, s(y)) ∧
(plus(0, y) � y ∨ plus(s(x), y) � plus(x, s(y)))

If one finds a monotonic reduction pair (%,�) where the first rule is strictly decreasing

and the second is just weakly decreasing, then one can remove the first rule and just has

to prove termination of the remaining TRS with the second rule. On the other hand,

if one finds a monotonic reduction pair where both rules are strictly decreasing, then

one can remove both rules of the TRS, i.e., then one has already proved termination.

3 Recursive Path Orders and their SAT Encodings

As outlined in the introduction, the fundamental problem for automated termination

analysis of TRSs is the search for suitable reduction orders (and quasi-orders) sat-

isfying constraints of the forms (1)–(3). Three prominent classes of reduction orders

are the lexicographic path order (LPO [29]), the multiset path order (MPO [12]), and

the recursive path order (RPO [36]), which combines the lexicographic and multiset

path order allowing also permutations in the lexicographic comparison. In Section 3.1

we recapitulate their definitions using a formalization of “multiset extension” that is

particularly suitable for the SAT encoding later on. The SAT encoding of RPO is then

presented in Sections 3.2–3.9. We formally analyze the size of the encoding in Section

3.10. Finally, Section 3.11 briefly summarizes the contributions of Section 3.

3.1 The Recursive Path Order

When comparing two terms f(s1, . . . , sn) and g(t1, . . . , tm) by RPO, one possibility

is to compare the tuples 〈s1, . . . , sn〉 and 〈t1, . . . , tm〉 of arguments. To this end, one

has to extend an order over terms to an order over tuples of terms. RPO features two

such extensions, the lexicographic and the multiset extension. We often denote tuples

of terms as s̄ = 〈s1, . . . , sn〉, etc.

Definition 2 (Lexicographic Extension) Let (%,�) be an order pair on terms and

let the equivalence relation ∼ be defined as % ∩-, i.e., s ∼ t holds iff both s % t and

t % s. The lexicographic extensions of ∼, �, and % are defined on tuples of terms:

• 〈s1, . . . , sn〉 ∼lex 〈t1, . . . , tm〉 iff n = m and si ∼ ti for all 1 6 i 6 n
• 〈s1, . . . , sn〉 �lex 〈t1, . . . , tm〉 iff (a) n > 0 and m = 0; or

(b) s1 � t1; or (c) s1 ∼ t1 and 〈s2, . . . , sn〉 �lex 〈t2, . . . , tm〉.
• %lex = �lex ∪ ∼lex

7

So for tuples of numbers s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈3, 2, 5, 6, 7〉, we have s̄ >lex t̄ as s1 = t1
and s2 > t2 (where > is the usual order on numbers).

The multiset extension of an order � is defined as follows: s̄ �mul t̄ holds if t̄ is

obtained by replacing at least one element of s̄ by a finite number of (strictly) smaller

elements. However, the order of the elements in s̄ and t̄ is irrelevant. For example, let

s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈4, 3, 2, 1, 1〉. We have s̄ >mul t̄ because s1 = 3 is replaced by

the smaller elements t3 = 2, t4 = 1, t5 = 1 and s4 = 0 is replaced by zero smaller

elements. So each element in t̄ is “covered” by some element in s̄. Such a cover is either

by a larger si (then si may cover several tj) or by an equal si (then one si covers

one tj). In Definition 3 we formalize the multiset extension by a multiset cover which

is a pair of mappings (γ, ε). Intuitively, γ expresses which elements in s̄ cover which

elements in t̄ and ε expresses for which si this cover is by means of equal terms and

for which by means of greater terms. So, γ(j) = i means that si covers tj , and we have

ε(i) = true iff whatever si covers is equal to si. This formalization facilitates encodings

to propositional logic afterwards.

Definition 3 (Multiset Cover) Let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉 be tuples

of terms. A multiset cover (γ, ε) is a pair of mappings γ : {1, . . . ,m} → {1, . . . , n} and

ε : {1, . . . , n} → {true, false} such that for each 1 6 i 6 n, if ε(i) = true (indicating

equality) then {j | γ(j) = i} is a singleton set.

So in the example above, we have γ(1) = 3, γ(2) = 2 (since t1 is covered by s3 and

t2 is covered by s2), and γ(3) = γ(4) = γ(5) = 1 (since t3, t4, and t5 are all covered by

s1). Moreover, ε(2) = ε(3) = true (since s2 and s3 are replaced by equal components),

whereas ε(1) = ε(4) = false (since s1 and s4 are replaced by (possibly zero) smaller

components). Of course, in general multiset covers are not unique. For example, t2
could also be covered by s1 instead of s2.

Now we can define the multiset extension.

Definition 4 (Multiset Extension) Let (%,�) be an order pair on terms and let

∼ = % ∩-. The multiset extensions of %, �, and ∼ are defined on tuples of terms:

(ms1) 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉 iff there exists a multiset cover (γ, ε) such that

for all i, j: γ(j) = i implies that either ε(i) = true and si ∼ tj , or ε(i) = false and

si � tj .
(ms2) 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉 iff 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉 and for some

i, ε(i) = false, i.e., some si is not used for equality but rather replaced by zero or

more smaller arguments tj .

(ms3) 〈s1, . . . , sn〉 ∼mul 〈t1, . . . , tm〉 iff 〈s1, . . . , sn〉 %mul 〈t1, . . . , tm〉 and for all i,

ε(i) = true, i.e., all si are used to cover some tj by equality. Note that this implies

n = m.

Before we can define RPO formally, we need to explain the two missing ingredi-

ents of RPO. First, there is a so-called precedence which is used to compare function

symbols. Formally, a precedence is an order pair (>Σ , >Σ) on the set of function sym-

bols Σ where ≈Σ = >Σ ∩6Σ is the equivalence relation of symbols having the same

precedence.

Second, each RPO has a status function which indicates for each function symbol

if its arguments are to be compared based on a multiset extension or based on a

lexicographic extension w.r.t. some permutation µ. Here, a permutation is a bijection

on the set {1, . . . , n} for some natural number n.

8

Definition 5 (Status Function) A status function σ maps each symbol f ∈ Σ of

arity n either to the symbol mul or to a permutation µf on {1, . . . , n}.

Now we can define the RPO.

Definition 6 (Recursive Path Order) For a precedence (>Σ , >Σ) and status func-

tion σ we define the relations �rpo and ∼rpo on terms. Moreover, we define %rpo =

�rpo ∪ ∼rpo. We use the notation s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉.

(gt) s �rpo t iff s = f(s̄) and one of (gt1) or (gt2) holds:

(gt1) si �rpo t or si ∼rpo t for some 1 6 i 6 n;

(gt2) t = g(t̄) and s �rpo tj for all 1 6 j 6 m and either:

(i) f >Σ g or (ii) f ≈Σ g and s̄ �f,grpo t̄;
(eq) s ∼rpo t iff one of (eq1) or (eq2) holds:

(eq1) s = t;

(eq2) s = f(s̄), t = g(t̄), f ≈Σ g, and s̄ ∼f,grpo t̄.

Here, �f,grpo and ∼f,grpo are tuple extensions of �rpo and ∼rpo. They are defined in terms

of the lexicographic and multiset extensions of �rpo and ∼rpo as determined by the

status of f and g:

(gt∗) 〈s1, . . . , sn〉 �f,grpo 〈t1, . . . , tm〉 iff one of (gt∗1) or (gt∗2) holds:

(gt∗1) σ maps f and g to permutations µf and µg; and

µf 〈s1, . . . , sn〉 �lexrpo µg〈t1, . . . , tm〉;
(gt∗2) σ maps f and g to mul; and 〈s1, . . . , sn〉 �mulrpo 〈t1, . . . , tm〉;

(eq∗) 〈s1, . . . , sn〉 ∼f,grpo 〈t1, . . . , tm〉 iff one of (eq∗1) or (eq∗2) holds:

(eq∗1) σ maps f and g to µf and µg; and µf 〈s1, . . . , sn〉 ∼lexrpo µg〈t1, . . . , tm〉;
(eq∗2) σ maps f and g to mul; and 〈s1, . . . , sn〉 ∼mulrpo 〈t1, . . . , tm〉.

Definition 6 can be specialized to capture other path orders by taking specific forms

of status functions: LPO, when σ maps all symbols to the identity permutation; MPO,

when σ maps all symbols to mul.

Example 7 Consider the following three TRSs for adding numbers, where (a) is the

TRS from Example 1.

(a) { plus(0, y)→ y , plus(s(x), y)→ plus(x, s(y)) }
(b) { plus(x, 0)→ x , plus(x, s(y))→ s(plus(y, x)) }
(c) { plus(x, 0)→ x , plus(x, s(y))→ plus(s(x), y) }
The rule removal constraint (1) for TRS (a) is solvable by an LPO with the precedence

plus >Σ s, but not by any MPO (regardless of the precedence). The rule removal

constraint (1) for TRS (b) is solvable by an MPO taking the precedence plus >Σ s,

but not by any LPO since the second rule swaps x and y. The rule removal constraint

(1) for TRS (c) cannot be solved by any LPO nor by any MPO. However, it is solvable

by an RPO taking the precedence plus >Σ s and the permutation σ(plus) = (2, 1) so

that lexicographic comparison proceeds from right to left instead of from left to right.

For all three TRSs, the reduction order identified renders both of the rules in the TRS

strictly decreasing and thus constitutes a proof of termination.

9

As explained in the introduction, our goal is to solve RPO decision problems (i.e., to

find out whether there exist a precedence and a status function such that the resulting

RPO satisfies constraints like the rule removal constraint (1)). There are two variants

of the problem: the “strict-” and the “quasi-RPO decision problem” depending on

whether f ≈Σ g can hold for f 6= g. Both decision problems are decidable and NP-

complete [31].

In the remainder of this section we focus on the implementation of a decision

procedure for the RPO decision problem by encoding it into a corresponding SAT

problem. This enables us to encode rule removal constraints (1) to SAT and to solve

them by existing SAT solvers.

3.2 The Backbone of the Encoding

We now introduce an encoding τ which maps “atomic” constraints of the form s �rpo t,
s %rpo t, or s ∼rpo t to propositional statements about the precedence and the status

of the symbols in the terms s and t. A satisfying assignment for the encoding of a

constraint indicates a precedence and a status function such that the constraint holds.

We say that an encoding τ is correct if for every atomic constraint c, the satisfying

assignments of τ(c) correspond precisely to those precedences and statuses where the

constraint c holds (i.e., to the solutions of c). The encoding is defined by a series of

equations introduced in the following subsections. To encode more complex constraints

like (1) that consist of conjunctions (or disjunctions) of atomic subconstraints, one first

has to encode the atomic subconstraints and then take the conjunction (or disjunction)

of the resulting propositional formulas. We assume standard binding order for Boolean

connectives, i.e., ∧ binds stronger than ∨ which in turn binds stronger than→ and↔.

In this subsection, we encode the main structure of Definition 6, whereas Section

3.3 shows how to encode the constraints on the precedence >Σ . To deal with the lexi-

cographic extension of RPO, Section 3.4 shows how to encode permutations and then

Section 3.5 explains how to encode lexicographic comparisons w.r.t. permutations. Sec-

tion 3.7 is devoted to the encoding of multiset comparisons and afterwards, Section 3.8

shows how to encode the combination of both lexicographic and multiset comparisons.

Finally, Section 3.9 puts all results of the previous subsections together and presents

the overall encoding of the RPO decision problem for rule removal constraints (1).

Our encoding closely follows the formalization of RPO in Definition 6. In the fol-

lowing, the reader should distinguish between the “definition” (Definition 6) and its

“encoding” which is being introduced here.

Equation (4) is the top-level encoding of the definition of �rpo in (gt), which states

that “s �rpo t iff s = f(s̄) and one of (gt1) or (gt2) holds”. The equation expresses

that the encoding τ of f(s̄) �rpo t is a disjunction of the encodings τ1 and τ2 which

correspond to Cases (gt1) and (gt2) in the definition.

τ(f(s̄) �rpo t) = τ1(f(s̄) �rpo t) ∨ τ2(f(s̄) �rpo t) (4)

Equation (5) is the encoding of Case (gt1) in the definition. It is expressed as a

disjunction for the n components of s̄, corresponding to the “for some” statement in

the definition.

τ1(f(s̄) �rpo t) =
_

16i6n

(τ(si �rpo t) ∨ τ(si ∼rpo t)) (5)

10

Equation (6) is the encoding of Case (gt2) in the definition. It is expressed as a

conjunction with two parts. The first part is a conjunction for the m components of

t̄, corresponding to the “for all” statement in the definition. The second part is a

disjunction which imposes precedence constraints f >Σ g resp. f ≈Σ g on the symbols

f and g corresponding to the subcases (i) and (ii) of Case (gt2) in the definition.

The encodings of the precedence constraints will be described in Section 3.3 and the

encoding of the extension �f,grpo will be described in Sections 3.5–3.8.

τ2(f(s̄) �rpo g(t̄)) =
^

16j6m

τ(f(s̄) �rpo tj)| {z }
for all arguments of t

∧

τ(f >Σ g) ∨
(τ(f ≈Σ g) ∧ τ(s̄ �f,grpo t̄))

!
| {z }

subcase (i) or (ii)

(6)

Equations (7) and (8) encode the constraint s ∼rpo t as specified in Cases (eq1) and

(eq2) of the definition. Equation (8) imposes the precedence constraint f ≈Σ g on

the symbols f and g. Again, the encodings of the precedence constraint and of the

extension ∼f,grpo will be described in Section 3.3 resp. in Sections 3.5-3.8.

τ(s ∼rpo s) = true (7)

τ(f(s̄) ∼rpo g(t̄)) = τ(f ≈Σ g) ∧ τ(s̄ ∼f,grpo t̄) (8)

All “missing” cases (e.g., τ(x �rpo t) for variables x) are defined to be false.

The correctness of this backbone of the encoding can formally proved by a straight-

forward structural induction over the constraint being encoded where one assumes cor-

rectness of the encodings for precedence constraints and for lexicographic and multiset

comparisons of tuples. These are subsequently introduced in the following subsections.

3.3 Encoding Precedence Constraints

Precedence constraints of the form f >Σ g and f ≈Σ g impose a partial order on

the symbols. Their encoding is defined as in [10] where it is termed a “symbol-based

encoding”. Let |Σ| = c and assume c > 1 (otherwise all precedence constraints are

trivial). The symbols in Σ are interpreted as indices in a total order extending the

imposed partial order taking values from the set {0, . . . , c− 1}. Each symbol f ∈ Σ is

viewed as a binary number f = 〈fk, . . . , f1〉 where fk is the most significant bit and

k = dlog2 ce. The binary value of 〈fk, . . . , f1〉 represents the position of f in the partial

order. Possibly, 〈fk, . . . , f1〉 = 〈gk, . . . , g1〉 for f 6= g, if a partial order imposes no

order between f and g, or if a (non-strict) partial order imposes f ≈Σ g. Statements

about precedences are interpreted as constraints on indices and they are encoded in

k-bit arithmetic:

τ(〈fk, . . . , f1〉 ≈Σ 〈gk, . . . , g1〉) =
V

16i6k
(fi ↔ gi) (9)

τ(〈fk, . . . , f1〉 >Σ 〈gk, . . . , g1〉) = (10)
(fk ∧ ¬gk), if k = 1

(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ τ(〈fk−1, . . . , f1〉 >Σ 〈gk−1, . . . , g1〉), if k > 1

In [10] the authors provide a formal justification for this symbol-based encoding. Alter-

native encodings for precedence constraints include the atom-based approach described

in [32], a symbol-based encoding using unary representation for integers as applied

11

in [11], and the order encoding described in [41]. Experiments and fine-tuning indicate

that the binary symbol-based encoding given in Equations (9) and (10) is best suited

for our application.

3.4 Encoding Permutations

To encode lexicographic comparisons modulo permutations, we associate with each

symbol f ∈ Σ of arity n a permutation µf on {1, . . . , n}. We represent µf as an n× n
Boolean matrix where each element µfi,k = true iff µf (i) = k. To model a permutation,

the matrix µf must contain exactly one true value in each row and column. This

restriction is encoded as a conjunction of cardinality constraints stating that each row

and column sums up to 1. Hence, our encoding includes the following formula τ(µf),

where “true” is identified with 1 and “false” is identified with 0.

τ(µf) =
^

16i6n

τ

nX
k=1

µfi,k = 1

!
∧

^
16k6n

τ

nX
i=1

µfi,k = 1

!
(11)

There are a variety of alternatives described in the literature for encoding cardinality

constraints to SAT. After experimenting with several of these encodings (including a

straightforward quadratic approach), we decided to adopt the BDD-based encoding

described in [14] which is linear in the number of variables when summing up to 1.

3.5 Encoding Lexicographic Extensions w.r.t. Permutations

Now we consider the encodings τ(s̄ ∼f,grpo t̄) and τ(s̄ �f,grpo t̄) for the tuple extensions.

These are required to complete the definitions described in the Equations (6) and (8).

At the moment, we restrict ourselves to the case where the arguments of f and g

are compared lexicographically modulo the permutations µf and µg. To indicate this

clearly, we write ∼f,glex and �f,glex instead of ∼f,grpo and �f,grpo. The encoding corresponds

to the second part of Definition 6, i.e., to Cases (gt∗) and (eq∗).

The encodings of s̄ ∼f,glex t̄ and s̄ �f,glex t̄ build on the following idea. If the two

permutations µf and µg were given, then we could instead encode the constraint

µf (s̄) ∼lexrpo µg(t̄) and µf (s̄) �lexrpo µg(t̄) for the permuted tuples µf (s̄) and µg(t̄).

However, these permutations are not given. The objective is to find them (through the

encoding) such that the constraints hold.

As in the definition, let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉. Equation (12) encodes

s̄ ∼f,glex t̄ following Case (eq∗1) of the definition where for n = m we encode that for all

k, the arguments si and tj permuted to the k-th position by µf and µg are equivalent.

Note that here, (n = m) is a Boolean value which can be determined at encoding time.

τ(s̄ ∼f,glex t̄) = (n = m) ∧
^

1 6 i,j,k6 min(n,m)

“
µfi,k ∧ µ

g
j,k → τ(si ∼rpo tj)

”
(12)

To formalize the encoding of s̄ �f,glex t̄, we consider the subterms si and tj which

are mapped by µf and µg, respectively, to each of the positions 1 6 k 6 min(n,m).

To this end we introduce constraints of the form s̄ �f,g,klex t̄ which express lexicographic

12

comparisons starting from a position k. The encoding is initialized by k = 1, i.e., we

start with the first position.

We then consider three cases for each position k: (1) n < k, i.e., there remain no

positions in s̄, and the encoding is false; (2) n > k > m, i.e, there remain positions

in s̄ but no positions in t̄, and the encoding is true; and (3) both n > k and m > k,

and the encoding considers all 1 6 i 6 n and 1 6 j 6 m to capture the case where

µf (i) = k = µg(j).

τ(s̄ �f,glex t̄) = τ(s̄ �f,g,1lex t̄)

τ(s̄ �f,g,klex t̄) =

8><>:
false, if n < k

true, if n > k > m

τ ′(s̄ �f,g,klex t̄) otherwise

where

τ ′(s̄ �f,g,klex t̄) =
V

1 6 i 6 n,
1 6 j 6 m

µfi,k ∧ µ

g
j,k →

τ(si �rpo tj) ∨“
τ(si ∼rpo tj) ∧ τ(s̄ �f,g,k+1

lex t̄)
” !

(13)

Example 8 Consider again the TRS of Example 7(c):

{ plus(x, 0)→ x , plus(x, s(y))→ plus(s(x), y) }
In the encoding of the constraints for the decrease of the second rule, we have to encode

the comparison 〈x, s(y)〉 �plus,plus
lex 〈s(x), y〉, which yields the following encoding:

τ(〈x, s(y)〉 �plus,plus
lex 〈s(x), y〉) = τ(〈x, s(y)〉 �plus,plus,1

lex 〈s(x), y〉) =“
µplus

1,1 ∧ µplus
1,1→

“
τ(x �rpo s(x)) ∨ (τ(x ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

∧
“
µplus

1,1 ∧ µplus
2,1→

“
τ(x �rpo y) ∨ (τ(x ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

∧
“
µplus

2,1 ∧ µplus
1,1→

“
τ(s(y) �rpo s(x)) ∨ (τ(s(y) ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

∧
“
µplus

2,1 ∧ µplus
2,1→

“
τ(s(y) �rpo y) ∨ (τ(s(y) ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,2

lex 〈s(x), y〉))
””

τ(〈x, s(y)〉 �plus,plus,2
lex 〈s(x), y〉) =“

µplus
1,2 ∧ µplus

1,2→
“
τ(x �rpo s(x)) ∨ (τ(x ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,3

lex 〈s(x), y〉))
””

∧
“
µplus

1,2 ∧ µplus
2,2→

“
τ(x �rpo y) ∨ (τ(x ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,3

lex 〈s(x), y〉))
””

∧
“
µplus

2,2 ∧ µplus
1,2→

“
τ(s(y) �rpo s(x)) ∨ (τ(s(y) ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �plus,plus,3

lex 〈s(x), y〉))
””

∧
“
µplus

2,2 ∧ µplus
2,2→

“
τ(s(y) �rpo y) ∨ (τ(s(y) ∼rpo y) ∧ τ(〈x, s(y)〉 �plus,plus,3

lex 〈s(x), y〉))
””

τ(〈x, s(y)〉 �plus,plus,3
lex 〈s(x), y〉) = false

Observe that τ(x �rpo s(x)) = τ(x ∼rpo s(x)) = τ(x �rpo y) = τ(x ∼rpo y) =

τ(s(y) �rpo s(x)) = τ(s(y) ∼rpo s(x)) = false and τ(s(y) �rpo y) = true. Hence,

the above simplifies to τ(〈x, s(y)〉 �plus,plus
lex 〈s(x), y〉) = ¬µplus

1,1 . Together with the con-

straint τ(µf) from Equation (11) which ensures that the variables µplus
i,k specify a valid

permutation µplus, this implies that µplus
1,2 and µplus

2,1 must be true. And indeed, for the

permutation µplus = (2, 1) the tuple µplus〈x, s(y)〉 = 〈s(y), x〉 is �lexrpo-greater than the

tuple µplus〈s(x), y〉 = 〈y, s(x)〉.

That Equations (12) and (13) correctly encode the lexicographic extension follows

from Definition 2 and straightforward structural induction.

13

3.6 Encoding Multiset Covers

To encode multiset comparisons, we associate with each pair of tuples s̄ = 〈s1, . . . , sn〉
and t̄ = 〈t1, . . . , tm〉 a multiset cover (γ, ε). Recall from Definition 3 that γ is a mapping

γ : {1, . . . ,m} → {1, . . . , n} and ε is a mapping ε : {1, . . . , n} → {true, false}. We

represent γ as an n ×m Boolean matrix where each element γi,j = true iff γ(j) = i,

i.e., if si covers tj . We represent ε as a Boolean vector where εi = true indicates that

si is used for equality.

Following Definition 3, to model a multiset cover, for each j ∈ {1, . . . ,m} there

must be exactly one i ∈ {1, . . . , n} such that γi,j is true, and for each i ∈ {1, . . . , n}, if

εi is true then there must be exactly one j ∈ {1, . . . ,m} such that γi,j is true. Thus,

our encoding includes the formula τ((γ, ε)). Here, we again identify “true” with 1 and

“false” with 0.

τ((γ, ε)) =
^

16j6m

nX
i=1

γi,j = 1

!
∧

^
16i6n

0@εi →
0@ mX
j=1

γi,j = 1

1A1A (14)

The underlying encoding of cardinality constraints is subject to the same choices as

described in Section 3.4.

3.7 Encoding Multiset Extensions

Now we again consider the encodings τ(s̄ ∼f,grpo t̄) and τ(s̄ �f,grpo t̄) for tuple extensions,

but this time for the case where the arguments of f and g are compared using multiset

extensions of the RPO (thus, we write ∼f,gmul and �f,gmul).
To encode ∼f,gmul and �f,gmul, we proceed according to Definition 4 where s̄ =

〈s1, . . . , sn〉, t̄ = 〈t1, . . . , tm〉, and where (γ, ε) is the multiset cover associated with

s̄ and t̄. Case (ms1) of the definition states that s̄ %f,gmul t̄ holds iff (γ, ε) satisfies the

following: if γi,j and εi are true, then si ∼rpo tj , and else, if γi,j is true and εi is not,

then si �rpo tj . This leads to Equation (15) in the encoding below. Case (ms2) in the

definition states that s̄ �f,gmul t̄ holds iff s̄ %f,gmul t̄ and not all si are used for equality.

This results in Equation (16) in the encoding. Finally, Case (ms3) in the definition

states that s̄ ∼f,gmul t̄ holds iff s̄ %f,gmul t̄ and all si are used for equality. This leads to

Equation (17).

τ(s̄ %f,gmul t̄) = τ((γ, ε)) ∧
^

1 6 i6 n,
1 6 j6 m

„
γi,j →

„
(εi → τ(si ∼rpo tj)) ∧
(¬εi → τ(si �rpo tj))

««
(15)

τ(s̄ �f,gmul t̄) = τ(s̄ %f,gmul t̄) ∧ ¬
^

16i6n

εi (16)

τ(s̄ ∼f,gmul t̄) = τ(s̄ %f,gmul t̄) ∧
^

16i6n

εi (17)

Example 9 Consider again the TRS of Example 7(b):

{ plus(x, 0)→ x , plus(x, s(y))→ s(plus(y, x)) }

14

In the encoding of the constraints for decrease of the second rule, we have to encode

the comparison 〈x, s(y)〉 �plus,plus
mul 〈y, x〉, which yields:

τ((γ, ε))

∧
“
γ1,1 →

“
(ε1 → τ(x ∼rpo y)) ∧

“
¬ε1 → τ(x �rpo y)

”””
∧
“
γ1,2 →

“
(ε1 → τ(x ∼rpo x)) ∧

“
¬ε1 → τ(x �rpo x)

”””
∧
“
γ2,1 →

“
(ε2 → τ(s(y) ∼rpo y)) ∧

“
¬ε1 → τ(s(y) �rpo y)

”””
∧
“
γ2,2 →

“
(ε2 → τ(s(y) ∼rpo x)) ∧

“
¬ε1 → τ(s(y) �rpo x)

”””
∧ ¬(ε1 ∧ ε2)

Since τ(x ∼rpo y) = τ(x �rpo y) = τ(x �rpo x) = τ(s(y) ∼rpo y) = τ(s(y) ∼rpo x) =

τ(s(y) �rpo x) = false and τ(x ∼rpo x) = τ(s(y) �rpo y) = true, we can simplify the

above formula to τ((γ, ε))∧¬γ1,1∧(¬γ1,2∨ε1)∧(¬γ2,1∨¬ε2)∧¬γ2,2∧(¬ε1∨¬ε2). As

τ((γ, ε)) ensures that the variables γi,j and εi specify a valid multiset cover (γ, ε), this

implies that γ2,1, γ1,2, ε1, and ¬ε2 must hold. And indeed, the multiset cover (γ, ε)

with γ(1) = 2, γ(2) = 1, ε(1) = true, and ε(2) = false shows that the tuple 〈x, s(y)〉 is

greater than the tuple 〈y, x〉. The reason is that t1 = y is covered by s2 = s(y) and (as

indicated by ε(2) = false) we have s2 �rpo t1. Similarly, t2 = x is covered by s1 = x

and (as indicated by ε(1) = true) we have s1 ∼rpo t2.

The encodings follow directly from Definitions 3 and 4 and their correctness can

be proved by a straightforward structural induction.

3.8 Combining Lexicographic and Multiset Comparisons

We have shown how to encode lexicographic and multiset comparisons. In order to

combine �f,glex and �f,gmul into �f,grpo as well as ∼f,glex and ∼f,gmul into ∼f,grpo, each symbol

f ∈ Σ is associated with a Boolean flag mf which indicates whether terms rooted with

f are to be compared using multiset extensions (mf = true) or using lexicographic

extensions (mf = false). In other words, the flag mf indicates whether the status

function σ used in the RPO definition maps f to mul or to µf .

τ(s̄ �f,grpo t̄) =
“
mf ∧mg ∧ τ(s̄ �f,gmul t̄)

”
∨
“
¬mf ∧ ¬mg ∧ τ(s̄ �f,glex t̄)

”
(18)

τ(s̄ ∼f,grpo t̄) =
“
mf ∧mg ∧ τ(s̄ ∼f,gmul t̄)

”
∨
“
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,glex t̄)

”
(19)

Similar to Definition 6, the encoding function τ can be specialized to other standard

path orders: lexicographic path order with status (LPOS) when mf is set to false for

all f ∈ Σ; LPO when additionally µfi,k is set to true iff i = k; MPO when mf is set to

true for all f ∈ Σ.

3.9 Encoding RPO Constraints

At this point we have defined all necessary formulas to encode inequalities like s �rpo t
and s %rpo t. Therefore, we can now encode the rule removal constraint (1) asV

f∈Σ
τ(µf) ∧

V
`→r∈R

τ(` %rpo r) ∧
W

`→r∈R
τ(` �rpo r) (1′)

15

where τ(` %rpo r) is just an abbreviation for τ(` �rpo r) ∨ τ(` ∼rpo r).

3.10 Size of the Encoding

We conclude this section with an analysis of the size of the propositional encoding. Note

that for the sake of readability, we presented our encoding as resulting in arbitrary

propositional formulas. As the result of Tseitin’s transformation [42] to conjunctive

normal form (CNF) has linear size, the bounds obtained in this section carry over to

the size of the formulas in CNF.

To analyze the size of our encoding, we first consider the size of the encoding for

a single inequality s �rpo t. We focus on the case where s and t are ground terms.

Observe in the definition of the encoding that replacing a non-variable subterm in s (or

in t) by a variable results in an encoding which is at most as large as the encoding of

s �rpo t. Let k = |s|+ |t| denote the total number of occurrences of function symbols

in s and t, let a be the maximal arity of a symbol in s and t, and let c = |Σ| denote

the cardinality of the underlying signature. In this subsection, we always assume that

Σ only contains those function symbols that indeed occur in the constraint under

consideration.

We recapitulate the (recursive part of the) backbone of the encoding presented

in Equations (4)–(8). Here, s = f(s̄) and t = g(t̄) are terms with arguments s̄ =

〈s1, . . . , si, . . . , sn〉 and t̄ = 〈t1, . . . , tj , . . . , tm〉, and to ease readability, we simplify the

notation and write � instead of �rpo or �f,grpo, ∼ instead of ∼rpo or ∼f,grpo, > instead

of >Σ , and ≈ instead of ≈Σ .

τ(s � t) =
_
i

„
τ(si � t) ∨
τ(si ∼ t)

«
∨
^
j

τ(s � tj) ∧
„
τ(f > g) ∨
τ(f ≈ g) ∧ τ(s̄ � t̄)

«
(20)

τ(s ∼ t) = τ(f ≈ g) ∧ τ(s̄ ∼ t̄)

A naive unfolding of τ(s � t) according to this definition obviously leads to an

exponentially sized encoding. To obtain a polynomially sized encoding instead, we use

reification, i.e., we introduce new propositional variables to share common subformulas.

The approach is similar to the one used in Tseitin’s transformation to conjunctive

normal form. The basic idea is to view each expression of the form τ(e) as a (fresh)

propositional variable χ(e), and the equation defining τ(e) is viewed as a biimplication

with χ(e) on the left-hand side.

For example, the part of Equation (20) that defines τ(s � t) is viewed as the

following propositional statement.

χ(s � t) ↔
_
i

„
χ(si � t) ∨
χ(si ∼ t)

«
| {z }

(i)

∨
^
j

χ(s � tj)| {z }
(ii)

∧
„
χ(f > g) ∨
χ(f ≈ g) ∧ χ(s̄ � t̄)

«
| {z }

(iii)

(21)

Each fresh variable χ(e) on the right-hand side of a biimplication is then defined

itself by another biimplication in which it occurs on the left-hand side. Note that each

χ(e) occurs exactly once on the left-hand side of a biimplication.

Consider first the biimplications for defining χ(s̄ � t̄) which occurs on the right-

hand side of Equation (21). These biimplications take a total size of O(a+ a · n ·m):

16

• For the case of lexicographic comparison, Equation (13) contains O(n ·m) variables

of the form χ(si � tj) or χ(si ∼ tj). The size of the biimplication defining χ(s̄ � t̄)
is in O(a · n ·m).

• For the case of multiset comparison, we assume that the encoding of a cardinality

constraint
Pn
i=1 xi = 1 is at most quadratic. Then the right-hand side of Equation

(14) is of the size O(m·n2+n·m2) ⊆ O(a·n·m). Hence, the size of the biimplication

introduced by Equation (15) is also in O(a · n ·m). The biimplications introduced

by Equations (16) and (17) are both within the size O(n) ⊆ O(a).

• Finally, Biimplication (18) for combining lexicographic and multiset comparison

has a constant size.

Now we consider Biimplication (21) for χ(s � t). Its size is in O(a + log(c)). The

reason is that part (i) and (ii) are in O(a), and for part (iii) we have to encode two

precedence comparisons, each of size log(c), as can be seen in (9) and (10).

To summarize, encoding a comparison s � t for s = f(s̄) and t = g(t̄) where f and

g have the arities n and m, together with the corresponding lexicographic and multiset

extensions for s̄ � t̄ involves a collection of biimplications of a total size

O(a+ log(c) + a · n ·m) (22)

Here and also later, it cannot be assumed that log(c) is a constant or that log(c) can

be bounded by the sizes of s and t. The reason is that c is not the number of different

symbols that occur in s and t, but it is the size of the signature of the whole rule

removal constraint (1). Hence, it is possible that log(c) grows in the number of rules.

Inspecting the size of the encoding for τ(s ∼ t) gives a similar result, within the

same bound.

Now consider the overall encoding of s � t including all of the biimplications

introduced. In particular, this includes all biimplications of the form χ(s′ � t′) where

s′ is an arbitrary subterm of s and t′ is an arbitrary subterm of t. With k = |s|+ |t|, one

obtains up to k2 such biimplications. And since n and m are smaller or equal to a, (22)

implies that the total size of the encoding is O(k2 · (log(c)+a3)). If one now uses a 6 k
one obtains O(k2 · log(c)+k5). However, the approximation that every subterm has the

maximal arity a (by using a·n·m 6 a3) is too coarse: a more detailed comparison reveals

that the size of the encoding is indeed within O(k2 · (log(c) + a)) ⊆ O(k2 · log(c) + k3).

To prove the cubic bound formally, let s1, . . . , sp and t1, . . . , tq be all subterms of

the terms s and t respectively and let n1, . . . , np and m1, . . . ,mq be the corresponding

arities of the root symbols of these subterms. Hence, the tree representation of the

term s has
P

16i6p ni edges and |s| nodes. It follows that
P

16i6p ni = |s| − 1 and

similarly that
P

16j6q mj = |t|−1. The reason is that except for the root, every node

in the tree representation has exactly one incoming edge. Now (22) implies that the

overall size of the encoding (which also considers the biimplications arising from the

encodings of all subterm comparisons) is bounded by:

O(
X

16i6p

X
16j6q

`
a+ log(c) + a · ni ·mj

´
)

= O(p · q · (a+ log(c)) + a ·
X

16i6p

ni ·
X

16j6q

mj)

= O(p · q · (a+ log(c)) + a · (|s| − 1) · (|t| − 1))

17

⊆ O(k2 · (log(c) + a))

⊆ O(k2 · log(c) + k3)

Thus, encoding a single inequality constraint s � t can be done in the size O(k2 ·
log(c) + k3) where k = |s|+ |t| and c = |Σ|.

We can now easily conclude that the size of our encoding is cubic, where the size of

a constraint is defined to be the sum of all sizes of the terms occurring in the constraint.

Here, we again assume that the encoding of a cardinality constraint
Pn
i=1 xi = 1 is at

most quadratic.

Theorem 10 Let K be the size of the rule removal constraint (1). Then the size of

Formula (1′) is in O(K3).

Proof By using the previous results, we can encode all constraints τ(` �rpo r) and

τ(` ∼rpo r) in O(K3) since c = |Σ| 6 K. It remains to analyze the sizes of each

formula τ(µf) from (11) for every f ∈ Σ. Since the cardinality constraint can be

encoded in a formula of quadratic size, for each f the size of τ(µf) is at most cubic

in the arity of f . Hence, if a1, . . . , ac are the arities of all function symbols then we

obtain formulas of a total size of at most O(
Pc
i=1 a

3
i) ⊆ O((

Pc
i=1 ai)

3) ⊆ O(K3). ut

3.11 Summary

We have shown how to encode an RPO decision problem to SAT. For a given pair of

terms s and t, the encoding τ(s �rpo t) is a formula which is satisfiable iff there exists

an RPO such that s �rpo t. Given this encoding we can solve rule removal constraints

of the following form (1), where we use monotonic reduction pairs based on RPO.

^
`→r∈R

` %rpo r ∧
_

`→r∈R
` �rpo r

In this approach all rules of a TRS must be weakly oriented (i.e., with %rpo) and those

rules that are also strictly decreasing are removed. To identify these rules, one only

has to inspect the satisfying variable assignment found by the SAT solver. A rule ` � r
is identified as strictly decreasing (and removed) if the corresponding propositional

variable χ(` � r) is true in the satisfying assignment.

With this rule removal approach, one can for example prove termination of all three

TRSs in Example 7 automatically. Here, the resulting Constraint (1) is transformed

into the Formula (1′) and satisfiability of this propositional formula is easily shown by

existing SAT solvers.

4 Dependency Pairs, Argument Filters, and their SAT Encodings

A considerable improvement to the rule removal approach is obtained when considering

so-called dependency pairs [1]. For instance, the following example is terminating, but

termination cannot be shown using the rule removal approach with RPO. In contrast,

its termination is easy to prove by DPs in combination with RPO. For this reason,

virtually all current TRS termination provers use dependency pairs.

18

Example 11 The following TRS from [1] computes division on natural numbers.

minus(x, 0)→ x

minus(s(x), s(y))→ minus(x, y)

div(0, s(y))→ 0

div(s(x), s(y))→ s(div(minus(x, y), s(y)))

Within the DP framework [1,22,24,26], a major termination technique is the reduc-

tion pair processor which is analogous to the technique of rule removal. This processor

produces dependency pair constraints of the form (2). Although these constraints look

very similar to the Constraints (1) of the rule removal technique, there is one major

difference: the reduction pair for orienting the constraints does not have to be mono-

tonic anymore. This allows us to use orders which are a combination of an RPO with

a preprocessing on terms called argument filter. On the one hand, this combination

increases the power of termination provers tremendously, but on the other hand it in-

troduces a new challenge for the automation. In this section, we show how this problem

can again be solved using a suitable SAT encoding.

In Section 4.1, we briefly describe the basics of the DP framework such as argument

filters and the reduction pair processor. To ease readability, we just present a simplified

variant of the DP framework which suffices for the contributions of the present paper.

Then in Section 4.2 we define an order in the style of Definition 6 which directly

describes the order resulting from the combination of RPO with argument filters. This

enables us in Section 4.3 to extend our SAT encoding from the previous section to solve

the resulting constraints directly (i.e., without an enumeration of argument filters).

Moreover, in this way, the dependencies between the RPO and the argument filter

can be detected and exploited by the SAT solver in order to prune the search space

effectively. We prove that the size of our encoding for a dependency pair constraint (2)

is again cubic in the size of the constraint. This may seem surprising as it implies that,

asymptotically, there is no additional complexity over the encoding of the simpler rule

removal constraint (1). The contributions of Section 4 are summarized in Section 4.4.

4.1 Dependency Pairs

The main idea of the DP method is to build a separate set of rules (the dependency

pairs) that represent function calls. In addition, the existing rules are still used to

evaluate the arguments. Formally, given a TRS R, we first identify the defined symbols

ΣD = {root(`) | `→ r ∈ R}. For each defined symbol f ∈ ΣD, we extend the signature

by a fresh tuple symbol f], where we often write F instead of f]. For t = f(t1, . . . , tn)

with f ∈ ΣD, let t] denote f](t1, . . . , tn). Then the set of dependency pairs for a TRS

R is

DP (R) = {`] → t] | `→ r ∈ R, t is a subterm of r, root(t) ∈ ΣD}.

Example 12 Recall the TRS R from Example 11. The defined symbols of R are minus

and div, and there are three dependency pairs:

MINUS(s(x), s(y)) → MINUS(x, y)

DIV(s(x), s(y)) → MINUS(x, y)

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (23)

19

The main result underlying the dependency pair method states that a TRS R is

terminating iff there is no infiniteR-chain of its dependency pairs DP (R) [1], i.e., there

is no infinite sequence of function calls in any possible evaluation. An R-chain of

dependency pairs P (also called (P,R)-chain) is a reduction of the form

s1 →P t1 →∗R s2 →P t2 →∗R s3 . . . (24)

Here, the P-steps model the infinite sequence of function calls and may only be applied

at the root. Moreover, all ti must be terminating for R.2 The intermediate R-steps are

required to evaluate the arguments between two outer function calls. For example, after

an application of the dependency pair (23) from Example 12, one first has to evaluate

the minus-term before another application of (23) can take place. So for example, we

have the following (DP (R),R)-chain:

DIV(s(s(0)), s(0)) →DP (R) DIV(minus(s(0), 0), s(0)) →∗R
DIV(s(0), s(0)) →DP (R) DIV(minus(0, 0), s(0)) →∗R
DIV(0, s(0))

Now instead of trying to prove termination of a TRS R, in the DP framework one

considers so-called DP problems (P,R) consisting of a set of dependency pairs P and

a TRS R where the task is to prove absence of infinite (P,R)-chains. In analogy to the

rule removal technique where one starts with the initial TRS R and simplifies it until

there are no rules left, in the DP framework one starts with the initial DP problem

(DP (R),R) and simplifies it using so-called processors that remove dependency pairs.

These simplifications are repeated until there are no dependency pairs left.

The processor that corresponds to the rule removal technique is the so-called re-

duction pair processor [1,22,24,26]. For a DP problem (P,R), it generates constraints

which ensure that every root reduction with P is weakly or strictly decreasing and

that every reduction with R is weakly decreasing for some reduction pair (%,�). Then

according to the definition of chains in (24), one can remove all strictly decreasing DPs

from P, since they can only occur finitely often in P-chains. Here, monotonicity of �
is not required, since in chains, P-steps can only be applied at the root. To ensure that

reductions with R are weakly decreasing one just has to demand that all rules of R
are weakly decreasing, since % is a reduction quasi-order. Similarly, to guarantee that

all root reductions with P are at least weakly decreasing, it suffices to require a weak

decrease for all DPs in P.

Theorem 13 (Reduction Pair Processor) Let (%,�) be a reduction pair such that

P ∪ R ⊆ %. If there is no infinite (P \ �,R)-chain, then there is no infinite (P,R)-

chain.

As in the rule removal technique, at least one DP in P should be strictly decreasing

to ensure that P \ � ⊂ P, i.e., to ensure that the reduction pair processor results in a

simpler DP problem than the original one. Hence, to apply the reduction pair processor,

one has to search for a reduction pair (%,�) satisfying the dependency pair constraint

(2).

A typical choice for a reduction pair is to use an order like RPO in combination

with an argument filter [1]. An argument filter is a mapping which specifies parts of

terms which can be ignored when comparing terms (we adopt the notation of [33]).

2 Such chains are usually called minimal [22]. Since we only consider minimal chains in this
paper, we simply refer to them as “chains”.

20

Definition 14 (Argument Filter) An argument filter π maps every n-ary function

symbol to an argument position i ∈ {1, . . . , n} or to a (possibly empty) list [i1, . . . , ip]

with 1 6 i1 < · · · < ip 6 n. An argument filter with π(f) = i is called collapsing on f .

We write “i ∈− π(f)” to indicate that π(f) is a list containing i or that π(f) = i. An

argument filter π induces a mapping from terms to terms:

π(t) =

8<:
t, if t is a variable

π(ti), if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tip)), if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation � on terms, let �π be the relation where s �π t holds iff π(s) � π(t).

Arts and Giesl showed in [1] that if (%,�) is a reduction pair and π is an argument

filter, then (%π,�π) is also a reduction pair. In particular, we focus on reduction pairs

of the form (%πrpo, �πrpo) to prove termination of TRSs like Example 11 where the

direct application of orders like RPO fails.

Example 15 For the TRS of Example 11, according to Theorem 13 we search for a

reduction pair solving the following inequality constraints where at least one of Con-

straints (25)–(27) should be oriented strictly. By Theorem 13, all dependency pairs

corresponding to strictly decreasing inequalities can be removed.

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)

div(0, s(y)) % 0

div(s(x), s(y)) % s(div(minus(x, y), s(y)))

MINUS(s(x), s(y)) (%)MINUS(x, y) (25)

DIV(s(x), s(y)) (%)MINUS(x, y) (26)

DIV(s(x), s(y)) (%)DIV(minus(x, y), s(y)) (27)

To solve the inequalities we may take (%πrpo, �πrpo) where π(minus) = π(div) = 1,

π(s) = π(MINUS) = π(DIV) = [1], π(0) = [], and where %rpo and �rpo are induced

by the precedence DIV >Σ MINUS. Thus, the constraints after applying π are the

following:

x % x MINUS(s(x)) (%) MINUS(x)

s(x) % x DIV(s(x)) (%) MINUS(x)

0 % 0 DIV(s(x)) (%) DIV(x)

s(x) % s(x)

Thus, after filtering, the strict inequalities (25)–(27) hold, i.e., all three dependency

pairs are strictly decreasing with the chosen RPO. Hence, they are removed by the

reduction pair processor. This results in the new DP problem (∅,R) which proves

termination of the TRS.

Note that while argument filters are very powerful in the context of the DP frame-

work, they also present a severe bottleneck for the automation, as the search space for

argument filters is enormous (exponential in the number of function symbols and in

the arities of the function symbols).

21

4.2 Recursive Path Order Combined with Argument Filters

Consider first a naive brute force approach for solving the dependency pair con-

straint (2) using an RPO with argument filter. For any given argument filter π we

could generate the formula^
s→t∈P∪R

π(s) %rpo π(t) ∧
_

s→t∈P
π(s) �rpo π(t) (2′)

If any of these formulas is satisfiable, then termination is proved.

The constraints “π(s) %rpo π(t)” and “π(s) �rpo π(t)” can be encoded as described

in Section 3. Then SAT solving can search for an RPO satisfying (2′) for the given

argument filter π.

However, this approach is hopelessly inefficient, since it would call the SAT solver

for each of the exponentially many argument filters. Even if one considers the less naive

algorithms for enumerating argument filters from [24] and [26], for many examples the

SAT solver would be called exponentially often.

We will show instead how to encode the argument filters into a propositional for-

mula and to delegate the search for an argument filter to the SAT solver. In this way,

the SAT solver is only called once with an encoding of Formula (2′) where π is not

given, but left open. This is an advantage, since the filter, the precedence, and the

status strongly influence each other. Now the SAT solver can search for an argument

filter, a precedence, and a status at the same time.

So our goal is to encode constraints like “s �πrpo t” (or “s %πrpo t”) into a proposi-

tional formula such that every model of the formula corresponds to a concrete filter π,

a precedence (>Σ , >Σ), and a status σ which satisfy “s �πrpo t” (or “s %πrpo t”). The

definition of RPO with an argument filter π is straightforward: first apply the argu-

ment filter π to both terms s and t and then use Definition 6. Nevertheless, we provide

an explicit definition from which the encoding presented in Section 4.3 is derived. The

essential difference to Definition 6 is that all cases are refined to consider the effect of

the argument filter π.

Definition 16 (RPO modulo π) For an argument filter π, a precedence (>Σ , >Σ),

and a status function σ, we define the relations �πrpo and ∼πrpo on terms. Moreover,

we define %πrpo = �πrpo ∪ ∼πrpo. Again, we use the notation s̄ = 〈s1, . . . , sn〉 and

t̄ = 〈t1, . . . , tm〉. Moreover, “π(f) = [. . .]” means that π is not collapsing on f .

(gt) s �πrpo t iff s = f(s̄) and one of (gt1) or (gt2) holds:

(gt1) (a) π(f) = i and si �πrpo t; or

(b) π(f) = [i1, . . . , ip] and for some i ∈ [i1, . . . , ip], si �πrpo t or si ∼πrpo t;
(gt2) t = g(t̄) and

(a) π(g) = j and s �πrpo tj ; or

(b) π(f) = [. . .], π(g) = [j1, . . . , jq], s �πrpo tj for all j ∈ [j1, . . . , jq],

and either (i) f >Σ g or

(ii) f ≈Σ g and s̄ �f,g,πrpo t̄;

(eq) s ∼πrpo t iff one of (eq1) or (eq2) holds:

(eq1) (a) s = t; or

(b) s = f(s̄) and π(f) = i and si ∼πrpo t; or

(c) t = g(t̄) and π(g) = j and s ∼πrpo tj ;
(eq2) s = f(s̄), t = g(t̄), π(f) = [. . .], π(g) = [. . .], f ≈Σ g, and s̄ ∼f,g,πrpo t̄.

22

Here, �f,g,πrpo and ∼f,g,πrpo are the tuple extensions of �πrpo and ∼πrpo defined as follows.

Let π(f) = [i1, . . . , ip] and π(g) = [j1, . . . , jq].

(gt∗) 〈s1, . . . , sn〉 �f,g,πrpo 〈t1, . . . , tm〉 iff one of (gt∗1) or (gt∗2) holds:

(gt∗1) σ maps f and g to permutations µf and µg; and

µf 〈si1 , . . . , sip〉 �
π lex
rpo µg〈tj1 , . . . , tjq 〉;

(gt∗2) σ maps f and g to mul; and 〈si1 , . . . , sip〉 �
πmul
rpo 〈tj1 , . . . , tjq 〉;

(eq∗) 〈s1, . . . , sn〉 ∼f,grpo 〈t1, . . . , tm〉 iff one of (eq∗1) or (eq∗2) holds:

(eq∗1) σ maps f and g to µf and µg; and µf 〈si1 , . . . , sip〉 ∼
π lex
rpo µg〈tj1 , . . . , tjq 〉;

(eq∗2) σ maps f and g to mul; and 〈si1 , . . . , sip〉 ∼
πmul
rpo 〈tj1 , . . . , tjq 〉.

It follows directly from Definitions 6, 14, and 16 that for all terms s and t we have

s �πrpo t iff π(s) �rpo π(t) and s %πrpo t iff π(s) %rpo π(t).

4.3 Encoding RPO modulo Argument Filter

Now we encode the RPO decision problem for the dependency pair constraint (2).

Similar to Section 3, we start with encoding “atomic” constraints like s �πrpo t, s %πrpo t,
or s ∼πrpo t. So the question is whether there exist an argument filter π, a precedence

(>Σ , >Σ), and a status σ such that s �πrpo t, s %πrpo t, or s ∼πrpo t holds. Our aim is

to encode these decision problems as constraints on π, (>Σ , >Σ), and σ, similar to the

encoding of s �rpo t in Section 3. The difference is that now we also have constraints

on the argument filter π.

Encoding Argument Filters: Following Definition 14 we represent π by Boolean

vectors πf where each element πfi is true iff i ∈− π(f) and by Boolean flags πflist
indicating whether π maps f to a list, i.e., whether π is not collapsing on f . To model

an argument filter π, the encoding introduces the following constraint indicating that

for each symbol f , π maps f to a list of argument positions or to a single position.

Here, let n be the arity of f .

τ(πf) = πflist ∨

nX
i=1

πfi = 1

!
(28)

Encoding the Backbone: The encoding follows the formalization of RPO modulo π

given in Definition 16. It is similar to the encoding of Equations (4)–(8) from Section 3.

The difference is that now each reference to a subterm must be “wrapped” by the

question: “has this subterm been filtered away by π?” Equations (4′)–(6′) adapt (4)–

(6) and (7a′)–(7c′) adapt (7). Here, (7a′) treats the case of terms that are already equal

before applying the filter and (7b′) and (7c′) handle the case where one of the terms

is a variable x. Finally, Equation (8′) adapts (8). Similar to the encoding of Section 3,

all “missing” cases are defined to be false.

τ(f(s̄) �πrpo t) = τ1(f(s̄) �πrpo t) ∨ τ2(f(s̄) �πrpo t) (4′)

τ1(f(s̄) �πrpo t) =
_

16i6n

“
πfi ∧

“
τ(si �πrpo t) ∨ (πflist ∧ τ(si ∼πrpo t))

””
(5′)

τ2(f(s̄) �πrpo g(t̄)) =
^

16j6m

“
πgj → τ(f(s̄) �πrpo tj)

”
∧ (6′)

“
πglist →

“
πflist ∧

“
τ(f >Σ g) ∨ (τ(f ≈Σ g) ∧ τ(s̄ �f,g,πrpo t̄))

”””

23

τ(s ∼πrpo s) = true (7a′)

τ(f(s̄) ∼πrpo x) = ¬πflist ∧
^

16i6n

“
πfi → τ(si ∼πrpo x)

”
for variables x (7b′)

τ(x ∼πrpo g(t̄)) = ¬πglist ∧
^

16j6m

“
πgj → τ(x ∼πrpo tj)

”
for variables x (7c′)

τ(f(s̄) ∼πrpo g(t̄)) =

0@¬πflist → ^
16i6n

“
πfi → τ(si ∼πrpo g(t̄))

”1A ∧ (8′)

0@(πflist ∧ ¬π
g
list)→

^
16j6m

“
πgj → τ(f(s̄) ∼πrpo tj)

”1A ∧

“
(πflist ∧ π

g
list)→

“
(f ≈Σ g) ∧ τ(s̄ ∼f,g,πrpo t̄)

””

Encoding Permutations modulo π: Let π be an argument filter, f be an n-ary

symbol, and assume that π(f) = [i1, . . . , ip]. We restrict permutations to consider only

the non-filtered positions of f . Thus, a filtered permutation µf,π is a bijective mapping

from π(f) to {1, . . . , p}. We represent a filtered permutation by an n × n Boolean

matrix µf,π with elements µf,πi,k . To model a filtered permutation, the matrix µf,π must

satisfy the constraints specified in Equation (11′) which generalizes Equation (11) from

Section 3.

τ(µf,π) = τa(µf,π) ∧ τb(µf,π) ∧ τc(µf,π) ∧ τd(µf,π) (11′)

where

τa(µf,π) =
^

16k6n

nX
i=1

µf,πi,k 6 1

!
encodes that µf,π is injective, i.e., at the k-

th position, at most one of the elements µf,πi,k
may be true, for 1 6 i 6 n.

τb(µf,π) =
^

16i6n

¬πfi →

n̂

k=1

¬µf,πi,k

! encodes that if the i-th argument is filtered,

then it is not in the domain of µf,π, i.e,

πfi = false implies µf,πi,k = false, for 1 6 k 6 n.

τc(µf,π) =
^

16i6n

πfi →

nX
k=1

µf,πi,k = 1

!! encodes that if the i-th argument is not

filtered, then it is in the domain of µf,π, i.e,

exactly one µf,πi,k is true, for 1 6 k 6 n.

τd(µf,π) =
^

26k6n

0@ _
16i6n

µf,πi,k →
_

16i6n

µf,πi,k−1

1A encodes that the range of µf,π is {1, . . . , p}.
If an argument is mapped to position k, then

an argument is mapped to position k − 1.

Encoding Lexicographic Comparisons w.r.t. Permutations: Now we consider

the encoding of s̄ ∼f,g,πrpo t̄ and s̄ �f,g,πrpo t̄ for the tuple extensions modulo π. We

first consider the case where the arguments of f and g are compared lexicographically

modulo the filtered permutations µf,π and µg,π. We use the notation ∼f,g,πlex and �f,g,πlex .

The encoding corresponds to Cases (gt∗) and (eq∗) of Definition 16. For the equality

constraint, this involves adapting Equation (12) of Section 3 to consider the argument

filter π.

24

First consider the condition “n = m” in Equation (12). In the presence of an

argument filter π, the symbols f and g may have different arities, yet have the same

number of non-filtered argument positions. Part (a) of Equation (12′) encodes that

f and g have the same number of non-filtered positions. Part (b) of the equation

corresponds to the remainder of Equation (12) with π added.

τ(s̄ ∼f,g,πlex t̄) =

0@ nX
i=1

πfi =

mX
j=1

πgj

1A
| {z }

(a)

∧
^

1 6 i 6 n, 1 6 j 6 m,
1 6 k 6 min(n, m)

“
µf,πi,k ∧ µ

g,π
j,k → τ(si ∼πrpo tj)

”
| {z }

(b)

(12′)

Next we adapt Equation (13) of Section 3 to define the encoding of �f,g,πlex . To

this end, we consider the subterms si and tj which are mapped by µf,π and µg,π,

respectively, to positions 1 6 k 6 min(n,m) and introduce constraints of the form

s̄ �f,g,π,klex t̄ which express lexicographic comparisons starting from a position k. As

before, the encoding is initialized by k = 1, i.e., we start with the first position.

We then consider three cases for each position k: (1) n < k, i.e., there remain

(syntactically) no positions in s̄, and the encoding is false; (2) n > k > m, i.e, there

remain (syntactically) positions in s̄ but no positions in t̄, and we need to encode that

some argument of f is actually considered at the k-th position; and (3) both n > k and

m > k, and the encoding considers all 1 6 i 6 n and 1 6 j 6 m to capture the case

where µf,π(i) = k = µg,π(j). Note that in this case, when due to the argument filter

no arguments are considered at the k-th position, the implications in τ ′(s̄ �f,g,π,klex t̄)

are all trivially satisfied.

τ(s̄ �f,g,πlex t̄) = τ(s̄ �f,g,π,1lex t̄)

τ(s̄ �f,g,π,klex t̄) =

8>>><>>>:
false, if n < kW
16i6n

µf ,π
i,k , if n > k > m

τ ′(s̄ �f,g,π,klex t̄) otherwise

where

τ ′(s̄ �f,g,π,klex t̄) =
V

1 6 i 6 n,
1 6 j 6 m

µf,πi,k ∧ µ

g,π
j,k →

τ(si �πrpo tj) ∨“
τ(si ∼πrpo tj) ∧ τ(s̄ �f,g,π,k+1

lex t̄)
”!

(13′)

Encoding Multiset Covers modulo π: To encode multiset comparisons, we asso-

ciate with each pair of terms f(s̄) = f(s1, . . . , sn) and g(t̄) = g(t1, . . . , tm) a filtered

multiset cover (γπ, επ). Here, a filtered multiset cover is just like a multiset cover except

that it may only refer to non-filtered positions. We represent γπ by an n×m Boolean

matrix where each element γi,j = true iff i and j are not filtered according to π(f)

and π(g), respectively, and γπ(j) = i, i.e., if si covers tj . We represent επ as a Boolean

vector where εi = true indicates that si is not filtered according to π(f) and is used

for equality. To model a filtered multiset cover, γπ and επ must satisfy the constraints

specified in Equation (14′) which generalizes Equation (14) from Section 3.

τ((γπ , επ)) =
^
f ∈Σ

“
τa((γπ , επ)) ∧ τb((γπ , επ)) ∧ τc((γπ , επ)) ∧ τd((γπ , επ))

”
(14′)

25

where

τa((γπ , επ)) =
^

16j6m

πgj →

nX
i=1

γi,j=1

!! encodes that if the j-th argument of g is not

filtered away (i.e., πgj is true), then there is

exactly one argument of f that covers it.

τb((γπ , επ)) =
^

16i6n

0@¬πfi → ^
16j6m

¬γi,j

1A encodes that if the i-th argument of f is fil-

tered away (i.e., πfi is false), then it cannot

cover any arguments of g.

τc((γπ , επ)) =
^

16j6m

0@¬πgj → ^
16i6n

¬γi,j

1A encodes that if the j-th argument of g is fil-

tered away (i.e., πgj is false), then there is no

argument of f that covers it.

τd((γπ , επ)) =
^

16i6n

0@εi →
0@ mX
j=1

γi,j=1

1A1A encodes that if the i-th argument is used for

equality, then there is exactly one argument

that is covered by it.

Encoding Multiset Comparisons: Now we define τ(s̄ %f,g,πmul t̄) analogously to

Equation (15) of Section 3. For the encoding of �f,g,πmul and ∼f,g,πmul , we restrict Equa-

tions (16) and (17) of Section 3 to the arguments that are not filtered away.

τ(s̄ %f,g,πmul t̄) = τ((γπ, επ)) ∧
^

1 6 i6 n,
1 6 j6 m

“
γi,j →

“ (εi → τ(si ∼πrpo tj)) ∧
(¬εi → τ(si �πrpo tj))

””
(15′)

τ(s̄ �f,g,πmul t̄) = τ(s̄ %f,g,πmul t̄) ∧ ¬
^

16i6n

(πfi → εi) (16′)

τ(s̄ ∼f,g,πmul t̄) = τ(s̄ %f,g,πmul t̄) ∧
^

16i6n

(πfi → εi) (17′)

Encoding RPO Constraints modulo π: Finally, for the combination of lexico-

graphic and multiset comparisons, we simply change Equations (18) and (19) of Section

3 to use �f,g,πmul instead of �f,gmul etc.

τ(s̄ �f,g,πrpo t̄) =
“
mf ∧mg ∧ τ(s̄ �f,g,πmul t̄)

”
∨
“
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,πlex t̄)

”
(18′)

τ(s̄ ∼f,g,πrpo t̄) =
“
mf ∧mg ∧ τ(s̄ ∼f,g,πmul t̄)

”
∨
“
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g,πlex t̄)

”
(19′)

Now we are ready to introduce a polynomially sized encoding of the dependency

pair constraint (2).

^
f∈Σ

“
τ(µf,π) ∧ τ(πf)

”
∧

^
`→r∈P∪R

τ(` %πrpo r) ∧
_

`→r∈P
τ(` �πrpo r) (2′′)

where τ(` %πrpo r) is just an abbreviation for τ(` �πrpo r)∨ τ(` ∼πrpo r). Satisfiability of

this formula indicates an argument filter, a precedence, and a status for each symbol

which together prove that one can remove all strictly decreasing dependency pairs.

26

Example 17 Consider the first arguments s(x) and minus(x, y) of DIV in the left- and

right-hand sides of the dependency pair (23) in Example 12, i.e., DIV(s(x), s(y)) →
DIV(minus(x, y), s(y)). Using the above encoding, after simplification of conjunctions,

disjunctions, and implications with true and false, and using the side conditions for

permutation, argument filter, and multiset cover we obtain:

τ(s(x) �πrpo minus(x, y))

= τ1(s(x) �πrpo minus(x, y)) ∨ τ2(s(x) �πrpo minus(x, y))

= πs
1 ∧

“
τ(x �πrpo minus(x, y))| {z }

false

∨
“
πs
list ∧ τ(x ∼πrpo minus(x, y))| {z }

¬πminus
list ∧¬πminus

2

””
∨

“
πminus
1 → τ(s(x) �πrpo x)| {z }

πs
1 ∧πs

list

”
∧

“
πminus
2 → τ(s(x) �πrpo y)| {z }

false

”
∧

“
πminus
list →

“
πs
list ∧

“
τ(s>Σminus) ∨ (τ(s≈Σminus) ∧ τ(〈x〉�s,minus,π

rpo 〈x, y〉))
”””

= πs
1 ∧ πs

list ∧ ¬π
minus
list ∧ ¬π

minus
2 ∨“

πminus
1 → πs

1 ∧ πs
list

”
∧

¬πminus
2 ∧“
πminus
list →

“
πs
list ∧

“
τ(s>Σminus) ∨ (τ(s≈Σminus) ∧ τ(〈x〉�s,minus,π

rpo 〈x, y〉))
”””

Note that

τ(〈x〉 �s,minus,π
rpo 〈x, y〉) = ms ∧ mminus ∧ τ(〈x〉 �s,minus,π

mul 〈x, y〉)
∨ ¬ms ∧ ¬mminus ∧ τ(〈x〉 �s,minus,π

lex 〈x, y〉)

Both τ(〈x〉 �s,minus,π
mul 〈x, y〉) and τ(〈x〉 �s,minus,π

lex 〈x, y〉) imply πs
1 ∧ ¬πminus

1 ∧ ¬πminus
2 .

So to summarize, s(x) �πrpo minus(x, y) holds iff

• s is not filtered and minus is collapsed to its first argument; or

• s and minus are not collapsed, s is greater than minus in the precedence, the second

argument of minus is filtered away, and whenever minus keeps its first argument

then s keeps its first argument, too; or

• s and minus are not collapsed, s is equal to minus in the precedence and both have

either multiset or lexicographic status, s keeps its first argument while minus filters

away both arguments.

Although the integration of an argument filter π enlarges the formula resulting

from the encoding, one still obtains a cubic bound on its size.

Theorem 18 Let K be the size of the dependency pair constraint (2). Then the size

of the formula (2′′) is in O(K3).

Proof To prove this theorem we just refer to the proof of Theorem 10. The reason is

that for all Formulas (4′)–(19′), their size has the same asymptotical bound as their

counterparts (4)–(19). One only has to care for the c = |Σ| new formulas τ(πf) in

Equation (28). Similar to τ(µf) and τ(µf,π), the size of these formulas is within O(a3)

where a is the maximal arity of symbols in Σ, i.e., a 6 K. ut

27

4.4 Summary

For a pair of terms s and t, we defined the encoding τ(s �πrpo t). This is a formula

which is satisfiable iff there exists an RPO and an argument filter π such that s �πrpo t.
Now we can solve dependency pair constraints of the form (2), where we use reduction

pairs based on RPO and argument filters.^
`→r∈P ∪R

` %πrpo r ∧
_

`→r∈P
` �πrpo r

So here all rules R and dependency pairs P must be weakly oriented and those DPs

that are also strictly decreasing are removed. In this way, one can for example prove

termination of the TRS in Example 11, cf. Example 15. Here, the resulting Constraint

(2) is transformed into a propositional formula whose satisfiability is easily shown by

existing SAT solvers.

5 Usable Rules and their SAT Encodings

An important improvement of the reduction pair processor of Theorem 13 is to weaken

the condition that all rules of R have to be weakly decreasing. Instead, it is sufficient to

require that only the so-called usable rules from R are weakly decreasing, as specified

in the usable rule constraint (3). In Section 5.1 we recapitulate the concept of usable

rules. Afterwards, Section 5.2 extends our encoding from Section 4.3 to capture this

improvement. Again we prove that the size of our encoding is still cubic. We summarize

the results of Section 5 in Section 5.3.

5.1 Usable Rules

As already outlined in the introduction (Section 1), the main problem is that the set

of usable rules depends on the argument filter used. An argument filter which deletes

many arguments has the advantage that it results in only few usable rules (i.e., only

few rules of R have to be weakly decreasing). But on the other hand, such a filter has

the disadvantage that satisfying the resulting constraints may be very hard (or even

impossible) since those arguments that were crucial for the termination behavior may

have been filtered away. Similarly, an argument filter that deletes only few arguments

has the advantage that the full information for term comparisons is still available.

But at the same time, it results in more usable rules that have to be oriented. Hence,

the SAT encoding has to take all these aspects into account, i.e., it has to search

simultaneously for an RPO and an argument filter that satisfy the resulting inequalities

(where the set of these inequalities again depends on the argument filter used).

Given a DP problem (P,R), the rules of R are used to evaluate the arguments

between two function calls. Thus, they are only applied to evaluate (instances of)

subterms occurring on right-hand sides of dependency pairs from P.

Example 19 Consider again the TRS R and its dependency pairs from Examples 11

and 12. The rules from R are applied to evaluate the subterm minus(. . .) in an instance

of the right-hand side of the dependency pair

DIV(s(x), s(y))→ DIV(minus(x, y), s(y)). (23)

28

The only defined symbol occurring in the right-hand side of any dependency pair

of the example is minus. Hence, only the minus-rules are usable. In other words, the

two div-rules of Example 11 are not usable and thus, they do not need to be weakly

decreasing.

One can further restrict the set of usable rules in the presence of argument filters.

Consider for example an argument filter π which ignores the first argument of DIV by

setting π(DIV) = [2]. Now the minus symbol is filtered away and no longer “occurs”

in the right-hand side of the dependency pair (it only occurs in positions which are

filtered away). Consequently, then also the minus-rules would become non-usable since

an evaluation with these rules is only possible in subterms which are ignored by the

reduction pair (%π,�π).

Definition 20 recapitulates the definition of usable rules w.r.t. an argument filter

from [24], where we choose a formulation that eases the encoding into propositional

logic later on. Let (P,R) be a DP problem and let π be an argument filter. The

definition of usable rules is inductive and is determined not only by P and R, but

also by the argument filter π. For each dependency pair s → t ∈ P, all those rules of

R are “usable” which are relevant for evaluating the term t unless the rules are only

applied in subterms that are filtered away by π. This is captured by Item (c) of the

definition below while the notion of usable rules relevant to a term t is captured by

Items (a) and (b). Now consider a rule `→ r which has already been determined to be

“usable”. Since ` → r is usable, its right-hand side may need to be evaluated. Hence

also the rules from R that are relevant to the term r should be considered “usable”.

This inductive part of the definition is captured by Item (d).

In the definition, RlsR(f) denotes those rules of R which define a function sym-

bol f , i.e., which are rooted by f :

RlsR(f) = {`→ r ∈ R | root(`) = f}

Definition 20 (Usable Rules modulo π) Let R be a TRS and π be an argument

filter. The usable rules U(t,R, π) of a term t are defined as

(a) U(x,R, π) = ∅ for a variable x

(b) U(f(t1, . . . , tn),R, π) = RlsR(f) ∪
[

i ∈− π(f)

U(ti,R, π)

The usable rules of a DP problem (P,R) modulo π are the least set U(P,R, π) such

that

(c) U(P,R, π) ⊇
[

s→t∈P
U(t,R, π) and

(d) U(P,R, π) ⊇
[

`→r∈U(P,R,π)

U(r,R, π)

The following example illustrates the definition.

Example 21 Consider the following alternative TRS R for division and its dependency

pairs.

29

R: minus(x, 0) → x DP (R): MINUS(s(x), s(y)) → MINUS(x, y)
minus(s(x), s(y)) → minus(x, y) GE(0, s(y)) → NOT(true)

not(true) → false GE(s(x), s(y)) → GE(x, y)
ge(x, 0) → true DIV(x, y) → IF(ge(x, y), x, y)

ge(0, s(y)) → not(true) DIV(x, y) → GE(x, y)
ge(s(x), s(y)) → ge(x, y) IF(true, s(x), s(y)) → DIV(minus(x, y), s(y))

div(x, y) → if(ge(x, y), x, y) IF(true, s(x), s(y)) → MINUS(x, y)
if(true, s(x), s(y)) → s(div(minus(x, y), s(y)))

if(false, x, s(y)) → 0

If we use an argument filter which keeps every argument, then the usable rules for the

DP problem (DP (R),R) are the minus- and ge-rules, since minus and ge occur in the

right-hand side of a dependency pair, and the not-rules, since not occurs in the right-

hand side of a (usable) ge-rule. But if one chooses an argument filter with π(IF) = [2],

then the ge- and not-rules are no longer usable since ge does not occur in the right-hand

side of the filtered dependency pair DIV(x, y)→ IF(x).

The following theorem from [24] states that one can refine the reduction pair pro-

cessor of Theorem 13 by considering usable rules modulo π. As shown in [24,27], such

a refinement is only possible for so-called Cε-compatible reduction pairs (%,�) where

c(x, y) % x and c(x, y) % y hold for some fresh function symbol c. But this is not a re-

striction in our context, since reduction pairs like (%πrpo,�πrpo) are always Cε-compatible

by taking π(c) = [1, 2].

Theorem 22 (Reduction Pair Processor modulo π) Let (%π,�π) be a Cε-compa-

tible reduction pair such that P ∪ U(P,R, π) ⊆ %π. If there is no infinite (P \�π,R)-

chain, then there is no infinite (P,R)-chain.

So a proof of termination based on the reduction pair processor modulo π is ob-

tained by solving a usable rule constraint of the form (3) from the introduction.

^
`→r∈P ∪U(P,R,π)

` %π r ∧
_

`→r∈P
` �π r

As demonstrated in [24], the restriction to the usable rules modulo argument filters

results in a significant gain of termination proving power. However, identifying the

usable rules increases the size of the search space considerably and it is not straight-

forward to automate using SAT solvers.

5.2 Encoding RPO modulo Argument Filter with Usable Rules

There are two challenges when encoding the usable rule constraint (3) to an equivalent

SAT formula. The first challenge is the mutual dependency between

(i) the fact that the argument filter should be chosen in such a way that the usable

rules and the dependency pairs can be oriented, and

(ii) the fact that the definition of which rules are “usable” depends also on the argument

filter.

30

As discussed before, an enumeration of all argument filters is hopelessly inefficient.

Thus, the idea is to encode the usable rule constraint (3) in terms of a generic argument

filter. In this way the SAT solver takes care of the facts (i) and (ii) when searching

for argument filters. The second challenge is the fact that Definition 20 is inductive

and defines the set of usable rules as the minimal set satisfying Items (c) and (d) in

Definition 20.

Recall Formula (2′′) from Section 4.3 which encodes the dependency pair constraint

(2):

^
f∈Σ

“
τ(µf,π) ∧ τ(πf)

”
∧

^
`→r∈P∪R

τ(` %πrpo r) ∧
_

`→r∈P
τ(` �πrpo r)

At the end of this section we will present an encoding for the usable rule constraint (3)

which has the following (similar) form, where τ(Uπ) encodes (an overapproximation

of) the usable rules. Here, Uπ is a set of Boolean flags of the form uπρ . For each rule

ρ = `→ r ∈ R, we use uπρ to indicate whether the rule ρ needs to be oriented. The

propositional formula τ(Uπ) is added to the encoding and ensures that uπρ is true

whenever the corresponding rule ρ is usable, i.e., whenever ρ ∈ U(P,R, π).

τ(Uπ) ∧
^
f∈Σ

“
τ(µf,π) ∧ τ(πf)

”
∧^

`→r∈R
(uπ`→r → τ(` %πrpo r)) ∧

^
`→r∈P

τ(` %πrpo r) ∧
_

`→r∈P
τ(` �πrpo r)

(3′)

The following definition introduces the SAT encoding of usable rules and is directly

derived from Definition 20. We use the propositional variables πfi from Section 4.3

which encode “i ∈− π(f)”, i.e., πfi = true indicates that the i-th argument of f is

not filtered away by π. The first part of the definition introduces a formula ωπ(t)

which requires that uπρ is true for all those rules ρ that are relevant to a term t. This

corresponds directly to Items (a) and (b) of Definition 20. The second part of the

definition corresponds to Items (c) and (d) in Definition 20. It states first that for each

dependency pair s→ t ∈ P, all rules relevant to the term t are “usable”. Moreover, if

the rule `→ r is usable then so are all rules that are relevant to the term r.

Definition 23 (Encoding Usable Rules modulo π) Let R be a TRS and π be an

argument filter. For any term t we introduce the formula ωπ(t):

(a) ωπ(x) = true for a variable x

(b) ωπ(f(t1, . . . , tn)) =
^

ρ∈RlsR(f)

uπρ ∧
^

16i6n

“
πfi → ωπ(ti)

”
Let (P,R) be a DP problem. We introduce the formula τ(Uπ).

τ(Uπ) =
^

s→t∈P
ωπ(t)

| {z }
(c)

∧
^

`→r∈R
(uπ`→r → ωπ(r))

| {z }
(d)

(29)

There is an important difference between Definition 20 which introduces usable

rules and Definition 23 which presents their encoding. Part (d) of the encoding states

that if ` → r is usable then so is every rule relevant to the right-hand side r. This is

31

equivalent to the statement in Part (d) of Definition 23. However, the encoding does

not capture the minimality of the set of usable rules as expressed in Definition 20. Any

set of rules satisfying the conditions constitutes a model of the encoding. We will come

back to this point after the following example.

Example 24 Consider again the DP problem (DP (R),R) from Example 21. Using the

encoding of Definition 23, for P = DP (R) we obtain the following conjunction τ(Uπ)

after propositional simplification:

(πIF
1 → uπ

ge(x,0)→true
∧ uπ

ge(0,s(y))→not(true)
∧ uπ

ge(s(x),s(y))→ge(x,y)
)

∧ (πDIV
1 → uπ

minus(x,0)→x ∧ u
π
minus(s(x),s(y))→minus(x,y)

)

∧ (uπ
minus(s(x),s(y))→minus(x,y)

→ uπ
minus(x,0)→x ∧ u

π
minus(s(x),s(y))→minus(x,y)

)

∧ (uπ
ge(0,s(y))→not(true)

→ uπ
not(true)→false

)

∧ (uπ
ge(s(x),s(y))→ge(x,y)

→ uπ
ge(x,0)→true

∧ uπ
ge(0,s(y))→not(true)

)

∧ (uπ
div(x,y)→if(ge(x,y),x,y)

→ . . .)

∧ (uπ
if(true,...)→s(div(...)

→ . . .)

Note that we removed conjuncts like πDIV
2 → ωπ(s(y)), because ωπ(s(y)) can be simpli-

fied to true. Note also that the variables uπdiv(...)→..., u
π
if(true,...)→..., and uπif(false,...)→...

can all be set to false, because div and if do not occur on any right-hand side of a depen-

dency pair. Hence, the corresponding propositional variables uπdiv(...)→..., u
π
if(true,...)→...,

and uπif(false,...)→... do not occur on right-hand sides of implications in τ(Uπ) except

those implications where the left-hand side is also uπdiv(...)→... or uπif(true,...)→....

As already mentioned, the issue of minimality of the set of usable rules is not

captured by the encoding of Definition 23. In particular, assigning the value true to

all variables uπρ will always satisfy τ(Uπ) (for any argument filter). There are many

techniques to obtain a minimal model for an inductive definition such as the one in

Equation (29). In fact there is a whole branch of SAT solvers for inductive definitions,

for example SAT(ID) [39]. However, in our application we do not have to enforce

minimality, which simplifies the encoding considerably. In the usable rule constraint

(3), it is sufficient to make just the usable rules ρ weakly decreasing, but it is not a

problem if additional rules ρ are weakly decreasing as well. Our encoding leaves it up

to the SAT solver to decide which variables uπρ are set to true. The only condition that

has to be ensured (by the formula τ(Uπ)) is that uπρ is at least true for every usable

rule ρ.

Hence, the encoding for argument filters and usable rules can now be done by the

formula we already presented at the beginning of this section.

τ(Uπ) ∧
^
f∈Σ

“
τ(µf,π) ∧ τ(πf)

”
∧^

`→r∈R
(uπ`→r → τ(` %πrpo r)) ∧

^
`→r∈P

τ(` %πrpo r) ∧
_

`→r∈P
τ(` �πrpo r)

(3′)

We observe that the size of the overall formula is the same as for Formula (2′′) with

the addition of τ(Uπ) and the additional premises for the inequalities ` %πrpo r.

Theorem 25 Let K be the size of the usable rule constraint (3). Then the size of

Formula (3′) is in O(K3).

32

Proof Theorem 18 shows that the size of Formula (2′′) is cubic in K. Hence, it remains

to prove that the size of τ(Uπ) is at most cubic in K. In fact, for τ(Uπ) one can

even derive a smaller bound: The size of ωπ(t) is in O(|t| · |R|) for every term t.

Hence, the size of τ(Uπ) is at most
P
s→t∈P∪R |t| · |R|, which is in O(K2) since bothP

s→t∈P∪R |t| 6 K and |R| 6 K. ut

5.3 Summary

For any TRS R and any set of DPs P, we have shown how to encode the usable rule

constraint (3):

^
`→r∈P ∪U(P,R,π)

` %πrpo r ∧
_

`→r∈P
` �πrpo r

Here, we use reduction pairs based on RPO and argument filters. The formula resulting

from our encoding is satisfiable iff there exist an RPO and an argument filter π such

that all usable rules and all dependency pairs are weakly decreasing and at least one DP

is strictly decreasing. Then all strictly decreasing DPs can be removed. For example,

in this way one can easily prove termination of the TRS from Example 21.

6 Implementation and Experiments

In order to assess the impact of our contributions, we performed extensive experiments

comparing an implementation based on our results to a dedicated implementation

without SAT solving.

To measure the performance of termination tools, since 2004 there is an annual In-

ternational Termination Competition.3 Here, the tools are tested against each other on

a large data base of examples (the so-called Termination Problem Data Base, TPDB).

Since AProVE was the most powerful tool for proving termination of TRSs in all com-

petitions so far (from 2004–2010), it provides the ideal setting to evaluate the impact

of our new SAT encoding.

We tested our implementation on all 1391 TRSs from the TPDB (version 5.0.2).

The experiments were run on a 2.67 GHz Intel Core i7 and as in the International

Termination Competition, we used a time-out of 60 seconds for each example.

The results of our experiments are summarized in Table 1. The columns of the table

describe our experiments to measure the effect of SAT solving for three configurations of

AProVE corresponding to Constraints (1)–(3) separately. In this way, the contributions

of Sections 3–5 are evaluated consecutively.

In the first configuration, for Constraint (1), we prove termination by orienting rules

repeatedly with a path order and by removing those rules that are strictly decreasing.

This configuration is used to evaluate the encoding of RPO from Section 3. In the

second configuration, for Constraint (2), we first build the initial DP problem and then

apply the reduction pair processor (Theorem 13) repeatedly. Here, we we also apply the

dependency graph processor [1,22,26] (using the approximation of [21]) to treat sets of

“mutually recursive dependency pairs” separately. With this configuration we evaluate

3 http://www.termination-portal.org/wiki/Termination_Competition

33

Constraint (1) Constraint (2) Constraint (3)
order dedicated SAT dedicated SAT dedicated SAT

proved 147 147 264 304 421 435
LPO time-out 51 0 464 9 187 0

runtime 4158.3 26.7 29508.0 1269.1 12653.2 202.1
proved 169 169 284 362 453 489

QLPO time-out 141 0 502 24 241 9
runtime 9597.6 36.8 31885.8 2811.2 15898.7 1503.6
proved 167 167 275 316 427 440

LPOS time-out 62 0 481 7 192 0
runtime 5148.9 26.9 30751.8 1194.2 13354.0 196.3
proved 193 194 298 412 467 530

QLPOS time-out 212 0 524 22 275 13
runtime 14528.6 62.3 33717.4 2719.9 18307.1 1554.5
proved 107 107 231 261 425 433

MPO time-out 77 0 491 19 217 0
runtime 6048.9 33.9 31501.0 1876.6 14643.8 232.5
proved 120 120 251 335 467 502

QMPO time-out 176 0 521 36 259 15
runtime 12308.2 78.9 33724.4 3768.8 17186.4 1840.4
proved 172 172 280 324 441 454

RPO time-out 82 0 503 17 219 0
runtime 7160.6 38.3 32714.6 1831.4 14972.6 216.8
proved 200 202 297 429 485 552

QRPO time-out 234 1 562 36 292 17
runtime 16632.4 157.5 36418.0 4014.6 19489.4 1999.1

Table 1 Experimental Results.

our encoding of RPO with argument filters from Section 4. The third configuration, for

Constraint (3), is similar to the second one, but applies the reduction pair processor of

Theorem 22. In this way we evaluate our encoding of RPO with argument filters and

usable rules from Section 5.

For each of these configurations we compare an implementation based on encoding

to SAT with a dedicated implementation without SAT solving. For the dedicated im-

plementation, we use the solver of AProVE where the search for RPO and argument

filters is performed by a vastly improved version of the algorithm described in [24].

For the SAT-based implementation, we extended AProVE by the encodings from

this paper. We present results using the SAT4J [35] SAT solver and its implementation

of Tseitin’s algorithm [42] for transformation into CNF. The implementation uses shar-

ing of subformulas to keep the size of the resulting propositional formulas polynomial,

as discussed in Section 3.10.

Each of the rows in Table 1 summarizes the experiments for one of the path orders,

where we consider that path order for strict and non-strict (or “quasi-”) precedences

on symbols. These include lexicographic path orders (LPO/QLPO), lexicographic path

orders with status (LPOS/QLPOS), multiset path orders (MPO/QMPO), and recur-

sive path orders (RPO/QRPO). For each experiment, we present the number of TRSs

proved terminating (“proved”), the number of time-outs given a limit of 60 seconds

(“time-out”), and the analysis time in seconds for running AProVE on all 1391 TRSs

(“runtime”). The “best” numbers are always printed in bold.

34

SAT vs. Dedicated: The table indicates that the SAT-based implementation im-

proves performance by orders of magnitude over the dedicated solver for all config-

urations. Precision is also improved due to the significant decrease in the number of

time-outs. The largest decrease is a reduction from 562 time-outs for QRPO using

Constraint (2) compared to 36 for the SAT-based implementation.

Strict vs. Quasi-Precedence: For all configurations and path orders, considering

quasi-precedences improves precision. In the past, dedicated solvers often did not use

quasi-precedences as the additional cost was prohibitive (observe the increase in the

number of time-outs in each transition from strict to quasi-precedences). When using

SAT solving, the additional cost is considerably less prohibitive. Consider for example

the transition from RPO to QRPO in the configuration for Constraint (2). Using

the dedicated solver we obtain only 17 additional proofs of termination but suffer 59

additional time-outs (a total of 562). In contrast, using a SAT solver we obtain 105

additional proofs while only introducing 18 additional time-outs (a total of 36).

Introducing Permutations: The introduction of permutations to lexicographic path

orders (resulting in (Q)LPOS) offers a noticeable increase in precision. For all three

configurations, this increase comes at essentially no additional cost. Note that while

also for dedicated solvers, total runtimes do not exhibit a significant increase in costs,

this is primarily due to the high number of time-outs.

Introducing Multisets: The rows for (Q)MPO illustrate that multiset path orders

on their own are relatively weak when compared to the other path orders. However, to

appreciate the impact of multiset extensions one should compare (Q)RPO to (Q)LPOS

where the only difference is the introduction of multiset comparisons. Consider for ex-

ample the difference between QLPOS and QRPO for the configuration with Constraint

(3), where we obtain additional 22 proofs of termination with only 4 additional time-

outs.

Introducing Argument Filters: Comparing the columns for Constraint (1) and

Constraint (2) illustrates the effect of introducing argument filters. While the number

of proofs obtained increases considerably (more than 50% when using SAT solvers) the

additional cost for dedicated solvers is prohibitive. Even for the most simple LPO and

MPO, we obtain more than 400 additional time-outs. In contrast, when applying a

SAT solver, in the most complex QRPO we obtain only 35 additional time-outs while

gaining 227 proofs of termination (a total of 429). Note also that for this path order,

the dedicated solver only gives 297 proofs of termination.

Introducing Usable Rules: Comparing the columns for Constraint (2) and Con-

straint (3) illustrates the effect of introducing usable rules. For all path orders and both

dedicated and SAT-based solvers, the addition of usable rules significantly improves

precision while at the same time runtimes and time-outs are reduced. For example,

for QRPO using the SAT-based implementation we obtain 123 additional proofs of

termination and decrease runtimes and time-outs by more than 50%.

Size of the Formulas: To give an impression of the size of the resulting propositional

formulas in CNF, we measure the average and maximal numbers of clauses, variables,

and literals for the most powerful configuration (the configuration with Constraint

(3) using QRPO). Note that this is also the configuration resulting in the longest

35

no RPO dedicated RPO SAT RPO

proved 977 984 1008
disproved 234 226 234
time-out 175 177 144
runtime 14626.4 15981.5 13410.2

Table 2 Experiments for Termination Proofs with a Full Version of AProVE.

formulas. Here, the average (maximal) number of clauses in a CNF is 15062 (2015091),

the average (maximal) number of different variables in a CNF is 4310 (543690), and

the average (maximal) number of occurrences of literals in a CNF is 37507 (5279871).

Full Impact: In order to assess the impact of our contributions, we consider a full

version of AProVE as used in the termination competitions which is allowed to use all

techniques available in the tool. In Table 2, we present results running three variants

on all 1391 examples of the TPDB.

The first column (“no RPO”) applies the strategy used in the last termination

competition, but where all path orders were disabled. The second column (“dedi-

cated RPO”) applies an identical strategy except that it uses a dedicated non-SAT-

based QRPO solver. Finally, the column (“SAT RPO”) applies the same strategy but

uses a SAT-based QRPO solver. All three versions of AProVE can also prove non-

termination. The rows in the table give the numbers of termination proofs (“proved”),

non-termination proofs (“disproved”), time-outs (“time-out”), and total runtimes in

seconds (“runtime”).

Prior to the introduction of SAT-based solvers for path orders, AProVE did not

apply these orders in competition strategies (as in column “no RPO”). This is reflected

in the table where we see that when introducing a dedicated QRPO solver (column

“dedicated RPO”) we obtain only 7 additional proofs of termination while losing 8

proofs of non-termination and gaining 2 time-outs. In contrast, when introducing a

SAT-based QRPO solver (column “SAT RPO”), we gain 31 proofs of termination, lose

no proofs of non-termination, and reduce the number of time-outs by 31.

7 Summary

In this paper, we demonstrated the power of propositional encoding and application of

SAT solving to termination analysis with RPO and dependency pairs. We started in

Section 3 with a SAT encoding for RPO. Section 4 extended the SAT-based approach to

the more realistic setting of DP problems with RPO and argument filters. In Section 5,

we improved the approach further by also considering usable rules. The main challenge

derives from the strong dependencies between the notions of RPO, argument filters,

and the set of rules which need to be oriented. The key to a solution was to introduce

and encode in SAT all of the constraints originating from these notions into a single

search process.

We introduced such an encoding and through implementation and experimen-

tation showed that it yields speedups in orders of magnitude over existing termi-

nation tools as well as increased termination proving power. To experiment with

our SAT-based implementation and for further details on our experiments we refer

36

to http://aprove.informatik.rwth-aachen.de/eval/SATDP/. There, we also provide

data on experiments with other (DPLL-based) SAT solvers like glucose [2], PrecoSAT

[6], and MiniSAT2 [13]. These experiments indicate that the choice of the SAT solver

does not have a significant influence on the overall performance of the termination

prover.

Instead of encoding into SAT, one can obviously also use SAT modulo theories

(SMT) as an encoding target. This approach has already been investigated for other

reduction orders like Knuth-Bendix orders [44] and polynomial orders [8]. However,

numbers play a key role in these orders, whereas most parts in the RPO definition are

purely propositional. So for Contributions (A)–(D), encoding to SMT instead of SAT

would not simplify the encoding substantially. Only the cardinality constraints and the

precedence constraints can be expressed more succinctly in SMT than in SAT by using

linear integer arithmetic or even integer difference logic. However, the overall encoding

would still have the same asymptotic (cubic) bound for both SAT and SMT. As this

paper is not about comparing SAT and SMT, we omitted most low level descriptions

and presented more abstract formulations instead, which can then be encoded in either

SAT or SMT.

Acknowledgements We thank the referees for many helpful suggestions.

References

1. T. Arts and J. Giesl. Termination of Term Rewriting using Dependency Pairs. Theoretical
Computer Science, 236(1-2):133–178, 2000.

2. G. Audemard and L. Simon. glucose. http://www.lri.fr/~simon/glucose/.
3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.
4. A. M. Ben-Amram and M. Codish. A SAT-Based Approach to Size Change Termination

with Global Ranking Functions. In TACAS ’08, LNCS 4963, pages 218–232, 2007.
5. A. Ben Cherifa and P. Lescanne. Termination of Rewriting Systems by Polynomial In-

terpretations and Its Implementation. Science of Computer Programming, 9(2):137–159,
1987.

6. A. Biere. PrecoSAT. http://fmv.jku.at/precosat/.
7. M. Bofill, D. Busquets, and M. Villaret. A Declarative Approach to Robust Weighted

Max-SAT. In PPDP ’10, pages 67–76. ACM, 2010.
8. C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodŕıguez-Carbonell, and A. Rubio. Solv-

ing Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic. In CADE ’09,
LNAI 5663, pages 294–305, 2009.

9. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT Solving for
Argument Filterings. In LPAR ’06, LNAI 4246, pages 30–44, 2006.

10. M. Codish, V. Lagoon, and P. J. Stuckey. Solving Partial Order Constraints for LPO
Termination. Journal on Satisfiability, Boolean Modeling and Computation, 5:193–215,
2008.

11. M. Codish, S. Genaim, and P. J. Stuckey. A Declarative Encoding of Telecommunications
Feature Subscription in SAT. In PPDP ’09, pages 255–266. ACM, 2009.

12. N. Dershowitz. Orderings for Term-Rewriting Systems. Theoretical Computer Science,
17:279–301, 1982.

13. N. Eén and N. Sörensson. MiniSAT. http://minisat.se/.
14. N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. Journal on

Satifiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.
15. J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termina-

tion of Term Rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.
16. T. Feydy, A. Schutt, and P. J. Stuckey. Global Difference Constraint Propagation for

Finite Domain Solvers. In PPDP ’08, pages 226–235. ACM, 2008.

37

17. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT
Solving for Termination Analysis with Polynomial Interpretations. In SAT ’07, LNCS
4501, pages 340–354, 2007.

18. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Max-
imal Termination. In RTA ’08, LNCS 5117, pages 110–125, 2008.

19. C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp. Search
Techniques for Rational Polynomial Orders. In AISC ’08, LNAI 5144, pages 109–124,
2008.

20. A. Geser. Relative Termination. PhD thesis, University of Passau, Germany, 1990.
21. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Disproving Termination of

Higher-Order Functions. In FroCoS ’05, LNAI 3717, pages 216–231, 2005.
22. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The Dependency Pair Framework: Com-

bining Techniques for Automated Termination Proofs. In LPAR ’04, LNAI 3452, pages
301–331, 2005.

23. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In IJCAR ’06, LNAI 4130, pages 281–286,
2006.

24. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

25. A. Gotlieb. TCAS Software Verification using Constraint Programming. The Knowledge
Engineering Review, to appear, 2010.

26. N. Hirokawa and A. Middeldorp. Automating the Dependency Pair Method. Information
and Computation, 199(1,2):172–199, 2005.

27. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and Features.
Information and Computation, 205(4):474–511, 2007.

28. C. Jefferson, N. C. A. Moore, P. Nightingale, and K. E. Petrie. Implementing Logical
Connectives in Constraint Programming. Artificial Intelligence, 174:1407–1429, 2010.

29. S. Kamin and J. J. Lévy. Two Generalizations of the Recursive Path Ordering. Unpub-
lished Manuscript, University of Illinois, IL, USA, 1980.

30. A. Koprowski and A. Middeldorp. Predictive Labeling with Dependency Pairs using SAT.
In CADE ’07, LNAI 4603, pages 410–425, 2007.

31. M. S. Krishnamoorthy and P. Narendran. On Recursive Path Ordering. Theoretical
Computer Science, 40:323–328, 1985.

32. M. Kurihara and H. Kondo. Efficient BDD Encodings for Partial Order Constraints with
Application to Expert Systems in Software Verification. In IEA/AIE ’04, LNCS 3029,
pages 827–837, 2004.

33. K. Kusakari, M. Nakamura, and Y. Toyama. Argument Filtering Transformation. In
PPDP ’99, LNCS 1702, pages 47–61, 1999.

34. D. Lankford. On Proving Term Rewriting Systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

35. D. Le Berre and A. Parrain. SAT4J. http://www.sat4j.org.
36. P. Lescanne. Computer Experiments with the REVE Term Rewriting System Generator.

In POPL ’83, pages 99–108. ACM Press, 1983.
37. S. Lescuyer and S. Conchon. Improving Coq Propositional Reasoning Using a Lazy CNF

Conversion Scheme. In FroCoS ’09, LNCS 5749, pages 287–303, 2009.
38. Z. Manna and S. Ness. On the Termination of Markov Algorithms. In 3rd Hawaii Inter-

national Conference on System Science, pages 789–792, 1970.
39. M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe. SAT(ID): Satisfiability of

Propositional Logic Extended with Inductive Definitions. In SAT ’08, LNCS 4996, pages
211–224, 2008.

40. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving Termi-
nation using Recursive Path Orders and SAT Solving. In FroCoS ’07, LNAI 4720, pages
267–282, 2007.

41. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling Finite Linear CSP into
SAT. Constraints, 14(2):254–272, 2009.

42. G. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Studies in
Constructive Mathematics and Mathematical Logic, pages 115–125. 1968. Reprinted in J.
Siekmann and G. Wrightson (editors), Automation of Reasoning, 2:466-483, 1983.

43. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for Argument Filterings. In
SOFSEM ’07, LNCS 4362, pages 579–590, 2007.

38

44. H. Zankl, N. Hirokawa, and A. Middeldorp. KBO Orientability. Journal of Automated
Reasoning, 43(2):173–201, 2009.

45. H. Zankl and A. Middeldorp. Increasing Interpretations. Annals of Mathematics and
Artificial Intelligence, 56(1):87–108, 2009.

39

