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Abstract. Regular tree languages are a popular device for reachability
analysis over term rewrite systems, with many applications like analysis
of cryptographic protocols, or confluence and termination analysis. At
the heart of this approach lies tree automata completion, first introduced
by Genet for left-linear rewrite systems. Korp and Middeldorp introduced
so-called quasi-deterministic automata to extend the technique to non-
left-linear systems. In this paper, we introduce the simpler notion of
state-compatible automata, which are slightly more general than quasi-
deterministic, compatible automata. This notion also allows us to decide
whether a regular tree language is closed under rewriting, a problem
which was not known to be decidable before.
Several of our results have been formalized in the theorem prover Is-
abelle/HOL. This allows to certify automatically generated non-confluence
and termination proofs that are using tree automata techniques.

1 Introduction

In this paper we are largely concerned with over-approximations of the terms
reachable from a regular tree language L0 by rewriting using a term rewrite system
R, that is, we are interested in regular tree languages L such that R∗(L0) ⊆ L.
Such over-approximations have been used, among other things, in the analysis of
cryptographic protocols [6], for termination analysis [7,10] and for establishing
non-confluence of term rewrite systems [15].

Unfortunately, the question whether R∗(L0) ⊆ L is undecidable in general.
Tree automata completion, conceived by Genet et al. [4,5], is based on the stronger
requirements that L0 ⊆ L and L is itself closed under rewriting, i.e., R(L) ⊆ L.
This is accomplished by constructing L as the language accepted by a bottom-up
tree automaton A that is compatible with R: Whenever lσ is accepted in state q
by A, where l → r ∈ R and σ maps variables to states of A, we demand that
rσ is also accepted in q. If A is deterministic or if R is a left-linear term rewrite
system, then compatibility ensures that L(A) is closed under rewriting by R.

Example 1. Let R = {f(x, x)→ x} and A be the automaton with states 1, 2, 3,
final state 3, and transitions

a→ 1 a→ 2 f(1, 2)→ 3
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So A is non-deterministic and R is non-left-linear. Even though A is compatible
with R, L(A) = {f(a, a)} is not closed under rewriting by R, because f(a, a) can
be rewritten to a which is not in L(A).

However, demanding A to be deterministic if R is not left-linear may result
in bad approximations.

Example 2. Let R = {f(x, x) → b, b → a} and L0 = {f(a, a)}. The set of
terms reachable from L0, namely R∗(L0) = {f(a, a), b, a}, is not accepted by
any deterministic, compatible tree automaton. To see why, assume that such
an automaton A exists, and let q be the state accepting f(a, a). There must be
transitions a → q′ (q′ is unique because A is deterministic) and f(q′, q′) → q
in A. By compatibility with the rules f(x, x) → b and b → a, we must have
transitions b → q, and a → q. Since we already have the transition a → q′,
determinism implies q′ = q. With the three transitions a → q, b → q, and
f(q, q)→ q, A accepts every term over the signature {f, a, b}, which is not a very
useful approximation of R∗(L0).

To overcome this problem, Korp and Middeldorp introduced quasi-determi-
nistic automata [10]. Indeed it is easy to find a quasi-deterministic automaton
accepting R∗(L0) = {f(a, a), b, a} that is compatible with R from the previous
example.

Example 3. Let A be an automaton with states 1, 2, final state 2 and transitions

a→ 1∗ a→ 2 b→ 2∗ f(1, 1)→ 2∗

where the stars indicate the so-called designated states for each left-hand side.
Then A is quasi-deterministic, compatible with R and L(A) = {f(a, a), b, a}.

In this paper, we concentrate on the compatibility requirement that ensures
R(L) ⊆ L. Since there may be bugs in the implementation of tree automata
completion, it is important to independently certify whether R(L) ⊆ L is really
satisfied. Such a certifier has already been developed in [2], but it is restricted
to left-linear systems and does not support the stronger quasi-deterministic
automata. We extend this work by introducing state-compatible automata, which
are deterministic but accomplish the effect of quasi-deterministic automata by
relaxing the compatibility requirement instead. It turns out that as long as R
has only non-collapsing rules, state-compatible automata and quasi-deterministic
automata are equivalent. In the presence of collapsing rules, state-compatible
automata can capture more approximations than quasi-deterministic ones.

We will further show that state-compatibility does not only ensure R(L) ⊆ L,
but it can also be utilized to obtain a decision procedure for the question whether
a regular tree language is closed under rewriting—a problem whose decidability
was hitherto unknown, as far as we know. These results have also been formalized
within the theorem prover Isabelle/HOL [13], resulting in a formalized decision
procedure for the question R(L) ⊆ L. It is used to certify non-confluence proofs
and termination proofs that are using the techniques of [9,10,15].
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This paper is structured as follows. In Section 2 we recall basic definitions and
notation. The main part of our paper is Section 3, where we introduce the notions
of state-coherence and state-compatibility, and present the decision procedure.
Section 4 is devoted to a comparison to quasi-deterministic automata. Details on
the formalization are provided in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

We assume that the reader is familiar with first order term rewriting and tree
automata. For introductions to these topics see [1] and [3].

Terms over a signature F and a set of variables V , denoted T (F ,V) (or T (F)
if V is empty) are inductively defined as either variables v ∈ V or of the form
f(t1, . . . , tn), where t1, . . . , tn are terms and f ∈ F is a function symbol of arity
n. We write Var(t) for the set of variables in t. A term t is linear if each variable
occurs in t at most once. Contexts are terms over F ∪ {�} that contain exactly
one occurrence of �. If C is a context and t a term, then C[t] denotes the term
obtained by replacing the � in C by t. A substitution σ : V → T (F ,V) maps
variables to terms. We write tσ for the result of replacing each variable x in t by
σ(x).

A term rewrite system (TRS) R is a set of rewrite rules l → r, where each
rule’s left-hand side l and right-hand side r are terms such that l /∈ V and
Var(r) ⊆ Var(l). A TRS R defines a rewrite relation →R, namely s →R t
whenever there are a context C, a rule l → r ∈ R, and a substitution σ such
that s = C[lσ] and t = C[rσ]. We denote by lhs(R) the set of all left-hand
sides of rules in R. A TRS is left-linear if all its left-hand sides are linear terms.
A rule l → r is called collapsing if r is a variable. The inverse, the reflexive
closure, transitive closure, and the reflexive, transitive closure of a binary relation
→ are denoted by ←, →=, →+, and →∗, respectively. Given a set of terms L,
R(L) (R∗(L)) is the set of one-step (many-step) descendants of L: t′ ∈ R(L)
(t′ ∈ R∗(L)) iff t→R t′ (t→∗R t′) for some t ∈ L. A language L is closed under
rewriting by R, if R(L) ⊆ L.

A (bottom-up) tree automaton A = (F , Q,Qf , ∆) over a signature F consists
of a set of states Q disjoint from F , a set of final states Qf ⊆ Q, and a set of
transitions ∆ of shape f(q1, . . . , qn)→ q where the root f ∈ F has arity n and
q, q1, . . . , qn ∈ Q. (We forbid ε-transitions for the sake of simplicity.) We regard
∆ as a TRS over the signature F ∪Q, with the states as constants. A substitution
σ is a state substitution if σ(x) ∈ Q for all x ∈ V. A term t is accepted in state
q if t →∗∆ q; t is accepted by A if it is accepted in a final state. The language
accepted by A is L(A) = {t | t→∗∆ q for some q ∈ Qf}. We call A deterministic
if no two rules in ∆ have the same left-hand side. For convenience, we often write
→A for →∆. Following [10], we formulate Genet’s result from [5] as follows:

Definition 4. A tree automaton A is compatible with a TRS R if for all state
substitutions σ, rules l→ r ∈ R and states q ∈ Q, lσ →∗A q implies rσ →∗A q.

Theorem 5. Let the tree automaton A be compatible with the TRS R. Then
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Fig. 1. compatibility, state-compatibility, and state-coherence

1. if R is left-linear, then L(A) is closed under rewriting by R, and
2. if A is deterministic, then L(A) is closed under rewriting by R.

Finally, we recall that every tree automaton can be reduced to an equivalent
automaton where all states are useful.

Definition 6. Let A = (F , Q,Qf , ∆) be a tree automaton. We say that a state
q ∈ Q is reachable if t →∗A q for some term t ∈ T (F); q ∈ Q is productive if
C[q]→∗A q′ for some context C and state q′ ∈ Qf . Finally, an automaton A is
trim if all its states are both reachable and productive.

Proposition 7. For any tree automaton A there is an equivalent tree automaton
A′ that is trim. If A is deterministic, then A′ is also deterministic.

3 State-Compatible Automata

3.1 Definitions

Before we get down to definitions, let us briefly analyze the failure in Example 2.
What happens there is that, by the compatibility requirement, all three terms in
the rewrite sequence f(a, a)→R b→R a have to be accepted in the same state.
In conjunction with the determinism requirement, this is fatal. Consequently,
because our goal is to obtain a deterministic automaton, we must allow a and b to
be accepted in separate states, qa and qb. To track their connection by rewriting,
we introduce a relation � on states, such that qb � qa. In general, we require �
to be state-compatible and state-coherent, which are defined as follows (see also
Figure 1).

Definition 8. Let A = (F , Q,Qf , ∆) be a tree automaton, and � ⊆ Q×Q be a
relation on the states of A. We say that (A,�) is state-compatible with a TRS R
if for all state substitutions σ, rules l→ r ∈ R and states q ∈ Q, if lσ →∗A q then
rσ →∗A q′ for some q′ ∈ Q with q � q′. We say that (A,�) is state-coherent
if {q′ | q ∈ Qf , q � q′} ⊆ Qf , and if for all f(q1, . . . , qi, . . . , qn) → q ∈ ∆ and
qi � q′i there is some q′ ∈ Q with f(q1, . . . , q

′
i, . . . , qn)→ q′ ∈ ∆ and q � q′.

The purpose of state-coherence is to deal with contexts in rewrite steps, as
we will see in the proof of Theorem 11 below.
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Example 9. Let A be an automaton with states 1, 2 (both final), and transitions

a→ 1 b→ 2 f(1, 1)→ 2

Furthermore, let 2 � 2 and 2 � 1. Then (A,�) is state-coherent and state-
compatible with R = {f(x, x) → b, b → a} and L(A) = {f(a, a), b, a}. Note
that this automaton was obtained from the quasi-deterministic automaton from
Example 3 by keeping only the transitions to designated states. We will see in
Section 4 that this construction works in general.

Remark 10. If (A,�) is state-coherent, then (A,�=) and (A,�∗) are also
state-coherent. The same holds for state-compatibility with R.

3.2 Soundness and Completeness

Next we prove the analogue of Theorem 5 for state-coherent, state-compatible
automata.

Theorem 11. Let A be a tree automaton such that (A,�) is state-coherent and
state-compatible with the TRS R for some relation �. Then

1. if R is left-linear, then L(A) is closed under rewriting by R, and

2. if A is deterministic, then L(A) is closed under rewriting by R.

Proof. Let A = (F , Q,Qf , ∆). First we show that whenever lτ →∗A q for some
substitution τ and rule l→ r ∈ R, then there is a state q′ ∈ Q with q � q′ and
rτ →∗A q′. By the assumptions, we can extract from lτ →∗A q a state substitution
σ such that lτ →∗A lσ →∗A q: For each x ∈ Var(l), we map x to the state reached
from τ(x) in the given sequence. The state is unique either by left-linearity, or
because the given automaton is deterministic. By state-compatibility, we obtain
a state q′ such that q � q′ and rτ →∗A rσ →∗A q′.

Using state-coherence we can show by structural induction on C that whenever
C[q]→∗A q• and q � q′, then C[q′]→∗A q′• for some state q′• with q• � q′•.

Finally, assume that t ∈ L(A) and t→R t′. Then there exist a rule l→ r ∈ R,
a context C and a substitution τ such that t = C[lτ ] and t′ = C[rτ ]. We have
a derivation t = C[lτ ]→∗A C[q]→∗A q• ∈ Qf . By the preceding observations we
can find states q � q′ and q• � q′• such that t′ = C[rτ ]→∗A C[q′]→∗A q′•. Note
that by state-coherence, q• ∈ Qf implies q′• ∈ Qf , so that t′ ∈ L(A). ut

Note that Theorem 11 generalizes Theorem 5 (choose � to be the iden-
tity relation on states, which is always state-coherent). Moreover, the converse
of Theorem 11 holds for trim, deterministic automata. We will prove this in
Theorem 13 below, which allows us to derive our main decidability result in
Corollary 14. But first let us show by example that the converse fails for some
trim, non-deterministic automaton and ground TRS R.
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Example 12. Consider the TRS R = {a→ b} and the automaton A with states
0, 1, 2, 3, final state 0, and transitions

a→ 1 f(1)→ 0 g(1)→ 0

b→ 2 f(2)→ 0 b→ 3 g(3)→ 0

This automaton accepts L(A) = {f(a), f(b), g(a), g(b)}, which is closed under
rewriting by R. Assume that (A,�) is state-coherent and state-compatible
with R. By state-compatibility, a → b begets 1 � 2 or 1 � 3. If 1 � 2, then
state-coherence, considering the transition g(1)→ 0, requires a transition with
left-hand side g(2), which does not exist. Similarly, if 1 � 3, then f(1) → 0
requires a transition with left-hand side f(3), which does not exist.

Theorem 13. Let A be a trim, deterministic tree automaton such that L(A)
is closed under rewriting by the TRS R. Then there is a relation � such that
(A,�) is state-coherent and state-compatible with R.

Proof. Let A = (F , Q,Qf , ∆). We define � as follows: q � q′ iff for some terms
t, t′ ∈ T (F), we have

q
∗←−
A
t −→
R

t′
∗−→
A

q′ (1)

Note that by virtue of A being deterministic, t and t′ determine q and q′ uniquely.
We show that (A,�) is state-coherent and state-compatible.

1. (state-coherence) If q ∈ Qf and q � q′, then there exist terms t, t′ satisfying
(1). In particular, q ∈ Qf implies t ∈ L(A), and t →R t′ implies t′ ∈ L(A),
because L(A) is closed under rewriting by R. Because A is deterministic, t′

determines q′ uniquely, and q′ ∈ Qf follows.
2. (state-coherence) Assume that f(q1, . . . , qn)→ q ∈ ∆ and qi � q′i for some

index i and state q′i. By (1) there are ti, t
′
i such that qi

∗
A← ti →R t′i →∗A q′i.

Because all qj are reachable, we can fix terms tj with tj →∗A qj for j 6= i.
The state q is productive, so there is a context C such that C[q]→∗A q• ∈ Qf .
Let t = f(t1, . . . , tn) and t′ = f(t1, . . . , t

′
i, . . . , tn). Then C[t] ∈ L(A) and

C[t] →R C[t′], hence C[t′] ∈ L(A) as well. Consequently, there are states
q′, q′• such that

C[q]
∗←−
A
C[t] −→

R
C[t′]

∗−→
A

C[f(q1, . . . , q
′
i, . . . , qn)] −→

A
C[q′]

∗−→
A

q′• ∈ Qf

In particular, we have a transition f(q1, . . . , q
′
i, . . . , qn)→ q′ ∈ ∆, and q � q′.

3. (state-compatibility) Assume that lσ →∗A q for a state substitution σ. All
states of A are reachable, so there is a substitution τ : V → T (F) with
τ(x)→∗A σ(x) for all x ∈ V. Furthermore, q is productive, so that for some
context C, C[q] →∗A q• ∈ Qf . We have C[lτ ] ∈ L(A) and C[lτ ] →R C[rτ ].
Consequently, C[rτ ] ∈ L(A) and for some states q′, q′•,

C[q]
∗←−
A
C[lσ]

∗←−
A
C[lτ ] −→

R
C[rτ ]

∗−→
A

C[q′]
∗−→
A

q′• ∈ Qf

In particular, rτ →∗A q′. Recall that A is deterministic. Hence we can
decompose this rewrite sequence as follows: rτ →∗A rσ →∗A q′. We conclude
by noting that q � q′ by the definition of �. ut
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Corollary 14. The problem R(L(A)) ⊆ L(A) is decidable.

Proof. W.l.o.g. we may assume that A is deterministic. Using Proposition 7 we
may also assume that A is trim. By Theorems 11 and 13 the problem reduces
to whether there is some relation � such that (A,�) is both state-compatible
with R and state-coherent. But since there are only finitely many relations �
we can just test state-compatibility and state-coherence for each �.

Remark 15. As a consequence of Theorem 13, regular languages accepted by
state-coherent automata that are state-compatible with a fixed TRS R are closed
under intersection and union. This can also be shown directly by a product
construction.

3.3 Deciding R(L(A)) ⊆ L(A)

In the remainder of this section we show that instead of testing all possible
relations �, it suffices to construct a minimal one. We proceed as follows:

1. We assume that A = (F , Q,Qf , ∆) is trim and deterministic. Note that given
a non-deterministic automaton, we can compute an equivalent deterministic
one in exponential time. Once we have a deterministic automaton, we can
compute an equivalent trim one in polynomial time.

2. For each state q ∈ Q and rule l → r ∈ R, check whether there is a state
substitution σ such that lσ →∗∆ q, but there is no q′ with rσ →∗∆ q′. If such
a σ exists, then L(A) is not closed under rewriting by R, and the procedure
terminates.

3. In the following steps we will find the smallest relation � that makes (A,�)
both state-compatible with R and state-coherent, if such a relation exists.

4. For each pair of states q, q′ ∈ Q and rule l→ r ∈ R, check whether there is
a state substitution σ such that lσ →∗∆ q and rσ →∗∆ q′. If so, assert q � q′.
This ensures that (A,�) will be state-compatible with R.

5. Whenever q � q′ is asserted for the first time for states q and q′, we fail if q
is final but q′ is not, violating the state-coherence. Otherwise, we check ∆ for
transitions with q on the left-hand side. If f(q1, . . . , qi = q, . . . , qn)→ q• ∈ ∆,
then we look for a transition with left-hand side f(q1, . . . , q

′
i = q′, . . . , qn)

in ∆. If no such transition exists, state-coherence fails, and the algorithm
terminates. Otherwise, let q′• ∈ Q be the corresponding right-hand side. We
have f(q1, . . . , q

′
i = q′, . . . , qn)→ q′• ∈ ∆. Assert that q• � q′•.

Note that step 5 is really a subroutine, and invokes itself recursively. Steps 2 and
4, which identify the applicable instances of the state-compatibility constraint,
consist of a polynomial number of NP queries, and step 5 can be performed
in polynomial time. The whole procedure is, therefore, in the ∆P

2 (or PNP )
complexity class for deterministic automata as input.

Remark 16. Using [3, Exercise 1.12.2], which shows that it is NP-hard to decide
whether an instance of a term l is accepted by a tree automaton A, we can
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show that deciding whether the language accepted by a deterministic automaton
is closed under rewriting by a given TRS is co-NP-hard. To wit, given a term
l, a tree automaton A, a fresh unary function ? and a fresh constant �, then
?(L(A)) = {?(x) | x ∈ L(A)} is closed under rewriting by ?(l)→ � if and only if
no instance of l is accepted by A.

4 Relation to Quasi-Deterministic Automata

We recall the definitions of compatibility and quasi-determinism from [10], and
show that given a compatible, quasi-deterministic automaton, we can extract a
state-compatible, deterministic automaton accepting the same language, while
the opposite direction fails in the presence of collapsing rules.

Definition 17 (Definition 18 of [10]). Let A = (F , Q,Qf , ∆) be a tree au-
tomaton. For a left-hand side l ∈ lhs(∆) of a transition, we denote the set
{q | l→ q ∈ ∆} of possible right-hand sides by Q(l). We call A quasi-deterministic
if for every l ∈ lhs(∆) there exists a designated state p ∈ Q(l) such that for
all transitions f(q1, . . . , qn) → q ∈ ∆ and i ∈ {1, . . . , n} with qi ∈ Q(l), the
transition f(q1, . . . , qi−1, p, qi+1, . . . , qn)→ q belongs to ∆. Moreover, we require
that p ∈ Qf whenever Q(l) contains a final state.

For each l ∈ lhs(∆) we pick a state pl satisfying the constraints of Definition 17.
We denote the set of designated states by Qd and the set {l → pl | l ∈ lhs(∆)}
by ∆d. The notion of compatibility used for quasi-deterministic tree automata is
refined slightly from the standard one, Definition 4.

Definition 18 (Definition 23 of [10]). Let R be a TRS and L a language.
Let A = (F , Q,Qf , ∆) be a quasi-deterministic tree automaton. We say that A is
compatible with R and L if L ⊆ L(A) and for each rewrite rule l→ r ∈ R and
state substitution σ : Var(l)→ Qd such that lσ →∗∆d

q it holds that rσ →∗∆ q.

Example 3 exhibits a quasi-deterministic, quasi-compatible automaton.
We will show that for each quasi-deterministic automaton that is compatible

with a TRS R, there is a deterministic, state-coherent automaton that is state-
compatible with R and accepts the same language. To this end, we need the
following key lemma, a slight generalization of [10, Lemma 20], which shows that
a quasi-deterministic automaton A is almost deterministic: all but the last step
in a reduction can be performed using the deterministic ∆d transitions.

Lemma 19. Let A = (F , Q,Qf , ∆) be a quasi-deterministic automaton. If t→+
∆

q then t→∗∆d
· →∆ q for all terms t ∈ T (F ∪Q) and states q ∈ Q.

Proof. Identical to the proof of [10, Lemma 20], except when ti in t = f(t1, . . . , tn)
is a state. In that case, we let pli = qi = ti. ut

Theorem 20. Let A = (F , Q,Qf , ∆) be a quasi-deterministic tree automaton
that is compatible with R. Then A′ = (F , Qd, Qf ∩Qd, ∆d) makes (A′,�) state-
coherent and state-compatible with R, where q � q′ if q = q′ or, for some
left-hand side l ∈ lhs(∆), q ∈ Q(l) and q′ = pl. Furthermore, L(A′) = L(A).
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Proof. Note that →A =→∆ and →A′ =→∆d
.

1. (state-coherence) Assume that q is final in A′, and q � q′. If q = q′ then q′

is final, too. Otherwise, there is a left-hand side l such that q ∈ Q(l) and
q′ = pl is the designated state of l. Since Q(l) contains a final state (namely,
q), q′ must be final as well by Definition 17.

2. (state-coherence) Let l = f(q1, . . . , qi, . . . , qn) and l′ = f(q1, . . . , q
′
i, . . . , qn),

where qi � q′i. Furthermore, let l→ q ∈ ∆d. If qi = q′i then l′ → q ∈ ∆d and
q � q. Otherwise, there is a left-hand side l• such that qi ∈ Q(l•) and q′i = pl•

is the designated state of l•. By Definition 17, there is a transition l′ → q
in ∆. Thus, l′ is a left-hand side and q ∈ Q(l′). Furthermore, l′ → pl′ ∈ ∆d,
and q � pl′ follows.

3. (state-compatibility) Let σ be a state substitution and lσ →∗∆d
q. By compat-

ibility, we have rσ →∗∆ q. If r is a variable, we are done, noting that q � q.
Otherwise, using Lemma 19, there is a left-hand side l′ ∈ lhs(A) such that
rσ →∗∆d

l′ →∆ q. Consequently, rσ →∗∆d
· →∆d

pl′ , and since q ∈ Q(l′), we
have q � pl′ .

4. (accepted language) L(A′) ⊆ L(A) is obvious. To show L(A) ⊆ L(A′), assume
that t ∈ L(A), i.e., t →∗∆ q ∈ Qf . By Lemma 19, there is a left-hand side
l ∈ lhs(A) such that t→∗∆d

l→∆ q. As in the previous item we conclude that
t→∗∆d

pl, and q � pl. The state pl is final by state-coherence, so t ∈ L(A′)
follows. ut

In the opposite direction, we have a positive result for non-collapsing TRSs.

Theorem 21. Let A = (F , Q,Qf , ∆) be a deterministic automaton and the
relation � ⊆ Q×Q be such that (A,�) is state-coherent and state-compatible
with R. Furthermore, assume that R contains no collapsing rules. Then the
automaton A′ = (F , Q,Qf , ∆′) with ∆′ = {l → q′ | l → q ∈ ∆, q �= q′} is a
quasi-deterministic automaton with designated states pl = q for l→ q ∈ ∆, such
that A′ is compatible with R and accepts the same language as A.

Proof. Verifying that the construction results in a quasi-deterministic automaton
that is compatible with R is straight-forward. Note that applying Theorem 20
to A′ results in some (A′′,�′′) with L(A′′) = L(A′), where A′′ is A with states
restricted to Q′d, the right-hand sides of ∆′. This restriction preserves the accepted
language. Therefore, L(A) = L(A′). ut

If R contains collapsing rules, quasi-deterministic, compatible automata may
be weaker than state-coherent, state-compatible ones, as the following example
demonstrates.

Example 22. Let R = {f(x, x)→ x}. The automaton A′ over {f, a} with states
1, 2, both final, and transitions

a→ 1 f(1, 1)→ 2

accepts L = {f(a, a), a}. Furthermore, (A′,�) is state-coherent and state-com-
patible with R if we let 2� 1.
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Now assume that A = ({f, a}, Q,Qf , ∆) is a quasi-deterministic automaton
and compatible with R, and that f(a, a) ∈ L(A). We will show that A accepts
all terms over {f, a}. Note that since f(a, a) is accepted, a must be a left-hand
side of A. Let q be the designated state of a. By Lemma 19, we have a run
f(a, a)→∗∆d

f(q, q)→∆ q′ ∈ Qf . Let q• be the designated state of the left-hand
side f(q, q). By quasi-determinism, q• is a final state. Compatibility requires that
f(q, q)→∆d

q• ∗∆← q, i.e., q• = q. So we have a final state q and two transitions
a→ q, f(q, q)→ q, and A accepts all of T ({f, a}).

Remark 23. In his thesis [9], Korp generalizes Definition 17 (cf. [9, Definition
3.10]) by incorporating an auxiliary relation �φA that may be viewed as a precur-
sor to our relation �. The modified definition permits smaller automata, which
benefits implementations, but is more complicated than Definition 17. The modi-
fication also does not add expressive power. Indeed if A = (F , Q,Qf , ∆) satisfies
[9, Definition 3.10] using �φA , then taking ∆′ = {l→ q | l ∈ lhs(∆), φA(l) � q},
the automaton A′ = (F , Q,Qf , ∆′) satisfies Definition 17, noting that φA(l) is
just another notation for the designated state pl of l. Furthermore, L(A′) = L(A).

5 Formalization

We have formalized all results from Section 3 as part of IsaFoR, our Isabelle
Formalization of Rewriting, in combination with executable algorithms which
check state-compatibility and state-coherence. These are used in CeTA [14], a
certifier for several properties related to term rewriting.

Here, Tree Automata.thy starts with basic definitions on tree automata
where there are two major differences to this paper: the formalization allows
ε-transitions, and the set of reachable states t →∗∆ q is formalized directly as
a function ta res mapping terms to sets of states. Using a function instead of
a relation has both positive and negative effects. For example, it eases proofs
which are naturally performed by induction on terms, since in f(t1, . . . , tn) one
does not have to reduce all arguments t1 to tn sequentially in a relation, but this
is done in one step in ta res. On the other hand, one cannot trace derivations
t→∗∆ q explicitly as there is no notion of derivation. Hence, some obvious results
have to be proven explicitly by induction, e.g., that removing transitions results
in a smaller accepted language.

The file continues with proofs of Proposition 7 (obtain trimmed ta), Theo-
rems 11 and 13 (state compatible lang and ta trim det closed), and Corol-
lary 14 (closed iff compatible and coherent), where the corollary states only
that L(A) is closed under R iff for the determinized and trimmed automaton
there exists a suitable relation �. Instead of formally proving decidability by
an algorithm which enumerates all possible relations, we directly formalized the
algorithm of Section 3.3 to compute the least such relation. Here, we described
the algorithm on an abstract level via some inference system, and its soundness
and completeness manifests in theorem decide coherent compatible. It is later
on refined to a fully executable one.
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In addition to the decision procedure, we also provide Theorem 11 to demon-
strate closure under rewriting when � is supplied. The advantage of the latter is
its improved runtime and its broader applicability: one does not have to iteratively
construct the relation, and for left-linear TRSs, also non-deterministic automata
with ε-transitions are supported, cf. state compatible lang. Here, for checking
state-compatibility, we use a tree automaton matching algorithm (ta match),
that restricts the set of state substitutions σ that have to be considered for
compatibility w.r.t. Definition 8.

Whereas Tree Automata.thy formalizes most algorithms on an abstract level,
in Tree Automata Impl.thy we refined those to fully executable ones. In fact, for
some algorithms we just relied on the automatic refinement provided in [12] which
turns set operations into operations on trees. However, for some algorithms like
the matching algorithm we performed manual refinement to increase the efficiency.
For example, we group the transitions of an automaton by their root symbols
and store these groups in ordered trees using Isabelle’s collection framework
[11]. Moreover, for each f(q1, . . . , qn)→ q, we precompute the closure of q under
ε-transitions. This speeds up the computation of ta res while checking state-
compatibility. In the end, we provide an executable algorithm which for given A
and R checks whether A is closed under R, cf. tree aut trs closed.

We have extended the termination tool TTT2 [8] and the confluence tool CSI [15]
to produce state-coherent, state-compatible automata. Since both tools use quasi-
deterministic automata in their completion process, we applied the construction
of Theorem 20 as a post-processing step, resulting in a state-coherent, state-
compatible automaton. CeTA can then be used to certify this output. Whereas for
non-confluence proofs the input can be arbitrary, for match-bounds we currently
require left-linearity. The reason is that without left-linearity, the match-bounds
technique requires further conditions besides closure under rewriting, which have
not been formalized yet and which remain as future work.

All tools and the formalization are available at http://cl-informatik.uibk.
ac.at/research/software/ (CeTA + IsaFoR version 2.12, TTT2 version 1.14, CSI
version 0.4.)

6 Conclusion

We have introduced the class of deterministic, state-coherent automata that are
state-compatible with a TRS R. We have shown that these automata capture
precisely those regular tree languages that are closed under rewriting by R,
leading to a decision procedure for checking whether a regular language is closed
under rewriting. Their simple definition allowed us to formalize most of our
results on state-coherent, state-compatible automata.

Even though state-coherent, state-compatible tree automata are strictly more
general, we still rely on quasi-deterministic tree automata for the actual com-
pletion process in the CSI and TTT2 tools. Thus, they cannot exploit the full
power of state-coherent and state-compatible tree automata, and will fail when
analyzing TRSs like Example 22. As future work, we plan to investigate whether

http://cl-informatik.uibk.ac.at/research/software/
http://cl-informatik.uibk.ac.at/research/software/
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working directly on state-coherent, state-compatible automata can improve tree
automata completion.
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