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Abstract. The dependency pair approach is one of the most powerful
techniques for termination and innermost termination proofs of term re-
write systems (TRSs). For any TRS, it generates inequality constraints
that have to be satisfied by weakly monotonic well-founded orders. We
improve the dependency pair approach by considerably reducing the
number of constraints produced for (innermost) termination proofs.
Moreover, we extend transformation techniques to manipulate depen-
dency pairs which simplify (innermost) termination proofs significantly.
In order to fully automate the dependency pair approach, we show how
transformation techniques and the search for suitable orders can be mech-
anized efficiently. We implemented our results in the automated termina-
tion prover AProVE and evaluated them on large collections of examples.

1 Introduction

Most traditional methods to prove termination of TRSs (automatically) use
simplification orders [7,24], where a term is greater than its proper subterms.
However, there are numerous important TRSs which are not simply terminating,
i.e., their termination cannot be shown by simplification orders. Therefore, the
dependency pair approach [2,11,12] was developed which allows the application
of simplification orders to non-simply terminating TRSs. In this way, the class
of systems where termination is provable mechanically increases significantly.

Example 1. The following TRS from [2] is not simply terminating, since in the
last quot-rule, the left-hand side is embedded in the right-hand side if y is instan-
tiated with s(x). Thus, classical approaches for automated termination proofs
fail on this example, while it is easy to handle with dependency pairs.

minus(x, 0)→ x quot(0, s(y))→ 0
minus(s(x), s(y))→ minus(x, y) quot(s(x), s(y))→ s(quot(minus(x, y), s(y)))

In Sect. 2, we recapitulate the dependency pair approach for termination and
innermost termination proofs. Then we show that the approach can be improved
significantly by reducing the constraints for termination (Sect. 3) and innermost
termination (Sect. 4). Sect. 5 introduces new conditions for transforming depen-
dency pairs in order to simplify (innermost) termination proofs further.

For automated (innermost) termination proofs, the constraints generated by
the dependency pair approach are pre-processed by an argument filtering and
afterwards, one tries to solve them by standard simplification orders. We present



an algorithm to generate argument filterings in our improved dependency pair
approach (Sect. 6) and discuss heuristics to increase efficiency in Sect. 7.

Our improvements and algorithms are implemented in our termination prover
AProVE. We give empirical results which show that they are extremely successful
in practice. Thus, our contributions are also very helpful for other tools based on
dependency pairs ([1], CiME [6], TTT [16]) and we conjecture that they can also
be used in other recent approaches for termination of TRSs [5,10] which have
several aspects in common with dependency pairs. Finally, dependency pairs can
be combined with other termination techniques (e.g., in [25] we integrated depen-
dency pairs and the size-change principle from termination analysis of functional
[19] and logic programs [9]). Moreover, the system TALP [22] uses dependency
pairs for termination proofs of logic programs. Thus, improving dependency pairs
is also useful for termination analysis of other kinds of programming languages.
All proofs and details on our experiments can be found in [13].

2 Dependency Pairs

We briefly present the dependency pair approach of Arts and Giesl and refer
to [2,11,12] for refinements and motivations. We assume familiarity with term
rewriting (see, e.g., [4]). For a TRS R over a signature F , the defined symbols
D are the root symbols of the left-hand sides of rules and the constructors are
C = F \ D. We restrict ourselves to finite signatures and TRSs. Let F ] = {f ] |
f ∈ D} be a set of tuple symbols, where f ] has the same arity as f and we often
write F for f ], etc. If t = g(t1, . . . , tm) with g ∈ D, we write t] for g](t1, . . . , tm).

Definition 2 (Dependency Pair). If l→ r ∈ R and t is a subterm of r with
defined root symbol, then the rewrite rule l] → t] is called a dependency pair of
R. The set of all dependency pairs of R is denoted by DP (R).

So the dependency pairs of the TRS in Ex. 1 are

MINUS(s(x), s(y))→ MINUS(x, y) (1) QUOT(s(x), s(y))→MINUS(x, y) (2)

QUOT(s(x), s(y))→QUOT(minus(x, y), s(y)) (3)

To use dependency pairs for (innermost) termination proofs, we need the no-
tion of (innermost) chains. We always assume that different occurrences of de-
pendency pairs are variable disjoint and we always consider substitutions whose
domains may be infinite. Here, i→R denotes innermost reductions.

Definition 3 (R-Chain). A sequence of dependency pairs s1 → t1, s2 → t2, . . .
is an R-chain if there exists a substitution σ such that tjσ→∗R sj+1σ for every
two consecutive pairs sj → tj and sj+1 → tj+1 in the sequence. Such a chain is
an innermost R-chain if tjσ i→∗R sj+1σ and if sjσ is a normal form for all j.

Theorem 4 (Termination Criterion [2]). R terminates iff there is no infi-
nite chain. R is innermost terminating iff there is no infinite innermost chain.

To estimate which dependency pairs may occur consecutively in (innermost)
chains, one builds a so-called (innermost) dependency graph whose nodes are the



dependency pairs and there is an arc from v → w to s→ t iff v → w, s→ t is
an (innermost) chain. In our example, the dependency graph and the innermost
dependency graph have the arcs (1)⇒ (1), (2)⇒ (1), (3)⇒ (2), and (3)⇒ (3).

Since it is undecidable whether two dependency pairs form an (innermost)
chain, we construct estimated graphs such that all cycles in the real graph are
also cycles in the estimated graph. Let cap(t) result from replacing all variables
and all subterms of t that have a defined root symbol by different fresh vari-
ables. Here, multiple occurrences of the same variable are replaced by the same
fresh variable, but multiple occurrences of the same subterm with defined root
are replaced by pairwise different fresh variables. Let ren(t) result from replac-
ing all occurrences of variables in t by different fresh variables (i.e., ren(t) is
a linear term). For instance, cap(QUOT(minus(x, y), s(y))) = QUOT(z, s(y1)),
cap(QUOT(x, x)) = QUOT(x1, x1), and ren(QUOT(x, x)) = QUOT(x1, x2).
In the estimated dependency graph, there is an arc from v → w to s→ t iff
ren(cap(w)) and s are unifiable. In the estimated innermost dependency graph
there is an arc from v → w to s→ t iff capv(w) and s are unifiable by a most
general unifier (mgu) µ such that vµ and sµ are in normal form. Here, capv is
defined like cap except that subterms with defined root that already occur in
v are not replaced by new variables. In Ex. 1, the estimated dependency and
the estimated innermost dependency graph are identical to the real dependency
graph. For alternative approximations of dependency graphs see [15,20].

A set P 6= ∅ of dependency pairs is called a cycle if for any two pairs v → w
and s→ t in P there is a non-empty path from v → w to s→ t in the graph
which only traverses pairs from P. In our example, we have the cycles P1 = {(1)}
and P2 = {(3)}. Since we only regard finite TRSs, any infinite (innermost) chain
of dependency pairs corresponds to a cycle in the (innermost) dependency graph.

To show (innermost) termination, one proves absence of infinite (innermost)
chains separately for every cycle. To this end, one generates sets of constraints
which should be satisfied by a reduction pair (%,�) [18] consisting of a quasi-
rewrite order % (i.e., % is reflexive, transitive, monotonic and stable (closed under
contexts and substitutions)) and a stable well-founded order � which is compati-
ble with % (i.e., % ◦ �⊆� and � ◦ %⊆�). Note that � need not be monotonic.
Essentially, the constraints for termination of a cycle P ensure that all rewrite
rules and all dependency pairs in P are weakly decreasing (w.r.t. %) and at
least one dependency pair in P is strictly decreasing (w.r.t. �). For innermost
termination, only the usable rules have to be weakly decreasing. In Ex. 1, the
usable rules for P1 are empty and the usable rules for P2 are the minus-rules.

Definition 5 (Usable Rules). For f ∈F , let Rls(f) = {l→ r∈R|root(l)=f}.
For any term, the usable rules are the smallest set of rules such that U(x) = ∅
for x ∈ V and U(f(t1, . . . , tn)) = Rls(f) ∪

⋃
l→r∈Rls(f) U(r) ∪

⋃n
j=1 U(tj).

Moreover, for any set P of dependency pairs, we define U(P) =
⋃
s→t∈P U(t).

We want to use standard techniques to synthesize reduction pairs satisfying
the constraints of the dependency pair approach. Most existing techniques gen-
erate monotonic orders �. However, we only need a monotonic quasi-order %,
whereas � does not have to be monotonic. (This is often called “weak mono-



tonicity”.) For that reason, before synthesizing a suitable order, some of the
arguments of function symbols can be eliminated (we use the notation of [18]).

Definition 6 (Argument Filtering). An argument filtering π for a signature
F maps every n-ary function symbol to an argument position i ∈ {1, . . . , n} or
to a (possibly empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < . . .
< im ≤ n. The signature Fπ consists of all function symbols f such that π(f) =
[i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ,V), also denoted by π, which is defined as:

π(t) =

 t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.

Now the technique of automating dependency pairs can be formulated as
follows. Here, we always use argument filterings for the signature F ∪ F ].
Theorem 7 (Automating Dependency Pairs [2,12]). A TRS R is ter-
minating iff for any cycle P of the (estimated) dependency graph, there is a
reduction pair (%,�) and an argument filtering π such that both

(a) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s→ t from P

(b) π(l) % π(r) for all l→ r ∈ R
R is innermost terminating if for any cycle P of the (estimated) innermost
dependency graph, there is a reduction pair (%,�) and argument filtering π with

(c) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s→ t from P

(d) π(l) % π(r) for all l→ r ∈ U(P)

So in Ex. 1, we obtain the following constraints for termination. Here, (%i,�i)
is the reduction pair and πi is the argument filtering for cycle Pi, where i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) �1 π1(MINUS(x, y)) (4)

π2(QUOT(s(x), s(y))) �2 π2(QUOT(minus(x, y), s(y))) (5)

πi(minus(x, 0)) %i πi(x) (6)

πi(minus(s(x), s(y))) %i πi(minus(x, y)) (7)

πi(quot(0, s(y))) %i πi(0) (8)

πi(quot(s(x), s(y))) %i πi(s(quot(minus(x, y), s(y)))) (9)

The filtering πi(minus) = [1] replaces all terms minus(t1, t2) by minus(t1). With
this filtering, (4)–(9) are satisfied by the lexicographic path order (LPO) with
the precedence quot > s > minus. Thus, termination of this TRS is proved.

For innermost termination, we only obtain the constraint (4) for the cycle P1,
since it has no usable rules. For P2, the constraints (8) and (9) are not necessary,
since the quot-rules are not usable for any right-hand side of a dependency pair.
In general, the constraints for innermost termination are always a subset of the
constraints for termination. Thus, for classes of TRSs where innermost termina-



tion already implies termination (e.g., non-overlapping TRSs) [14], one should
always use the approach for innermost termination when proving termination.

As shown in [15], to implement Thm. 7, one does not compute all cycles,
but only maximal cycles (strongly connected components (SCCs)) that are not
contained in other cycles. When solving the constraints of Thm. 7 for an SCC, the
strict constraint π(s) � π(t) may be satisfied for several dependency pairs s→ t
in the SCC. Thus, subcycles of the SCC containing such a strictly decreasing
dependency pair do not have to be considered anymore. So after solving the
constraints for the initial SCCs, all strictly decreasing dependency pairs are
removed and one now builds SCCs from the remaining dependency pairs, etc.

3 Improved Termination Proofs

Now the technique of Thm. 7 for termination proofs is improved. For automation,
one usually uses a quasi-simplification order % (i.e., a monotonic, stable quasi-
order with f(. . . t . . .) % t for any term t and symbol f). As observed in [21], then
the constraints (a) and (b) of Thm. 7 even imply Cε-termination of R. A TRS
R is Cε-terminating iff R∪ {c(x, y)→ x, c(x, y)→ y} is terminating where c is
a fresh function symbol not occurring in R. Urbain showed in [27] how to use
dependency pairs for modular termination proofs of hierarchical combinations
of Cε-terminating TRSs. However in the results of [27], he did not integrate
the consideration of cycles in (estimated) dependency graphs and required all
dependency pairs to be strictly decreasing. Thm. 8 extends his modularity results
by combining them with cycles. In this way, one obtains an improvement for
termination proofs with dependency pairs which can be used for TRSs in general.
The advantage is that the set of constraints (b) in Thm. 7 is reduced significantly.

The crucial idea of [27] is to consider the recursion hierarchy of function
symbols. A function symbol f depends on the symbol h (denoted f ≥d h) if
f = h or if there exists a symbol g such that g occurs in an f -rule and g depends
on h. We define >d =≥d \ ≤d and ∼d =≥d ∩ ≤d. So f ∼d g means that f and g
are mutually recursive. If R = R1] . . .]Rn and f ∼d g iff Rls(f)∪Rls(g) ⊆ Ri,
then we callR1, . . . ,Rn a separation ofR. Moreover, we extend ≥d to the setsRi
by defining Ri ≥d Rj iff f ≥d g for all f, g with Rls(f) ⊆ Ri and Rls(g) ⊆ Rj .
For any i, let R′i denote the rules that Ri depends on, i.e., R′i =

⋃
Ri≥dRj Rj .

Clearly, a cycle only consists of dependency pairs from oneRi. Thus, in Thm.
7 we only have to regard cycles P with pairs from DP (Ri). However, to detect
the cycles P, we still have to regard the dependency graph of the whole TRS R.
The reason is that we consider R-chains, not just Ri- or R′i-chains.1

Thm. 8 states that instead of requiring π(l) % π(r) for all rules l→ r of R, it
suffices to demand it only for rules that Ri depends on, i.e., for rules from R′i. So
in the termination proof of Ex. 1, π(l) % π(r) does not have to be required for the
1 To see this, consider Toyama’s TRS [26] where R1 = R′

1 = {f(0, 1, x) → f(x, x, x)}
and R2 = R′

2 = {g(x, y) → x, g(x, y) → y}. R′
1’s and R′

2’s dependency graphs are
empty, whereas the dependency graph of R = R1 ∪ R2 has a cycle. Hence, if one
only considers the graphs of R′

1 and R′
2, one could falsely prove termination.



quot-rules when regarding the cycle P1 = {MINUS(s(x), s(y)) → MINUS(x, y)}.
However, this improvement is sound only if % is a quasi-simplification order.2

Theorem 8 (Improved Termination Proofs with DPs). Let R1, . . . ,Rn be
a separation of R. R is terminating if for all 1 ≤ i ≤ n and any cycle P of R’s
(estimated) dependency graph with P ⊆ DP (Ri), there is a reduction pair (%,�)
where % is a quasi-simplification order and an argument filtering π such that

(a) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s→ t from P

(b) π(l) % π(r) for all l→ r ∈ R′i
Example 9. This TRS of [23] shows that Thm. 8 not only increases efficiency,
but also leads to a more powerful method. Here, int(sn(0), sm(0)) computes
[sn(0), sn+1(0), . . . , sm(0)], nil is the empty list, and cons represents list insertion.

intlist(nil) → nil (10)

int(s(x), 0) → nil (11)

int(0, 0) → cons(0, nil) (12)

intlist(cons(x, y)) → cons(s(x), intlist(y)) (13)

int(s(x), s(y)) → intlist(int(x, y)) (14)

int(0, s(y)) → cons(0, int(s(0), s(y))) (15)

The TRS is separated into the intlist-rules R1 and the int-rules R2 >d R1.
The constraints of Thm. 7 for termination of P = {INTLIST(cons(x, y)) →
INTLIST(y)} cannot be solved with reduction pairs based on simplification or-
ders. In contrast, by using Thm. 8, only R′1 = R1 must be weakly decreasing
when examining P. These constraints are satisfied by the embedding order using
the argument filtering π(cons) = [2], π(intlist) = π(INTLIST) = 1, π(s) = [1].

The constraints from R2’s cycle and rules from R′2 = R1 ∪ R2 can also be
oriented (by LPO and a filtering with π(cons) = 1, π(INT) = 2). However, this
part of the proof requires the consideration of cycles of the (estimated) depen-
dency graph. The reason is that there is no argument filtering and simplification
order where both dependency pairs of R2 are strictly decreasing. So if one only
considers cycles or only uses Urbain’s modularity result [27], then Ex. 9 fails with
simplification orders. Instead, both refinements should be combined as in Thm. 8.

4 Improved Innermost Termination Proofs

Innermost termination is easier to prove than termination: the innermost de-
pendency graph has less arcs than the dependency graph and we only require
l % r for usable instead of all rules. In Sect. 3 we showed that for termination,
it suffices to require l % r only for rules of R′i if the current cycle consists of
Ri-dependency pairs. Still, R′i is a superset of the usable rules. Now we present
an improvement of Thm. 7 for innermost termination to reduce the usable rules.

The idea is to apply the argument filtering first and to determine the usable
rules afterwards. However, for collapsing argument filterings this destroys the
soundness of the technique. Consider the non-innermost terminating TRS

f(s(x))→ f(double(x)) double(0)→ 0 double(s(x))→ s(s(double(x)))
2 It suffices if % is extendable to c(x, y)%x, c(x, y)%y and (%,�) is still a reduction pair.



In the cycle {F(s(x)) → F(double(x))}, we could use the argument filtering
π(double) = 1 which results in {F(s(x)) → F(x)}. Since the filtered dependency
pair contains no defined symbols, we would conclude that the cycle has no usable
rules. Then, we could easily orient the only resulting constraint F(s(x)) � F(x)
for this cycle and falsely prove innermost termination. Note that the elimination
of double in the term F(double(x)) is not due to the outer function symbol F,
but due to a collapsing argument filtering for double itself. For that reason a
defined symbol like double may only be ignored if all its occurrences are in posi-
tions which are filtered away by the function symbols above them. Moreover, as
in capv, we build usable rules only from those subterms of right-hand sides of
dependency pairs that do not occur in the corresponding left-hand side.

Definition 10 (Usable Rules w.r.t. Argument Filtering). Let π be an ar-
gument filtering. For an n-ary symbol f , the set RegPosπ(f) of regarded posi-
tions is {i}, if π(f) = i, and it is {i1, . . . , im}, if π(f) = [i1, . . . , im]. For a term,
the usable rules w.r.t. π are the smallest set such that U(x, π) = ∅ for x ∈ V and
U(f(t1, . . . , tn), π) = Rls(f) ∪

⋃
l→r∈Rls(f) U(r, π) ∪

⋃
j∈RegPosπ(f) U(tj , π).

For a term s with V(t) ⊆ V(s), let Us(t, π) = ∅ if t is a subterm of s. Otherwise,
Us(f(t1, . . . , tn), π) = Rls(f) ∪

⋃
l→r∈Rls(f) U(r, π) ∪

⋃
j∈RegPosπ(f) Us(tj , π).

Moreover, for any set P of dependency pairs, let U(P, π) =
⋃
s→t∈P Us(t, π).

Now we can refine the innermost termination technique of Thm. 7 (c) and
(d) to the following one where the set of usable rules is reduced significantly.

Theorem 11 (Improved Innermost Termination with DPs). R is inner-
most terminating if for any cycle P of the (estimated) innermost dependency
graph, there is a reduction pair (%,�) and an argument filtering π such that

(c) π(s) � π(t) for one dependency pair s→ t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s→ t from P

(d) π(l) % π(r) for all l→ r ∈ U(P, π)

Example 12. This TRS of [17] for list reversal shows the advantages of Thm. 11.

rev(nil)→ nil rev(cons(x, l))→ cons(rev1(x, l), rev2(x, l))
rev1(x, nil)→ x rev1(x, cons(y, l))→ rev1(y, l)
rev2(x, nil)→ nil rev2(x, cons(y, l))→ rev(cons(x, rev(rev2(y, l))))

For innermost termination with Thm. 7, from the cycle of the REV and REV2-
dependency pairs, we get inequalities for the dependency pairs and π(l) % π(r)
for all rules l→ r, since all rules are usable. But standard reduction pairs based
on recursive path orders possibly with status (RPOS), Knuth-Bendix orders
(KBO), or polynomial orders do not satisfy these constraints for any argument
filtering. In contrast, with Thm. 11 and a filtering with π(cons) = [2], π(REV) =
π(rev) = 1, π(REV2) = π(rev2) = 2, we do not obtain any constraints from the
rev1-rules, and all filtered constraints can be oriented by the embedding order.

Our experiments with the system AProVE show that Thm. 8 and 11 indeed
improve upon Thm. 7 in practice by increasing power (in particular if reduction
pairs are based on simple fast orders like the embedding order) and by reducing
runtimes (in particular if reduction pairs are based on more complex orders).



5 Transforming Dependency Pairs

To increase the power of the dependency pair technique, a dependency pair may
be transformed into several new pairs by narrowing, rewriting, and instantiation
[2,11]. A term t′ is an R-narrowing of t with the mgu µ, if a non-variable subterm
t|p of t unifies with the left-hand side of a (variable-renamed) rule l → r ∈ R
with mgu µ, and t′ = t[r]p µ. To distinguish the variants for termination and
innermost termination, we speak of t- and i-narrowing resp. -instantiation.

Definition 13 (Transformations). For a TRS R and a set P of pairs of terms

• P ] {s → t} t-narrows to P ] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are
all R-narrowings of t with the mgu’s µ1, . . . , µn and t does not unify with
(variable-renamed) left-hand sides of pairs in P. Moreover, t must be linear.
• P ] {s→ t} i-narrows to P ] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are all
R-narrowings of t with the mgu’s µ1, . . . , µn such that sµi is in normal form.
Moreover, for all v → w ∈ P where t unifies with the (variable-renamed) left-
hand side v by mgu µ, one of the terms sµ or vµ must not be in normal form.
• P ] {s→ t} rewrites to P ] {s→ t′} iff
U(t|p) is non-overlapping and t→R t′, where p is the position of the redex.
• P ] {s→ t} is t-instantiated to
P ] {sµ→ tµ |µ = mgu(ren(cap(w)), s), v → w ∈ P}.
• P ] {s→ t} is i-instantiated to
P ] {sµ→ tµ |µ = mgu(capv(w), s), v → w ∈ P, sµ, vµ are normal forms}.

Theorem 14 (Narrowing, Rewriting, Instantiation). Let DP (R)′ result
from DP (R) by t-narrowing and t-instantiation (for termination) resp. by i-
narrowing, rewriting, i-instantiation (for innermost termination). If the depen-
dency pair constraints for (innermost) termination are satisfiable using DP (R)′,
then R is (innermost) terminating. Moreover, if certain reduction pairs and argu-
ment filterings satisfy the constraints for DP (R), then the same reduction pairs
and argument filterings satisfy the constraints for DP (R)′. Here, we estimate
(innermost) dependency graphs as in Sect. 2 when computing the constraints.

By Thm. 14, these transformations never complicate termination proofs (but
they may increase the number of constraints by producing similar constraints
that can be solved by the same argument filterings and reduction pairs). On the
other hand, the transformations are often crucial for the success of the proof.

Example 15. In this TRS [3], the minus-rules of Ex. 1 are extended with

le(0, y) → true quot(x, s(y)) → if(le(s(y), x), x, s(y))
le(s(x), 0) → false if(true, x, y) → s(quot(minus(x, y), y))

le(s(x), s(y)) → le(x, y) if(false, x, y) → 0

When trying to prove innermost termination, no simplification order satisfies
the constraints of Thm. 11 for the following cycle.

QUOT(x, s(y))→ IF(le(s(y), x), x, s(y)) (16) IF(true, x, y)→QUOT(minus(x, y), y) (17)

Intuitively, x � minus(x, y) only has to be satisfied if le(s(y), x) reduces to
true. This argumentation can be simulated using the above transformations.



By i-narrowing, we perform a case analysis on how the le-term in (16) can be
evaluated. In the first narrowing, x is instantiated by 0. This results in a pair
QUOT(0, s(y))→ IF(false, 0, s(y)) which is not in a cycle. The other narrowing is

QUOT(s(x), s(y))→ IF(le(y, x), s(x), s(y)) (18)

which forms a new cycle with (17). Now we perform i-instantiation of (17) and
see that x and y must be of the form s(. . .). So (17) is replaced by the new pair

IF(true, s(x), s(y))→ QUOT(minus(s(x), s(y)), s(y)) (19)

that forms a cycle with (18). Finally, we do a rewriting step on (19) and obtain

IF(true, s(x), s(y))→ QUOT(minus(x, y), s(y)) (20)

The constraints from the resulting cycle {(18), (20)} (and from all other cycles)
can be solved by π(minus) = π(QUOT) = 1, π(IF) = 2, and the embedding order.

For innermost termination, Def. 13 and Thm. 14 extend the results of [2,11]
by permitting these transformations for a larger set of TRSs. In [11], narrowing
a pair s→ t was not permitted if t unifies with the left-hand side of some depen-
dency pair. Rewriting dependency pairs was only allowed if all usable rules for
the current cycle were non-overlapping. Finally, when instantiating dependency
pairs, in contrast to [11] one can now use capv. Moreover, for both instantiation
and narrowing of dependency pairs, now one only has to consider instantiations
which turn left-hand sides of dependency pairs into normal forms.

The crucial problem is that these transformations may be applied infinitely
many times. Therefore, we have developed restricted safe transformations which
are guaranteed to terminate. Our experiments on the collections of examples
from [3,8,23] show that whenever the proof succeeds using narrowing, rewriting,
and instantiation, then applying these safe transformations is sufficient.

A narrowing or instantiation step is safe if it reduces the number of pairs
in cycles of the estimated (innermost) dependency graph. For a set of pairs P,
SCC(P) denotes the set of maximal cycles built from pairs of P. Then, the trans-
formation is safe if ΣS∈SCC(P)|S| decreases. Moreover, it is also considered safe
if by the transformation step, all descendants of some original dependency pair
disappear from cycles. For every pair s→ t, o(s→ t) denotes the original depen-
dency pair whose repeated transformation led to s → t. Now a transformation
is also safe if {o(s→ t) | s→ t ∈

⋃
S∈SCC(P) S} decreases.

As an example, let R = {f(a) → g(b), g(x) → f(x)}. The estimated depen-
dency graph has the cycle {F(a)→ G(b), G(x)→ F(x)}. Instantiation transforms
the second pair into G(b)→ F(b). Now there is no cycle anymore and thus, this
instantiation step is safe. Finally for each pair, one single narrowing and instan-
tiation step which does not satisfy the above requirements is also considered
safe. Hence, the narrowing and instantiation steps in Ex. 15 were safe as well.

As for termination, in innermost termination proofs we also benefit from
considering the recursion hierarchy. So if R1, . . . ,Rn is a separation of the TRS



R and Ri >d Rj , then we show absence of innermost R-chains built from
DP (Rj) before dealing with DP (Ri). Now innermost rewriting a dependency
pair F (. . .) → . . . is safe if it is performed with rules that do not depend on f
(i.e., with g-rules where g <d f). The reason is that innermost termination of g
is already verified when proving innermost termination of f . So in Ex. 15, when
proving innermost termination of the QUOT-cycle, we may assume innermost
termination of minus and thus, the rewrite step from (19) to (20) was safe.

Definition 16 (Safe Transformations). Let Q result from a set P of pairs
of terms by transforming s→ t ∈ P as in Def. 13. The transformation is safe if

(1) s→ t was transformed by narrowing or instantiation and
• ΣS∈SCC(P)|S| > ΣS∈SCC(Q)|S|, or
• {o(s→ t) | s→ t ∈

⋃
S∈SCC(P) S} ) {o(s→ t) | s→ t ∈

⋃
S∈SCC(Q) S}

(2) s → t was transformed by innermost rewriting with the rule l → r and
root(l) <d f where f ] = root(s)

(3) s→ t was transformed by narrowing and all previous steps which transformed
o(s→ t) to s→ t were not narrowing steps

(4) s → t was transformed by instantiation and all previous steps which trans-
formed o(s→ t) to s→ t were not instantiation steps

Theorem 17 (Termination). Let R have the separation R1, . . . ,Rn and P ⊆
DP (Ri). If there are no infinite innermost R-chains from DP (Rj) for all Rj <d
Ri, then any repeated application of safe transformations on P terminates.

After each transformation, the current cycle or SCC of the estimated (inner-
most) dependency graph is re-computed. For this re-computation, one only has to
regard the former neighbors of the transformed pair in the old graph. Only former
neighbors may have arcs to or from the new pairs resulting from the transforma-
tion. Regarding neighbors in the graphs also suffices when performing the uni-
fications required for narrowing and instantiation. In this way, the transforma-
tions can be performed efficiently. Recall that one always regards SCCs first and
then, one builds new SCCs from the remaining pairs which were not strictly de-
creasing (Sect. 2) [15]. Of course, these pairs may already have been transformed
during the (innermost) termination proof of the SCC. So this approach has the
advantage that one never repeats transformations for the same dependency pairs.

6 Computing Argument Filterings

In the dependency pair approach, we may apply an argument filtering π before
orienting constraints with reduction pairs. Since there are exponentially many
argument filterings, we now show how to search for suitable filterings efficiently.
For every cycle P, we compute small sets Πt(P) and Πi(P) containing all fil-
terings which could possibly satisfy the constraints for termination or innermost
termination, respectively. A corresponding algorithm was presented in [15] for
termination proofs w.r.t. Thm. 7. We now develop such an algorithm for the im-
proved dependency pair approach from Thm. 8 and 11. In particular for Thm. 11,



the algorithm is considerably more involved since the set of constraints depends
on the argument filtering used. Moreover, instead of treating constraints sepa-
rately as in [15], we process them according to an efficient depth-first strategy.

Let RP be a class of reduction pairs (e.g., RP may contain all LPOs with
arbitrary precedences). For any set of dependency pairs P, Π(P) denotes the
set of all argument filterings where at least one dependency pair in P is strictly
decreasing and the remaining ones are weakly decreasing w.r.t. some reduction
pair inRP. When referring to “dependency pairs”, we also permit pairs resulting
from dependency pairs by narrowing, rewriting, or instantiation. We use the
approach of [15] to consider partial argument filterings, i.e., filterings which are
only defined on a subset of the signature. For example, in a term f(g(x), y), if
π(f) = [2], then we do not have to determine π(g), since all occurrences of g are
filtered away. Thus, we leave argument filterings as undefined as possible and
permit the application of π to a term t if π is defined on all function symbols
needed. For two (partial) argument filterings, we define π v π′ iff DOM (π) ⊆
DOM (π′) and π(f) = π′(f) for all f ∈ DOM (π). Then Π(P) should only contain
v-minimal elements, i.e., if π′ ∈ Π(P), then Π(P) does not contain any π < π′.

We now define a superset Πt(P) of all argument filterings where the con-
straints (a) and (b) for termination of the cycle P are satisfied by some reduc-
tion pair of RP. So only these argument filterings have to be regarded when
automating Thm. 8. To this end, we have to extend partial argument filterings.

Definition 18 (Ex f , Πt(P)). For f ∈ D, Ex f (π) consists of all v-minimal
argument filterings π′ such that π v π′ and such that there is a (%,�) ∈ RP
with π′(l) % π′(r) for all l→ r ∈ Rls(f). For a set Π of filterings, let Ex f (Π) =⋃
π∈Π Ex f (π). If P originates from DP (Ri) by t-narrowing and t-instantiation

and {f1, ..., fk} are R′i’s defined symbols, then Πt(P) = Ex fk(...Ex f1(Π(P))...).

We compute Πt(P) by depth-first search. So we start with a π ∈ Π(P) and
extend it to a minimal π′ such that the f1-rules are weakly decreasing. Then π′ is
extended such that the f2-rules are weakly decreasing, etc. Here, f1 is considered
before f2 if f1 >d f2. When we have Πt(P)’s first element π1, we check whether
Constraints (a) and (b) of Thm. 8 are satisfiable with π1. In case of success, we
do not compute further elements of Πt(P). Otherwise, we determine Πt(P)’s
next element, etc. The advantage of this approach is that Π(P) is usually small,
since it only contains argument filterings that satisfy a strict inequality.

For innermost termination, the set of constraints to be satisfied depends on
the argument filtering used. If f ≥d g, then when orienting the rules of f , we do
not necessarily have to orient the rules of g as well, since all occurrences of g in
f -rules may have been deleted by the argument filtering, cf. Thm. 11.

We extendRegPosπ to partial argument filterings by definingRegPosπ(f) =
∅ for all f /∈ DOM (π). Now U(P, π) is also defined for partial filterings by
simply disregarding all subterms of function symbols where π is not defined. For
a partial argument filtering π, whenever Rls(f) is included in the usable rules
U(P, π) for the cycle P, we use a relation “`P” to extend π in order to make the
f -rules weakly decreasing. We label each argument filtering by the set of those
function symbols whose rules are already guaranteed to be weakly decreasing.



Definition 19 (`P , Πi(P)). Each argument filtering π is labelled with a set G ⊆
D and we denote a labelled argument filtering by πG. For sets of labelled argument
filterings, we define a relation “`P”: Π ] {πG} `P Π ∪ {π′G∪{f} |π

′ ∈ Ex f (π)},
if f ∈ D \ G and Rls(f) ⊆ U(P, π). Note that `P is confluent and well founded,
since the labellings increase in every `P -step. Let Nf `P (Π) denote the normal
form of Π w.r.t. `P . Then we define Πi(P) = Nf `P ({π∅ |π ∈ Π(P)}).

To compute Πi(P), we again start with a π ∈ Π(P). If Rls(f) ⊆ U(P, π),
then π is extended to make f ’s rules weakly decreasing. If by this extension, the
rules for g become usable, then we have to extend with Ex g afterwards, etc.

Thm. 20 states that by Πt(P) (resp. Πi(P)), one indeed obtains all argument
filterings which could possibly solve the dependency pair constraints. In this
way the set of argument filterings is reduced dramatically and thus, efficiency is
increased. For example, for a TRS from [3, Ex. 3.11] computing quicksort, Πt(P)
reduces the number of argument filterings from more than 26 million to 3734
and with Πi(P) we obtain a reduction from more than 1.4 million to 783.

Theorem 20. Let P be a cycle. If the constraints (a) and (b) of Thm. 8 for
termination are satisfied for some reduction pair from RP and argument filtering
π′, then π v π′ for some π ∈ Πt(P). If the constraints (c) and (d) of Thm. 11
for innermost termination are satisfied for some reduction pair from RP and
argument filtering π′, then π v π′ for some π ∈ Πi(P).

The technique of this section can be extended by storing both argument filter-
ings and corresponding parameters of the order in the sets Π(P) and Ex f (. . .).
For example, ifRP is the set of all LPOs, then Π(P) would now contain all (min-
imal) pairs of argument filterings π and precedences such that π(s) �lpo π(t)
resp. π(s) %lpo π(t) holds for s → t ∈ P. When extending argument filterings,
one would also have to extend the corresponding precedence. Of course, such
an extension is only permitted if the extended precedence is still irreflexive (and
hence, well founded). Then, Πt(P) (resp. Πi(P)) is non-empty iff the constraints
for (innermost) termination are satisfiable for P. Thus, after computing Πt(P)
resp. Πi(P), no further checking of orders and constraints is necessary anymore.
This variant is particularly suitable for orders with few parameters like LPO.

7 Heuristics

Now we present heuristics to improve the efficiency of the approach. They con-
cern the search for argument filterings (Sect. 7.1) and for base orders (Sect. 7.2,
7.3). In contrast to the improvements of the preceding sections, these heuristics
affect the power of the method, i.e., there exist examples whose (innermost)
termination can no longer be proved when following the heuristics.

7.1 Type Inference for Argument Filterings

In natural examples, termination of a function is usually due to the decrease of
arguments of the same type. Of course, this type may be different for the different
functions in a TRS. So we use a type inference algorithm to transform a TRS into



a sorted TRS (i.e., a TRS with rules l→ r where l and r are well-typed terms of
same type). As a good heuristic to reduce the set of possible argument filterings
further, one can require that for every symbol f , either no argument position is
eliminated or all non-eliminated argument positions are of the same type. Our
experiments show that all examples in the collections of [3,8,23] that can be
solved using LPO as a base order can still be solved when using this heuristic.

7.2 Embedding Order for Dependency Pairs

To increase efficiency in our depth-first algorithm of Sect. 6, a successful heuristic
is to only use the embedding order when orienting the constraints π(s) � π(t)
and π(s) % π(t) for dependency pairs s→ t. Only for constraints π(l) % π(r) for
rules l → r, one may apply more complex quasi-orders. The advantage is that
now Π(P) is much smaller. Our experiments show that due to the improvements
in Sect. 3 and 4, this heuristic succeeds for more than 96 % of those examples
of [3,8,23] where a full LPO was successful, while reducing runtimes by 58 %.

7.3 Bottom-Up Heuristic

To determine argument filterings in Sect. 6, we start with the dependency pairs
and treat the constraints for rules afterwards, where f -rules are considered before
g-rules if f >d g. In contrast, now we suggest a bottom-up approach which starts
with determining an argument filtering for constructors and then moves upwards
through the recursion hierarchy where g is treated before f if f >d g. While in
Sect. 6, we determined sets of argument filterings, now we only determine one
single argument filtering, even if several ones are possible. To obtain an efficient
technique, no backtracking takes place, i.e., if at some point one selects the
“wrong” argument filtering, then the proof can fail.

More precisely, we first guess an argument filtering π which is only defined
for constructors. For every n-ary constructor c we define π(c) = [1, . . . , n] or
we let π filter away all argument of c that do not have the same type as c’s
result. Afterwards, for every function symbol f , we try to extend π on f such
that π(l) % π(r) for all f -rules l → r. We consider functions according to the
recursion hierarchy >d. So when extending π on f , π is already defined on all
g <d f . Among the extensions of π which permit an orientation of the f -rules,
we choose π(f) such that it eliminates as many arguments of f as possible. If we
are not able to orient the rules of f , then we mark f as not orientable. Finally,
the filtering is extended to the tuple symbols by trying to orient the dependency
pairs as well (where at least one dependency pair must be strictly decreasing).

In termination proofs, if f ∈ Rj is not orientable, then all symbols in
Ri ≥d Rj as well as all dependency pairs resulting from Ri ≥d Rj are also
not orientable. In innermost termination proofs, if f is not orientable, then a
symbol that depends on f can still be orientable if one can extend the argu-
ment filtering in such a way that all occurrences of f in its rules are eliminated.
Similarly, dependency pairs can still be orientable if the argument filtering elimi-
nates all occurrences of f . Thus, here the bottom-up approach has the advantage



that we already know that certain argument positions must be eliminated when
extending the argument filtering to new function symbols.

This algorithm can also be modified by determining both the argument fil-
tering and the reduction pair step by step. For example, a successful option is to
use linear polynomial orders with coefficients 0 and 1. The bottom-up algorithm
reduces the search space enormously. The number of TRSs from [3,8,23] where
the bottom-up algorithm succeeds is 94 % of the number achieved by the full
dependency pair approach with LPO, but runtime is reduced to less than 18 %.

8 Conclusion and Implementation in the System AProVE

We presented improvements of the dependency pair approach which significantly
reduce the sets of constraints π(l) % π(r) for termination and innermost termina-
tion proofs. Moreover, we extended the applicability of dependency pair transfor-
mations and developed a criterion to ensure that their application is terminating
without compromising the power of the approach in almost all examples. To im-
plement the approach, we gave an algorithm for computing argument filterings
which is tailored to the improvements presented before. Finally, we developed
heuristics to increase efficiency which proved successful in large case studies.

We implemented these results in the system AProVE (Automated Program
Verification Environment), available at http://www-i2.informatik.rwth-aachen.

de/AProVE. The tool is written in Java and proofs can be performed both in
a fully automated or in an interactive mode via a graphical user interface. To
combine the heuristics of Sect. 7, for every SCC P, AProVE offers the following
combination algorithm which uses the heuristics as a pre-processing step and
only calls the full dependency pair approach for cycles where the heuristics fail:

1. Safe transformations with Cases (1) and (2) of Def. 16
2. Bottom-up heuristic of Sect. 7.3
3. Heuristics of Sect. 7.1 and Sect. 7.2 with LPO as base order
4. Remaining safe transformations according to Def. 16.

If at least one transformation was applied, go back to 1.
5. Full dependency pair approach with RPO as base order

When the constraints for the SCC are solved, the algorithm is called recursively
with the SCCs of those remaining pairs which were only weakly decreasing. We
tested the combination algorithm on the collections of [3,8,23] (108 TRSs for ter-
mination, 151 TRSs for innermost termination). Our system succeeded on 96.6 %
of the innermost termination examples (including all of [3]) and on 93.5 % of the
examples for termination. The automated proof for the whole collection took 80
seconds for innermost termination and 27 seconds for termination. These results
indicate that the contributions of the paper are indeed very useful in practice.
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