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Abstract. We implement a decision procedure for linear mixed inte-
ger arithmetic and formally verify its soundness in Isabelle/HOL. We
further integrate this procedure into one application, namely into CeTA,
a formally verified certifier to check untrusted termination proofs. This
checking involves assertions of unsatisfiability of linear integer inequali-
ties; previously, only a sufficient criterion for such checks was supported.

To verify the soundness of the decision procedure, we first formalize the
proof that every satisfiable set of linear integer inequalities also has a
small solution, and give explicit upper bounds. To this end we mechanize
several important theorems on linear programming, including statements
on integrality and bounds. The procedure itself is then implemented as
a branch-and-bound algorithm, and is available in several languages via
Isabelle’s code generator. It internally relies upon an adapted version of
an existing verified incremental simplex algorithm.
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1 Introduction

The computational problem of deciding whether a system of linear inequalities
with integer coefficients has an integral solution arises in many practical situ-
ations. Since it is NP-complete, no currently known algorithm can in general
avoid searches of exponential length. Furthermore, while satisfiable instances al-
ways have short solutions that can be efficiently checked, there need not be short,
efficiently-checkable proofs for the fact that an instance is unsatisfiable, unless
NP = co-NP. (Contrast this with the related problem of deciding whether a
system of linear inequalities with integer coefficients has a rational solution –
this problem is in P, and Farkas’ lemma provides a short and efficiently check-
able certificate that an unsatisfiable instance indeed has no solution.) Thus, if a
solver declares that a given instance is unsatisfiable over the integers, the length
of any proof for this fact may be exponential in the size of the input instance,
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in which case the computational effort required to check such a proof would be
exponential as well.

Instead of repeatedly performing certification tasks that require immense
amounts of data and computational effort, it may be more fruitful to formally
verify the soundness of a solver once, so that it can then be trusted without
instance-by-instance certification of its output. The implementation of such a
solver, together with a formal proof of its soundness, is the goal of the present
work. Specifically, we use Isabelle/HOL [19] to implement and prove the correct-
ness of a branch-and-bound algorithm [21, Chapter 24.1], and then use Isabelle’s
code generator [11] to obtain verified executable code. Along the way, we also
give the first formalized proofs for several important results on integer program-
ming.

A concrete example of an application for our solver comes from termination
analysis, where a program is given as input to a termination tool that tries to
determine whether the given program terminates on all inputs. Since termination
tools get patched and improved repeatedly, maintaining an up-to-date formal
proof of soundness would be extremely difficult. Therefore, the approach that
is typically used is to have the (unverified) termination tool output a certificate
for its analysis, which can then be checked by a verified certificate checker. One
such certificate checker is CeTA [5,24]. It has been verified in Isabelle/HOL, so
that whenever it accepts a proof of termination for some program, the formal
proof of CeTA’s soundness ensures that the program does indeed terminate.

As an example, consider a program to compute the binary logarithm.

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1;

}

return n;

}

This program can be translated into an integer transition system and termi-
nation can be proved by showing that the value of x is decreased by at least 1 in
every loop iteration. This property can be expressed in linear integer arithmetic
(LIA): it is equivalent to the validity of formula (1), where x′ and n′ represent
the new values of x and n, respectively, after an iteration of the loop.

x > 0 ∧ 2x′ 6 x ∧ x 6 2x′ + 1 ∧ n′ = n+ 1 −→ x > x′ + 1 (1)

Validity of (1) is equivalent to unsatisfiability of the negated formula, which
is simply a conjunction of linear inequalities:

x > 0 ∧ 2x′ 6 x ∧ x 6 2x′ + 1 ∧ n′ = n+ 1 ∧ x < x′ + 1 (2)

A sufficient condition for the unsatisfiability of (2) over the integers (LIA)
is the unsatisfiability of the same system over the rationals (LRA); the latter
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can be shown, for instance, via the simplex algorithm [9]. Indeed, a verified
implementation [23] of the simplex algorithm is currently integrated into CeTA [5].
However, whereas (2) is unsatisfiable over the integers, it has a rational solution
x = n′ = 1, x′ = 1

2 , n = 0. For such examples, considering the problem over the
rationals may prohibit CeTA from detecting unsatisfiability over the integers.

Therefore, in this paper we develop a verified theory solver for LIA (in fact, for
linear mixed integer arithmetic, where only a user-specified part of the solution is
required to be integral). The verified solver takes a conjunction of strict and non-
strict linear inequalities as input, and decides whether they are simultaneously
solvable. We fully integrate the LIA solver into CeTA, so that the new version
can handle all instances that are unsatisfiable over the integers and not only
those that are unsatisfiable over the rationals as well. Of course, the LIA solver
can also be used as a stand-alone theory solver, e.g., to perform verified SMT
solving.

We verify our LIA solver in two major steps.

1. First, we show that for every set of LIA constraints it suffices to search
for small solutions. To this end, we formally verify an a priori bound in
the style of Papadimitriou [20]: If there is an integer solution to a set of
LIA constraints, then there is also one that is bounded by b := n(ma)2m+1,
where n is the number of variables, m the number of inequalities, and a the
largest absolute value of any number occurring in the inequalities. To be
more precise, the small solution satisfies |x| ≤ b for each variable x.

Our verified upper bound matches the one given in a textbook [21, Thm. 17.1]
(which is considerably lower than the one by Papadimitriou).3 Specifically,
we establish a bound of (n + 1)!an (with no dependence on m). To prove
this bound in Isabelle/HOL we mostly follow the textbook proofs and for-
malize several important results from linear programming, often with addi-
tional statements on bounds and integrality. These results include: the fun-
damental theorem of linear inequalities, the Farkas–Minkowski–Weyl theo-
rem, Carathéodory’s theorem, and the decomposition theorem for polyhedra.
Note that the bound on the size of solutions also implies the fact that the
problem of deciding satisfiability for linear integer inequalities is in NP.

2. Using the upper bound, we can decide satisfiability via a finite search. For
instance, for formula (2) we have n = 4, a = 2 and m = 6 (the equality
counts as two inequalities), and we know that if (2) is satisfiable, then there
is an integer solution with absolute values at most 1920.

To perform this search, we implement and verify a basic branch-and-bound
algorithm. It is based on an incremental version of the simplex algorithm by
Dutertre and de Moura [10], which is used to deliver candidate solutions and
to prune the search tree by detecting unsatisfiability in LRA. Although the
incremental simplex algorithm has recently been verified in Isabelle/HOL [3],
its integration into the branch-and-bound algorithm is not immediate: the

3 The textbook bound is somewhat more precise than ours, as it is phrased in terms
of sub-determinants, whereas we use a generic bound on sub-determinants.
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branch-and-bound algorithm requires frequent updates of bounds on vari-
ables, and this operation is not supported by the existing verified incremental
simplex algorithm.

Note that our verified LIA solver is missing several possible optimizations
[6,7,14], some of which might be integrated in future work. Therefore, it clearly
cannot compete with state-of-the-art (unverified) solvers. Still, our experimental
results show that there are some examples from SMT-LIB where our solver is
successful, but both CVC4 [2] and Z3 [16] fail.

Structure We give some preliminaries on linear (integer) programming and Is-
abelle in Section 2. Afterwards, we present our formalization of linear program-
ming and the mentioned bound in Section 3. The branch-and-bound algorithm
with the adaptation of the incremental simplex algorithm are covered in Sec-
tion 4. We provide experimental results in Section 5 and conclude in Section 6.

The collection of theorems on polyhedra and small solutions is available as
part of the archive of formal proofs (AFP) in the entry on linear inequalities [4],
and the branch-and-bound algorithm is part of IsaFoR/CeTA [24]. All of the the-
orems of this paper are linked to the formalization on an accompanying website.
It also provides details on the experiments.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/lia/

Related work Allamigeon and Katz [1] have implemented the simplex algo-
rithm in Coq and used it to give constructive proofs of a number of important
theorems about convex polyhedra. The overlap between our work and [1] consists
of formalizations of basic facts concerning cones and polyhedra, the fundamen-
tal theorem of linear inequalities, and Farkas’ lemma. However, whereas in [1] a
simplex algorithm for optimization problems is implemented in order to be used
in constructive mathematical proofs, we formalize theorems concerning integer
programming, including bounds on the size of solutions, and use these together
with the previously Isabelle-verified simplex algorithm to obtain formally veri-
fied, yet efficient, software.

There is also a formalization of theorems about polyhedra in HOL Light, due
to Harrison [12], but it contains neither a formalization of the simplex algorithm
nor does it cover integer programming.

Cooper’s algorithm has been formalized by Nipkow [18] in Isabelle/HOL.
Although this algorithm also solves linear integer arithmetic, it internally works
completely differently and its formalization requires different proofs; therefore,
we do not see any overlap between the two works. We nevertheless consider the
verified version of Cooper’s algorithm in our experiments.

Finally, we mention two general-purpose verified solvers. Carlier et al. [8]
used Coq to implement and verify an algorithm for solving constraint satisfac-
tion problems over finite domains. As with [1], the resulting implementation

http://cl-informatik.uibk.ac.at/software/ceta/experiments/lia/
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can be used in principle, but is not efficient enough to compete with unveri-
fied implementations of the same algorithm. Narkawicz and Muñoz [17] used
PVS to verify a general branch-and-bound algorithm; a C++ implementation of
this algorithm is described in [22]. In contrast to our work, this implementation
was not automatically generated from a formal, verified algorithm specification,
but was coded separately. Furthermore, in order to use the general branch-and-
bound algorithm, one must first tailor it to an application domain by specifying
a number of functions that must respect certain specifications, whereas every
part of our LIA solver (both branch-and-bound and simplex) has been formally
verified. Thus, while the algorithm we verify lacks the generality of the one in
[17], our implementation retains retains a higher degree of reliability than the
one in [22], due to being entirely generated from a formally verified algorithm,
and it is nevertheless reasonably efficient.

2 Preliminaries

We briefly review some linear programming and Isabelle background.

2.1 Linear programming

We assume familiarity with vector spaces. Although our Isabelle theorems use a
more general type, here we present our results in the context of Euclidean spaces
(Rn). We denote the usual inner product in Rn by ‘·’.

A (non-strict) linear inequality is an inequality of the form a · x ≤ b, where
a, x ∈ Rn (a a row vector, x a column vector) and b ∈ R. A system of linear
inequalities can therefore be written as Ax ≤ b, with A ∈ Rm×n and b ∈ Rm a
column vector. A system of linear inequalities is a mixed integer system if, for
some I ⊆ {1, . . . , n}, it is required that xi ∈ Z for all i ∈ I. We also define strict
linear inequalities to be inequalities of the form ax < b, with a, x and b as before.

In this work we consider mixed integer systems of linear inequalities contain-
ing both non-strict and strict inequalities.

For reference, we collect below the definitions of several important concepts
from linear algebra that are needed in order to state the theorems that we
formalize. These definitions can be found in textbooks on linear programming
such as [21, Chapters 7.1–2 and 16.2].

Definition 1 (Half-spaces, hyperplanes, polyhedra). For c ∈ Rn \ {0n}
(a row vector) and d ∈ R, we say that the set H = {x | c · x ≤ d} is an affine
half-space, and that c is its normal vector. If d = 0, then H is called a linear
half-space (or just a half-space). The set {x | c · x = 0} is called a hyperplane
(of which c is a normal vector).

A set P ⊆ Rn is called a (convex) polyhedron if P = {x | Ax ≤ b}, for some
matrix A ∈ Rm×n and b ∈ Rm. In words, a polyhedron is the intersection of a
finite collection of affine half-spaces.
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Definition 2 (Cones). A non-empty set C ⊆ Rn is a cone if, for all x, y ∈ C
and λ, µ ≥ 0, we have λx + µy ∈ C. A cone C is generated by the set of
vectors X if C = {λ1v1 + . . .+ λmvm | λ1, . . . , λm ≥ 0, {v1, . . . , vm} ⊆ X}, and
C is finitely generated if it is generated by a finite set of vectors. A cone is
polyhedral if it is the intersection of finitely many (linear) half-spaces.

Definition 3 (Convex hull, polytopes, integer hull). The convex hull of
a vector set X is the set of all convex linear combinations of vectors from X.
More precisely,

conv.hull X = {λ1v1 + ...+ λmvm | λ1, ..., λm ≥ 0,
∑

λi = 1, {v1, ..., vm} ⊆ X}

The convex hull of a finite set of vectors is called a (convex) polytope.
Finally, if P is a polyhedron, then the integer hull of P , denoted PI , is the

convex hull of the set of integral vectors of P . (Integral vectors are vectors whose
coordinates with respect to the standard basis are integers.)

2.2 Isabelle

For our formalization work we use the theorem prover Isabelle. Knowledge of
Isabelle will be helpful, but is not necessary in order to read the paper, as we
have tried to make the formal source listings accessible even to a reader with a
purely mathematical background.

Nevertheless, we briefly explain the meaning of some important notation here.
First, we have carrier_vec n = Rn, carrier_mat m n = Rm×n, and denote the
zero-vector of dimension n by 0n. Often, the statement that a vector or a matrix
has a certain property will be expressed as membership in the set of all vectors
or matrices with that property: Bounded_vec bnd is the set of vectors (of finite
dimension) with entries bounded in absolute value by bnd (similarly Bounded_

mat bnd), indexed_Ints_vec I is the set of vectors v with vi ∈ Z for all i ∈ I,
and, finally, Zv is the set of vectors (of finite dimension) with integer entries
(similarly Zm, is a set of matrices). We also have a notation for sets defined by
some set of vectors or by a matrix: finite_cone X denotes the cone generated by
the finite set X; other examples are cone X , polyhedral_cone A and polyhedron

A b , all with the obvious meanings.

3 Mixed-Integer Linear Problems

3.1 The main formalized theorems

We discuss our formalization of several results that are needed in order to for-
mally prove the soundness of a branch-and-bound-based solver for mixed-integer
linear systems of inequalities. The main theorem for this purpose states that if a
mixed integer system of linear inequalities can be described using only integers,
then it has a solution if and only if it also has a solution involving only numbers
of bounded size.
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Theorem 4. small_mixed_integer_solution:

assumes A1 ∈ carrier_mat nr1 n and A2 ∈ . . . and ...

and Bnd ≥ 0

and {A1,A2} ⊆ Zm ∩ Bounded_mat Bnd

and {b1,b2} ⊆ Zv ∩ Bounded_vec Bnd

and x ∈ indexed_Ints_vec I

and A1x ≤ b1 and A2x < b2

shows ∃x. x ∈ carrier_vec n ∧ x ∈ indexed_Ints_vec I

∧ A1x ≤ b1 ∧ A2x < b2 ∧ x ∈ Bounded_vec (fact (n+1) * Bnd^n)

In order to derive this result, we require formalizations of several results
from the theory of linear inequalities, beginning with the fundamental theorem
of linear inequalities. This theorem states that for any finite set of vectors A
and vector b, either b is in the cone generated by a subset of A, or there exists a
hyperplane {x | c · x = 0} separating b from A and containing some number of
vectors of A.

Theorem 5. fundamental_theorem_of_linear_inequalities:4

assumes A ⊆ carrier_vec n and finite A and b ∈ carrier_vec n

shows (∃B. B ⊆ A ∧ b ∈ finite_cone B ∧ lin_indpt B) ←→
¬ (∃c B. c ∈ carrier_vec n ∧ B ⊆ A ∧ |B|+1 = dim_span (A ∪ {b}) ∧
lin_indpt B ∧ (∀a ∈ B. c · a = 0) ∧ (∀a ∈ A. c · a ≥ 0) ∧ c · b < 0)

To prove the theorem, one first considers an algorithm that iteratively applies
a procedure that takes a subset of vectors from A and produces either the cone
containing b from the theorem statement, or the separating hyperplane, or a new
set of vectors from A. In case of the third outcome, the output set is used as the
input for the next iteration. Thus, starting from some valid set of vectors, the
above algorithm either never terminates (if the third outcome occurs in every
iteration), or it produces an object satisfying the theorem statement. The proof
is completed by showing that an infinite execution cannot occur.

The above argument could in principle be formalized in Isabelle by defining
a function that incorporates the algorithm, and then proving that the function
is well-defined (which implies the termination of the algorithm on all inputs).
However, we are really only interested in the algorithm’s termination; the fact
that some input is mapped to a certain output is irrelevant for the proof of the
theorem. Furthermore, we only need that the algorithm terminates when the set
of input vectors is valid (i.e., of the right cardinality and linearly independent),
but, due to the limitations of the Isabelle function-package [13], the domain of
a function cannot be restricted in this manner. Consequently, we formalize the
proof without modeling the algorithm as an Isabelle function. Instead, we define
a relation on pairs of valid subsets of A: The pair (J ′, J) is in the relation if
and only if, starting with J as input, one iteration of the algorithm produces

4 The Isabelle statement given here matches the presentation of the theorem in [21];
in our formalization, the equivalence is written as an equality of sets.
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output J ′. In other words, the relation encodes all iterations of the algorithm
where the third outcome occurs. Since A is finite, termination is equivalent to
the fact that the above relation has no cycles. The latter fact is established by
a proof by contradiction (here, our formalization closely follows the textbook
proof [21, Chapter 7.1]).

We also need to formalize three corollaries of Theorem 5. First, we have the
theorem of Carathéodory, which follows directly.

Theorem 6. Caratheodory_theorem: assumes A ⊆ carrier_vec n

shows cone A = ∪ {finite_cone B | B. B ⊆ A ∧ lin_indpt B}

Next, we have the Farkas-Minkowski-Weyl theorem, which states that a cone
is polyhedral if and only if it is finitely generated.

Theorem 7. farkas_minkowsky_weyl_theorem:

(∃X. X ⊆ carrier_vec n ∧ finite X ∧ P = cone X) ←→
(∃A nr. A ∈ carrier_mat nr n ∧ P = polyhedral_cone A)

The proofs of Theorems 7 and 5 in [21] contain some simplifying assumptions
that can be made without loss of generality. Of course, in Isabelle we must
provide the full details of every proof, which often entails a non-trivial amount
of additional formalization work. For example, the textbook proof of the “−→”-
implication of Theorem 7 only covers the case where X spans Rn. One way to
recover this part of the theorem in full generality is to identify the span of X
with Rm for some m < n, apply the “−→”-implication for dimension m, and
then extend the half-spaces (of span X) that define the polyhedral cone, into
Rn. In fact, this argument is essentially the justification for the wlog that is
given in the book. Unfortunately, the Isabelle vector/matrix library we use does
not support identifying an arbitrary proper subspace of Rn with a Euclidean
subspace of lower dimension: Even if we prove some statement for carrier_vec

m , we cannot apply it to some arbitrary m-dimensional subspace of Rn. Instead,
our formalization of the general case involves adding suitable dummy vectors
to X until the set spans all of Rn, so that we can apply the full-dimension
implication for carrier_vec n . This is one of several situations where filling in
the “obvious” steps of a proof in a way that can be formally expressed in Isabelle
requires some creativity.

The third corollary is the decomposition theorem for polyhedra, stating that
every polyhedron can be written as the sum of a polytope and a polyhedral cone:

Theorem 8. decomposition_theorem_polyhedra:

(∃A b nr. A ∈ carrier_mat nr n ∧
b ∈ carrier_vec nr ∧ P = polyhedron A b)

←→ (∃Q X. Q ∪ X ⊆ carrier_vec n ∧ finite (Q ∪ X) ∧
P = convex_hull Q + cone X)

For both Farkas-Minkowski-Weyl (Theorem 7) and the decomposition theo-
rem, the fact that we used a set-based matrix/vector library proved to be ben-
eficial. To show the “−→”-implication of Theorem 7, one defines a matrix, the
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dimension of which is a function of X (and can therefore not be independently
fixed just by the type of X). Constructing matrices of dimensions that depend
on the value of some variable is easy when using carrier_mat , but would be very
difficult with matrix libraries which utilize Harrison’s encoding of dimensions in
types [12]. In the case of the decomposition theorem for polyhedra, the proof
involves adding a new component to each vector from a set of n-dimensional
vectors and then reasoning about the resulting set of (n + 1)-dimensional vec-
tors, while maintaining the correspondence between the two sets. Here, the use
of carrier_vec makes it possible to easily switch between dimensions and rea-
son about objects such as “the vector formed of the first n components of some
(n+ 1)-dimensional vector”.

Since the set of (real) solutions of a system of linear inequalities is a polyhe-
dron, the decomposition theorem for polyhedra allows us to write any solution
vector x as y+ z, with y an element of a polytope (and therefore bounded), and
z an element of a finitely generated cone. This suggests the following approach
to proving Theorem 4 (small_mixed_integer_solution): If x is such that xi ∈ Z
for all i ∈ I, we may try to replace z with a vector z′ of the same cone, with
bounded entries, such that (y + z′)i ∈ Z for all i ∈ I (thus, y + z′ would be
the desired bounded solution). This approach does in fact work, but it clearly
requires a more powerful version of the decomposition theorem, since the one we
have shown so far says nothing about bounds or integrality. The proof of the new
decomposition theorem also requires a bounded integer version of Theorem 7.
This latter theorem in turn is based on a modified version of Theorem 5 which
describes more precisely how separating hyperplanes can be computed so that
the normal vectors are integral and with components of bounded size.

Theorem 9. decomposition_theorem_polyhedra_1:

assumes A ∈ carrier_mat nr n

and b ∈ carrier_vec nr and P = polyhedron A b

shows ∃Q X. X ⊆ carrier_vec n ∧ Q ⊆ carrier_vec n ∧ finite (X ∪ Q)

∧ P = convex_hull Q + cone X ∧
(A ∈ Zm ∩ Bounded_mat Bnd −→ b ∈ Zv ∩ Bounded_vec Bnd −→
X ⊆ Zv ∩ Bounded_vec (. . .) ∧ Q ⊆ Bounded_vec (. . .))

The ‘−→’-implication of this stronger version of the decomposition theorem
for polyhedra states that if A and b have bounded integer entries, then the finite
sets Q and X can be chosen such that they contain only bounded vectors and,
furthermore, such that X contains only integral vectors. The integrality of the
vectors in X is the crucial ingredient necessary for constructing the vector z′ as
required and completing the proof of Theorem 4.

In [21], only a weaker version of Theorem 4 is proved; it covers only the case of
non-strict linear inequalities with integral solutions. Although our result trivially
implies this weaker form, we have formalized the proof from the textbook as well,
for the sake of completeness.
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This proof relies on a decomposition theorem for the integer hull of a poly-
hedron, which also requires bounded integer versions of Theorem 7 and the
decomposition theorem for polyhedra. Only a rough sketch is given in the book
as to how the bounded integer versions of these theorems can be obtained. When
formalizing this part, however, we encounter the following issue: In the course
of a proof, it will be necessary to add new vectors to a set until it has a certain
property, or to add half-spaces to a collection until its intersection coincides with
some polyhedron. This suffices if we only wish to prove the existence of a set of
vectors with some property, or of a specific representation of a polyhedron, but
if we also need to prove bounds on the numbers needed to describe these objects,
it becomes crucial which vectors or half-spaces are chosen, because some choices,
while valid, will lead to results that do not respect the desired bounds.

For a concrete example, we return to the “−→”-implication of Theorem 7
(Farkas-Minkowski-Weyl), this time in its bounded integer version:

Theorem 10. farkas_minkowsky_weyl_theorem_1:

assumes X ⊆ carrier_vec n and finite X

shows ∃nr A. A ∈ carrier_mat nr n ∧ cone X = polyhedral_cone A ∧
(X ⊆ Zv ∩ Bounded_vec Bnd −→ A ∈ Zm ∩ Bounded_mat (. . .))

As mentioned earlier in this section, this implication is proved for the case
where the span of X is Rn, which is then used to prove the general implication,
but the switch from the special to the general case involves adding vectors to
X until the set spans the entire space, and then applying the full-dimension
statement to obtain the half-spaces that define the polyhedral cone. Now, the
vectors that are added to X can affect the size of the entries of the resulting
matrix A, and the fact that these vectors can also be chosen in such a way that
the entries of A are bounded in terms of only Bnd and n, is not obvious, and
in fact requires a careful construction. Whereas such matters are simply glossed
over in the textbook, resolving the wlogs in the proof of the bounded version
of Theorem 5 and of Theorem 7 resulted in Isabelle proofs of 176 lines and 110
lines, respectively.

In the end, we achieve the following formalized version of the textbook the-
orem [21, Thm. 17.1].

Theorem 11. small_integer_solution_nonstrict_via_decomp:

assumes A ∈ carrier_mat nr n ∩ Zm ∩ Bounded_mat Bnd

and b ∈ carrier_vec nr ∩ Zv ∩ Bounded_vec Bnd

and x ∈ carrier_vec n ∩ Zv and Ax ≤ b

shows ∃y. y ∈ carrier_vec n ∩ Zv ∧ Ay ≤ b

∧ y ∈ Bounded_vec (fact (n+1) * (max 1 Bnd)^n)

3.2 Additional formalized theorems

In order to formalize the proofs of the main theorems, we collect a number
of basic lemmas concerning cones, convex hulls, integer hulls, normal vectors
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and bases of vector spaces. On the one hand, these lemmas include very basic
statements that would not normally require separate proofs, but were needed
for the formalization, such as the fact that a set of vectors is a subset of the
cone it generates, or that a convex combination of two vectors of a cone belongs
to the cone. On the other hand, our supporting lemmas include statements that
appear in standard mathematical texts, such as the fact stated in Lemma 12 that
any linearly independent set of vectors can be extended to a basis of the vector
space. We mention that we have proved all of these facts only for Euclidean
vector spaces, making heavy use of the fact that the dimension is finite, because
this case suffices for our application.

Lemma 12. expand_to_basis: assumes lin_indpt_list xs

shows ∃ys. set ys ⊆ set (unit_vecs n) ∧ lin_indpt_list (xs @ ys)

∧ length (xs @ ys) = n

We note that in Lemma 12, @ is list concatenation and unit_vecs n refers to
the standard basis of Rn. Of course, a linearly independent set can be extended
in many other ways, but we use vectors from the standard basis because they
allow us to obtain the same number bounds as for the original linearly indepen-
dent set. Adding the standard basis vectors is also the reason for using max 1

Bnd instead of Bnd in many theorems that mention upper bounds. Indeed, the
“max 1”-operation often cannot be dropped. For instance, consider the “←−”-
implication of Theorem 7 and the degenerate case where the matrix A is empty
or just contains zeros. Then the entries of A are bounded by 0 and the cone is
the whole space. Thus, for generating this cone one needs at least n non-zero
vectors, e.g., the unit vectors. And these do not have all their entries bounded
by 0, but by max 1 0 .

A notable exception, without “max 1”, is our main Theorem 4 (small_mixed_
integer_solution). This result is first proved with the “max 1” expression in the
bounds. The version without the max -operation is then established by proving
that the theorem also holds in all degenerate cases (where the bound is 0).

Aside from the main theorems and supporting lemmas, we also formally prove
two variants of Farkas’ lemma. We do not need these for our work on the verified
linear arithmetic solver, but obtaining them did not entail a prohibitively large
additional effort, and they may be useful for other formalizations.

Although there already exists an entry for Farkas’ lemma in the AFP, its proof
there is based not on the fundamental theorem of linear inequalities (Theorem 5),
but on a separate formalization of the simplex algorithm (one that has been
formalized solely for rational numbers). Since here we use Theorem 5, we obtain
a version of a lemma that allows for the use of a more general type than just
the rationals. (In Isabelle, type annotation is denoted by :: . Below, ′a is a type
variable that stands for the type of the entries of a matrix/vector; it can be any
type with the suitable algebraic properties.)

Lemma 13. Farkas_Lemma: fixes A :: ′a mat and b :: ′a vec

assumes A ∈ carrier_mat n nr and b ∈ carrier_vec n

shows (∃x. x ≥ 0nr ∧ Ax = b) ←→
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(∀y. y ∈ carrier_vec n ∧ AT y ≥ 0nr −→ yb ≥ 0)

Lemma 14. Farkas_Lemma ′: fixes A :: ′a mat and b :: ′a vec

assumes A ∈ carrier_mat nr nc and b ∈ carrier_vec nr

shows (∃x. x ∈ carrier_vec nc ∧ Ax ≤ b) ←→
(∀y. y ≥ 0nr ∧ AT y = 0nc −→ yb ≥ 0)

Finally, we remark that, while the first of the two variants of Farkas’ lemma
follows easily from Theorem 5, the second variant (which, in [21], has a three-line
proof that is based on the first variant) is somewhat more difficult to formalize.
This is because its proof involves concatenating matrices and deducing inequal-
ities involving the resulting matrix from facts about its components. Such oper-
ations require laborious low-level manipulations of vector inequalities, turning a
three-line textbook proof into 102 lines of Isabelle code.

4 A Verified Branch-and-Bound Algorithm

4.1 The Branch-and-Bound Algorithm

Algorithm 1 shows the Isabelle/HOL function bnb , which is our implementation
of a branch-and-bound algorithm for solving LIA problems. It takes as param-
eters a list of constraints cs , the list of variables Is that should get an integer
assignment and (total) functions lb and ub that map the variables in Is to their
lower and upper integer bounds. bnb returns either a satisfying assignment which
maps variables to rational numbers and all variables in Is to integers, or None , if
the mixed integer problem is unsatisfiable within the bounds lb and ub . bnb first
uses the simplex algorithm to find a rational solution of the constraints within
the bounds. If the constraints are already unsatisfiable in the rational numbers
or if the solution is already integral for all values in Is , then bnb terminates
accordingly. Otherwise, there exists an x ∈ Is where v x (the value assigned to
x in the rational solution v) is not an integer. We update the bounds on x once

function bnb :: constraint list ⇒ var list ⇒ (var⇒int) ⇒ (var⇒int)

⇒ (var⇒rat) option where

bnb cs Is lb ub =

case simplex (bounds_to_constraints Is lb ub @ cs) of

Unsat _ ⇒ None

| Sat v ⇒ case find (λx. v x /∈ ZZ) Is of

None ⇒ Some v

| Some x ⇒ case bnb cs Is lb (ub(x := bv xc)) of

Some sol ⇒ Some sol

| None ⇒ bnb cs Is (lb(x := dv xe)) ub

Algorithm 1: A simple implementation of a branch-and-bound algorithm



Verifying a Linear Mixed Integer Arithmetic Solver in Isabelle/HOL 13

in lb and once in ub and branch by running bnb with the new upper bound and
then with the new lower bound.

To verify bnb in Isabelle/HOL we have to show that it always terminates.
Note that in every recursive call, we either decrease one of the upper bounds ub

or increase one of the lower bounds lb . This fact is used to show that in every
recursive call, the range of possible values decreases for some x , and, hence, so
does the search space. Thus, we use the following measure (of the size of the
search space) to prove termination in Isabelle/HOL:

max

(
0,
∑
xi∈Is

(ub(xi)− lb(xi))

)
We then prove two theorems about bnb : any detected solution is valid, and

whenever bnb delivers None , no solution exists within the range that is specified
by the lower- and upper-bounds. The expression v |=mcs (set cs, set Is) means
that the solution v satisfies all of the constraints in cs and that all x ∈ Is are
assigned integer values by v .

lemma branch_and_bound_sat:

assumes bnb cs Is lb ub = Some v

shows v |=mcs (set cs, set Is)

lemma branch_and_bound_unsat:

assumes bnb c Is lb ub = None

and ∀ i ∈ set Is. lb i ≤ v i ∧ v i ≤ ub i

shows v 6|=mcs (set cs, set Is)

At this point we connect the branch-and-bound algorithm with the bounds
from Section 3 to obtain a decision procedure for linear (mixed) integer arith-
metic:

definition branch_and_bound cs Is = (let B = compute_bound cs

in bnb cs Is (λ_. −B) (λ_. B))

Here, compute_bound is an algorithm that extracts the relevant parameters
(number of variables, maximal absolute value in constraints) and then calculates
the upper bound as in Section 3. One complication comes from the fact that
there are two different representations of constraints: the statements regarding
bounds have been proved for constraints given in matrix-vector form, Ax ≤ b
or Ax < b with integral matrix A and integral vector b, whereas the input to
the branch-and-bound algorithm is a set of constraints, where each constraint
is represented via a (sparse) linear polynomial with rational entries, e.g., x5 +
1
10x1041 ≤

7
3 . Hence, compute_bound internally also normalizes the constraints,

e.g., by canceling fractions, and by renaming the variables so that the indices
of variables with non-zero coefficients form a contiguous block: x0, . . . , xn−1.
The normalized constraints can then easily be translated into matrix-vector-
form, which enables a lifting of Theorem 4 (small_mixed_integer_solution) to
constraints that are represented via sparse polynomials.
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lemma compute_bound:

assumes v |=mcs (set cs, Is)

shows ∃ v. v |=mcs (set cs, Is) ∧ (∀ i ∈ Is. |v i| ≤ compute_bound cs)

At this point, it is easy to combine the results of bnb with compute_bound to
finally show that branch_and_bound is a complete and sound decision procedure.
Either it returns some assignment, which is then a solution to the mixed integer
problem; or it returns None , and the mixed integer problem is unsatisfiable.

lemma branch_and_bound:

branch_and_bound cs Is = Some v =⇒ v |=mcs (set cs, set Is)

branch_and_bound cs Is = None =⇒ @v. v |=mcs (set cs, set Is)

4.2 Using The Incremental Version of Simplex

One problem of the branch-and-bound algorithm from the previous section is
in the way it invokes the simplex algorithm: although in every iteration only a
single constraint changes, the simplex algorithm is always started from scratch.

Therefore, in this section we optimize the branch-and-bound algorithm to use
an already existing verified incremental version of the simplex algorithm [3,15],
which returns a state instead of only returning a satisfying assignment or stating
unsatisfiability. The state contains for instance a tableau, i.e., a list of equations
which is essential for the simplex algorithm. By reusing the state, expensive
operations like creating the tableau can be avoided, making the incremental
simplex very attractive to be used within the branch-and-bound algorithm.

A complication arises, since the verified incremental simplex algorithm was
developed to be used in a DPLL(T)-solver, where all constraints are known
beforehand and the constraints are not changed throughout one DPLL(T) run.
Therefore, the incremental interface does not allow for changing constraints or
adding new ones. As a consequence, an integration of the incremental simplex
into the branch-and-bound algorithm is not immediate, since there the bounds
are changed in every iteration.

Our solution is a slight extension of the incremental simplex algorithm. To
be more precise, we write a function which changes exactly one constraint in the
state in a way that the relevant invariants of the incremental interface still hold.
This extension allows us to reuse all the existing soundness properties and proofs
of the incremental simplex algorithm without modifications. It is specifically
tailored for running the branch-and-bound algorithm. We choose this approach
instead of adding a feature to change arbitrary constraints in the incremental
simplex interface, since such a feature would require a major rewrite.

Since the algorithmic structure and the soundness statement of the modified
branch-and-bound algorithm is completely identical to the one of Section 4.1,
we just refer to the formalization for further details.
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5 Benchmarking

We tested two versions of our solver (based on incremental/non-incremental sim-
plex) by comparing them with two well-established SMT-solvers, Z3 and CVC4.
Testing was done on a subset of the non- incremental5 QF LIA (quantifier-free
linear integer arithmetic)6 benchmark set from SMT-LIB. For this experiment
we had two goals in mind: 1. to see whether it is worthwhile to use the non-
incremental version of simplex as a sub-routine in the branch-and-bound algo-
rithm, and 2. to get an idea about the extent to which our verified, non-optimized
solver can handle practical examples.

We did not go through the effort of making our solver compliant with the
language of SMT-LIB, as we felt that for the above two goals, it would suf-
fice to write a simple converter that could handle a reasonable portion of the
QF LIA benchmarks. Thus, we obtained a dataset of 1192 benchmarks, com-
prising 18% of the 6489 benchmarks in QF LIA. (More specifically, the follow-
ing sub-folders were fully converted to a format that is readable by our solver:
20180326-Bromberger, miplib2003, pb2010, pidgeons, prime-cone, and slacks.)
All solvers were tested on this dataset, on the same hardware, with a 60s-timeout
per benchmark. Z3 version 4.4.0pre-2, CVC4 version 1.5-4, and the 2019-05-09
release of SMT-LIB were used.

The only other verified LIA solver that we are aware of is an Isabelle formal-
ization of Cooper’s algorithm in the AFP. This algorithm solves a more general
problem than linear integer arithmetic (namely linear arithmetic with arbitrary
quantifiers over integer variables). We obtained an implementation with minimal
changes to make code generation possible (just as we produced executables for
our own solver).

Table 1: Experimental results

sat unsat total

non-incremental bnb 245 131 376
incremental bnb 314 131 445
CVC4 470 158 628
Z3 570 164 734
verified Cooper 2 0 2

Evaluation. Our branch-and-bound implementation solves 37% of the dataset
with incremental simplex as a sub-routine, and 31% with non-incremental sim-
plex. Since we have only implemented a naive branch-and-bound algorithm, with-
out any additional heuristics for pruning the search space, it is unsurprising that

5 Here, “non-incremental” means that the tests are simply sets of constraints, as op-
posed to constraints together with an assert/check script that a solver must execute.

6 QF LIRA (quantifier-free mixed integer real arithmetic) contains only 8 tests.
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its performance cannot match that of more mature solvers. Somewhat surpris-
ing is the fact that some benchmarks are solved by our solvers but not by Z3 or
CVC4: of the benchmarks solved by incremental bnb, 28 are not solved by Z3,
29 are not solved by CVC4, and 8 are solved by neither Z3 nor CVC4.

Interestingly, the non-incremental simplex-based solver can handle a few in-
stances that the incremental simplex-based solver does not. Although using an
incremental simplex leads to better overall results, it appears that reusing valu-
ations from previous simplex runs can sometimes lead the search astray in such
a way that simple solutions are missed. The phenomenon of a search proceeding
in the wrong direction and missing a simple solution may also be the reason why
some instances cannot be handled by either Z3 or CVC4, despite being solved
by our solver.

Cooper’s algorithm is known to have a very high asymptotic complexity,
which means that its performance is not a matter of optimizing an implemen-
tation. As such, the outcome of our experiments with regards to Cooper’s algo-
rithm is as expected, showing that this algorithm is not usable on medium-sized
examples in practice.

6 Conclusion and Future Work

We have developed a verified solver for linear mixed integer arithmetic, and have
formalized important results on linear integer programming that were needed in
order to prove the soundness of the solver. To the extent of our knowledge,
the main mathematical theorems of which we formalized proofs had not been
previously verified in any formal system, and our solver is the first verified LIA
solver that is also usable in practice. The two parts of our formalization amount
to 9813 lines of Isabelle code and took roughly 10 person-months to implement.

Currently, our solver is essentially “proof of concept” software, and there
are a number of known optimizations that could improve it, e.g., preprocessing
of constraints, integration of cutting planes, unit-cube-tests, etc. [6,7,14]. We
have also used run-time profiling in order to establish which sub-routines our
solver spends most time on, and have identified parts of the incremental simplex
algorithm that we could further modify in order to improve running times.
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