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Abstract. We present the first method to disprove innermost termina-
tion of term rewrite systems automatically. To this end, we first develop
a suitable notion of an innermost loop. Second, we show how to detect in-
nermost loops: One can start with any technique amenable to find loops.
Then our novel procedure can be applied to decide whether a given loop
is an innermost loop. We implemented and successfully evaluated our
method in the termination prover AProVE.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore,
much effort has been spent on developing and automating powerful techniques
for showing (innermost) termination of TRSs. An important application area
for these techniques is termination analysis of functional programs. Since the
evaluation mechanism of functional languages is mainly term rewriting, one can
transform functional programs into TRSs and prove termination of the resulting
TRSs to conclude termination of the functional programs [9]. Although “full”
rewriting does not impose any evaluation strategy, this approach is sound even
if the underlying programming language has an innermost evaluation strategy.

But in order to detect bugs in programs, it is at least as important to prove
non-termination of programs or of the corresponding TRSs. Here, the evalua-
tion strategy cannot be ignored, because a non-terminating TRS may still be
innermost terminating. Thus, in order to disprove termination of programming
languages with an innermost strategy, it is important to develop techniques to
disprove innermost termination of TRSs automatically.

Only a few techniques for showing non-termination of TRSs have been intro-
duced so far [7,12,17,18,20]. Nevertheless, there already exist several tools that
are able to prove non-termination of TRSs automatically by finding loops (e.g.,
AProVE [8], Jambox [5], Matchbox [23], NTI [20], TORPA [24], TTT [14]). But up
to now, all of these techniques and tools only disprove full and not innermost
termination. So they can only be applied to disprove innermost termination if
the TRS belongs to a known class where termination and innermost termination
coincide [11]. In this paper, we demonstrate how to extend all of these techniques
such that they can be directly used for disproving innermost termination for any
? Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant GI 274/5-2.



kind of TRS. For instance, this is needed for the following program where the
resulting TRS is not confluent and hence, does not fall into a known class where
innermost and full termination are the same.

Example 1 (Factorial function). The following ACL2 program [15] computes the
factorial function where x is increased from 0 to y− 1 and in every iteration the
result is multiplied by 1 + x.

(defun factorial (y) (fact 0 y))
(defun fact (x y)

(if (== x y)
1
(× (+ 1 x) (fact (+ 1 x) y))))

Using a translation to TRSs suggested by [22], we obtain the following TRS R
where the rules (5)− (12) are needed to handle the built-in functions of ACL2.

factorial(y)→ fact(0, y) (1)
fact(x, y)→ if(x == y, x, y) (2)

if(true, x, y)→ suc(0) (3)
if(false, x, y)→ suc(x) × fact(suc(x), y) (4)

0 + y → y (5)
suc(x) + y → suc(x+ y) (6)

0 × y → 0 (7)
suc(x) × y → y + (x × y) (8)

x == y → chk(eq(x, y)) (9)
eq(x, x)→ true (10)

chk(true)→ true (11)
chk(eq(x, y))→ false (12)

Here, it is crucial to use innermost instead of full rewriting. Otherwise, it
would always be possible to rewrite s == t →R chk(eq(s, t)) →R false, i.e.,
terms like 0 == 0 could then be evaluated to both true and false. In contrast,
for innermost rewriting one has to apply rule (10) first if s and t are equal.

Note that in this TRS, s == t is indeed evaluated to false whenever s and
t are any terms that are syntactically different. This is essential to model the
semantics of ACL2 correctly, since here there are – like in term rewriting – no
types. At the same time, all functions in ACL2 must be “completely defined”.

So to perform non-termination proofs for languages like ACL2, we need a
way to disprove innermost termination. This problem is harder than disproving
termination since one has to take care of the evaluation strategy.

In this paper we investigate looping reductions. These are specific kinds of
infinite reductions which can be represented in a finite way. To disprove inner-
most termination of TRSs, we develop an automatic method which in case of
success, presents the innermost loop to the user as a counterexample.

For the TRS of Ex. 1, there is indeed an innermost loop. It corresponds to
the non-terminating reduction of the ACL2 program when calling fact(n,m) for
natural numbers n > m. The reason is that the first argument is increased over
and over again, and it will never become equal to m.

The paper is organized as follows. In Sect. 2, we extend the notion of a loop to
innermost rewriting. Then as the main contribution of the paper, we describe a



novel decision procedure in Sect. 3 which detects whether a loop for full rewriting
is still a loop in the innermost case. How to combine our work with dependency
pairs is discussed in Sect. 4. Finally, Sect. 5 summarizes our results and describes
their empirical evaluation with the termination prover AProVE.

2 Loops

We only regard finite signatures and TRSs and refer to [2] for the basics of
rewriting. An obvious approach to find infinite reductions is to search for a term
s which rewrites to a term t containing an instance of s, i.e., s →+

R t = C[sµ]
for some context C and substitution µ. The corresponding infinite reduction is

s→+
R C[sµ]→+

R C[Cµ[sµ2]]→+
R C[Cµ[Cµ2[sµ3]]]→+

R . . .

Equivalently, one can also represent it as an infinite reduction w.r.t. →+
R ◦D,

where D is the weak subterm relation:

s→+
R ◦D sµ→+

R ◦D sµ2 →+
R ◦D sµ3 →+

R ◦D . . . (?)

Here, for every sµn the same rules are applied at the same positions to obtain
sµn+1. A reduction of the form s →+

R t D sµ is called a loop and a TRS which
admits a loop is called looping.

Example 2. The TRS of Ex. 1 admits the following loop where s = fact(x, y)
and µ = {x/suc(x)}.

s→R if(x == y, x, y)
→R if(chk(eq(x, y)), x, y)
→R if(false, x, y)
→R suc(x) × fact(suc(x), y)
D fact(suc(x), y)
= sµ

Clearly, a naive search for looping terms is very costly. Therefore, in current
non-termination provers the techniques of forward closures [3,18], unfoldings [20],
ancestor graphs [17], forward- or backward-narrowing [7], and overlap closures
[12] are used, where all these techniques are special forms of overlap closures. As
all mentioned techniques essentially perform narrowing steps, one can modify
them by also allowing narrowings into variables. This is proposed in [7] and [20].
For example, the loop of the TRS {f(x, y, x, y, z)→ f(0, 1, z, z, z), a→ 0, a→ 1}
of [25] cannot be detected by overlap closures if one does not permit narrowings
into variables. Nevertheless, most of these techniques are able to detect the loop
of Ex. 2. Another alternative to detect loops (at least for string rewriting) could
be based on specialized unification procedures, cf. [4].

However, if one does not consider full rewriting but innermost rewriting, then
loopingness does not imply non-termination,3 since the innermost rewrite rela-
tion i→R is not stable under substitutions. More precisely, one should not define
3 As usual, a TRS is innermost non-terminating iff there is a (possibly non-ground)

term starting an infinite innermost reduction.



any TRS with a reduction s i→+
R ◦D sµ to be “innermost looping”, because then

an “innermost looping” TRS could still be innermost terminating as shown by
Ex. 3. The reason is that s i→+

R ◦D sµ does not imply sµ i→+
R ◦D sµ2. And even

if sµ i→+
R ◦D sµ2 is true, then it could be that later on for some larger n there

is no reduction sµn i→+
R ◦D sµn+1.

Example 3. Consider the TRS R consisting of the following rules.

f(g(x))→ f(g(g(x)))
g(g(g(x)))→ a

This TRS would be “innermost looping” according to the definition discussed
above, e.g., f(g(x))→R f(g(g(x))) = f(g(x)){x/g(x)}, but it is innermost termi-
nating. The reason is that the first rule is applicable at most twice. Afterwards,
one has to use the second rule and no reduction is possible afterwards.

To solve this problem, one might define that a TRS R is “innermost looping”
iff there are a term s and a substitution µ such that sµn i→+

R ◦D sµn+1 for every
natural number n. A similar definition was already used in [7, Footnote 6]. Then
indeed, innermost loopingness implies innermost non-termination. However, the
following example shows that this definition does not correspond to a loop in
the intuitive way where the reduction sµn i→+

R ◦D sµn+1 always has the same
form and length. Consequently, it would be undecidable whether a known loop
is also an innermost loop.

Example 4. Consider the TRS R with the following rules.

f(x, y)→ f(suc(x), g(h(x, 0)))
h(suc(x), y)→ h(x, suc(y))

g(h(x, y))→ j(y)

R is “innermost looping”, as for s = f(suc(x), g(h(x, 0))) and µ = {x/suc(x)}
there is the following reduction for every n ∈ IN.

sµn = f(sucn+1(x), g(h(sucn(x), 0)))
i→n
R f(sucn+1(x), g(h(x, sucn(0))))

i→R f(sucn+1(x), j(sucn(0)))
i→R f(sucn+2(x), g(h(sucn+1(x), 0)))
= sµn+1

The problem is that the form and the length of the reduction from sµn to sµn+1

depend on n. Therefore, with this definition of “innermost looping”, it is not
even semi-decidable whether a known loop is an innermost loop.

To see this, recall that it is not semi-decidable whether a (computable) func-
tion j over the naturals is total. Since term rewriting is Turing-complete, we can
assume that there are confluent rules which compute j by innermost rewriting.
But then we can add the three rules of R and totality of j is equivalent to the
question whether the reduction above is an innermost loop, since we obtain an
innermost loop iff all terms j(sucn(0)) are innermost terminating.



So the problem with the requirement sµn i→+
R ◦D sµn+1 is that for every

n, the reduction from sµn to sµn+1 may be completely different. In contrast,
in the infinite reduction (?) that corresponds to a loop for full rewriting, the
reductions from sµn to sµn+1 always have the same form. For every n, one
can apply exactly the same rules in exactly the same order at exactly the same
positions. Hence, one only has to give the reduction s →+

R t D sµ. Then one
immediately knows how to continue for sµ, sµ2, . . . . This gives rise to our final
definition of “innermost looping”.

Definition 5 (Innermost Looping TRS). A TRS R is innermost looping
iff there are a substitution µ, a number m ≥ 1, terms s1, . . . , sm, t, rules `1 →
r1, . . . , `m → rm ∈ R, and positions p1, . . . , pm such that for all n ∈ IN all steps
in the following looping reduction4 are innermost steps.

s1µ
n →`1→r1,p1 s2µ

n →`2→r2,p2 . . . smµ
n →`m→rm,pm tµn D s1µ

n+1 (??)

Note that (??) is the same as the looping reduction in (?), which is just
written down in a more detailed way. Hence, one can represent an innermost
loop in the same way as a loop for termination: by just giving the reduction
s1 →R s2 →R . . . sm →R tD s1µ, i.e., s1 →+

R tD s1µ.

3 Detecting Innermost Loops

It is clear that with Def. 5, every innermost looping TRS is innermost non-
terminating. Moreover, there exist several techniques and tools to find ordinary
loops (for full rewriting). Such loops are good starting points when searching for
innermost loops because an innermost loop is a loop which satisfies the additional
requirements of Def. 5. The only remaining problem is to check whether such an
ordinary loop is also an innermost loop.

Example 6. Consider the looping reduction of Ex. 2. To check whether this is an
innermost loop we have to check for µ = {x/suc(x)} and for all n ∈ IN whether
the corresponding steps are innermost steps when instantiating the terms with
µn. The problem in this example is the reduction if(chk(eq(x, y)), x, y)µn →R
if(false, x, y)µn at position 1 since the redex contains the subterm eq(x, y)µn

which might not be a normal form for some n due to rule eq(x, x)→ true.

In the remainder of this section we will show the main result that it is de-
cidable whether a given loop is an innermost loop. For example, it will turn out
that the loop in Ex. 2 is an innermost loop whereas the one of Ex. 3 is not. We
show this result in 4 steps, corresponding to the sections 3.1− 3.4.

3.1 From Innermost Loops to Redex Problems

Note that (??) is an innermost loop iff every direct subterm of every redex siµn|pi

is in normal form. Since a term t is in normal form iff t does not contain a redex
w.r.t. R, we can reformulate the question about innermost loopingness in terms
4 Here, →`→r,p denotes a rewrite step with the rule `→ r at position p.



of so-called redex problems.

Definition 7 (Redex, Matching, and Identity Problems). Let s and ` be
terms, let µ be a substitution (with finite domain). Then a redex problem is
a triple (s |m `, µ), a matching problem is a triple (s m `, µ), and an identity
problem is a triple (s u `, µ).

A redex problem (s |m `, µ) is solvable iff there are a position p, a substitution
σ, and an n ∈ IN such that sµn|p = `σ. A matching problem is solvable iff there
are a substitution σ and an n ∈ IN such that sµn = `σ. An identity problem is
solvable iff there is an n ∈ IN such that sµn = `µn.

Theorem 8 (Setting up Redex Problems). In the reduction (??) all steps
are innermost steps iff for all direct subterms s of the si|pi and all left-hand sides
` of rules from R, the redex problem (s |m `, µ) is not solvable.

Proof. Some reduction siµ
n →`i→ri,pi

u is not an innermost step iff for some
direct subterm s of si|pi

, the term sµn is not in normal form, since siµn|pi
=

si|pi
µn. (Note that even for n = 0 we have a reduction at position pi in (??).

Hence, pi is a position of si and moreover, si|pi cannot be a variable. Thus,
the “direct subterms of si|pi” are indeed properly defined.) Equivalently, there
are some rule ` → r and position p such that sµn|p = `σ. But then the redex
problem (s |m `, µ) is solvable. ut

Example 9. The loop of Ex. 2 is an innermost loop iff for µ = {x/suc(x)} all
redex problems (s |m `, µ) are not solvable where s is from the set {x, y, eq(x, y),
false} of direct subterms of redexes in the loop and ` is a left-hand side of R.

The loop of Ex. 3 is an innermost loop iff both (g(x) |m f(g(x)), µ′) and
(g(x) |m g(g(g(x))), µ′) are not solvable where µ′ = {x/g(x)}.

To find out whether a redex problem (s |m `, µ) is solvable, we search for
three unknowns: the position p, the substitution σ, and the number n. We will
now eliminate these unknowns one by one and start with the position p. This
will result in matching problems. Then in a second step we will further transform
matching problems into identity problems where only the number n is unknown.
Finally, we will present an algorithm to decide identity problems. Therefore, at
the end of this section we will have a decision procedure for redex problems, and
thus also for the question whether a given loop is an innermost loop.

3.2 From Redex Problems to Matching Problems

To start with simplifying a redex problem (s |m `, µ) into a finite disjunction of
matching problems, note that since the position p can be chosen freely within any
of the terms s, sµ, sµ2, . . . , it is not feasible to just try out all possibilities. But
the following theorem shows that it is indeed possible to reduce redex problems to
finitely many matching problems. Essentially, it states that it suffices to consider
all subterms of s and all subterms of terms that are introduced by µ. Here, V
is the set of all variables and for any term t, V(t) is the set of its variables and
Pos(t) is the set of its positions.



Theorem 10 (Solving Redex Problems). Let (s |m `, µ) be a redex problem.
Let W =

⋃
i∈IN V(sµi). Then (s |m `, µ) is solvable iff ` is a variable or if one

of the matching problems (um `, µ) is solvable for some non-variable subterm u
of a term in {s} ∪ {xµ | x ∈ W}.

Proof. If ` is a variable then the redex problem is obviously solvable, so let ` /∈ V.
We consider both directions separately.

First, let (u m `, µ) be solvable, i.e., there are σ and n such that uµn = `σ.
If u is a subterm of s, i.e., u = s|p for some p, then sµn|p = s|pµn = uµn = `σ
proves that (s |m `, µ) is solvable. Otherwise, if u is a subterm of some xµ with
x ∈ W then there is some i such that x ∈ V(sµi). Hence, there is a position p
such that sµi+1|p = u. Again, sµi+1+n|p = uµn = `σ proves that (s |m `, µ) is
solvable.

For the other direction of the equivalence we assume that (s |m `, µ) is
solvable, so let sµn|p = `σ for some p, σ, and n. If p ∈ Pos(s) and s|p /∈ V, then
we are done as the matching problem (u m `, µ) for the corresponding subterm
u = s|p is obviously solvable.

Otherwise, there must be an 0 ≤ i < n such that p ∈ Pos(sµi+1) with
sµi+1|p /∈ V (as ` /∈ V) and either sµi|p ∈ V or p /∈ Pos(sµi). In both cases
there must be a variable x and a position p′ such that x ∈ V(sµi) ⊆ W and
xµ|p′ = sµi+1|p. We choose the non-variable subterm u = xµ|p′ of xµ. Then
indeed the matching problem (um `, µ) is solvable since

uµn−(i+1) = xµ|p′µn−(i+1) = sµi+1|pµn−(i+1) = sµn|p = `σ. ut

Note that the set W is a subset of the finite set V(s) ∪
⋃
x∈Dom(µ) V(xµ).

Thus, one can compute W by adding V(sµi) for larger and larger i until one
reaches an i where the set does not increase anymore. Hence, Thm. 10 can easily
be automated.

Example 11. We use Thm. 10 for the redex problems of Ex. 9. We first consider
the redex problems resulting from the loop of Ex. 2. Since there are no new
variables occurring when applying µ we obtain W = {x, y}. Thus, the loop is
an innermost loop iff none of the matching problems (sm `, µ) is solvable where
s is now chosen from {suc(x), eq(x, y), false}. (So the variables x, y do not have
to be regarded anymore, but now one has to consider the new term suc(x) from
the substitution.)

In the same way, the loop of Ex. 3 is an innermost loop iff none of the
matching problems (g(x) m f(g(x)), µ′) and (g(x) m g(g(g(x))), µ′) is solvable.

3.3 From Matching Problems to Identity Problems

Now the question remains whether a given matching problem is solvable. This
amounts to detecting the matcher σ and the unknown number n. Our next aim
is to reduce this problem to a conjunction of identity problems, i.e., to eliminate
the need to search for matchers σ. However, we first have to generalize the notion
of matching problems (sm`, µ) which contain one pair of terms sm` to matching
problems which allow a set of pairs of terms.



Definition 12 (General Matching Problem). A general matching problem
(M, µ) consists of a setM of pairs {s1m`1, . . . , skm`k} together with a substitu-
tion µ. A general matching problem (M, µ) is solvable iff there are a substitution
σ and an n ∈ IN such that for all 1 ≤ j ≤ k the equality sjµn = `jσ is valid.

If M only contains one pair s m ` then we identify (M, µ) with (s m `, µ),
and if µ is clear from the context we write M as an abbreviation for (M, µ).

We now give a set of four transformation rules which either detect that
a matching problem is not solvable (indicated by ⊥), or which transform a
matching problem into solved form. Here, a (general) matching problem ({s1 m
`1, . . . , sk m `k}, µ) is in solved form iff all `1, . . . , `k are variables. Once we have
reached a matching problem in solved form, it is easily possible to translate it
into identity problems.

Definition 13 (Transformation of Matching Problems). We define the
following transformation⇒ on general matching problems. If (M, µ) is a general
matching problem with M =M′ ] {sm `} where ` /∈ V, and if Vincr = {x ∈ V |
there is some n ∈ IN with xµn /∈ V} is the set of increasing variables, then

(i) M⇒ {s′µm `′ | s′ m `′ ∈M}, if s ∈ Vincr
(ii) M⇒⊥, if s ∈ V \ Vincr

(iii) M⇒⊥, if s = f(. . . ), ` = g(. . . ), and f 6= g
(iv) M⇒M′ ∪ {s1 m `1, . . . , sk m `k}, if s = f(s1, . . . , sk), ` = f(`1, . . . , `k)

Rule (iv) just decomposes terms and Rule (iii) handles a symbol-clash. These
rules are standard for classical matching algorithms. However, if the left-hand
side is a variable x and the right-hand side is not, then a matching problem
may still be solvable. If x is increasing then we just have to apply µ until a
new symbol is produced on the left-hand side. This is done by Rule (i) and
will be illustrated in more detail when solving the matching problems of the
loop in Ex. 3. However, if x is not increasing then the matching problem is not
solvable since xµn will always remain a variable. Hence, ⊥ is obtained by Rule
(ii). The following theorem shows that every matching problem (sm `, µ) can be
automatically reduced to a finite conjunction of identity problems.

Theorem 14 (Solving Matching Problems). Let (M, µ) be a general
matching problem.

(i) The transformation rules of Def. 13 are confluent and terminating.
(ii) If M⇒⊥ then M is not solvable.

(iii) If M⇒M′ with M′ 6= ⊥, then M is solvable iff M′ is solvable.
(iv) M is solvable iff M ⇒∗ M′ for some matching problem M′ = {s1 m

x1, . . . , sk m xk} in solved form, such that for all i 6= j with xi = xj the
identity problem (si u sj , µ) is solvable.

Proof. (i) To prove confluence one can show that ⇒ is strongly confluent by a
simple case analysis.



To show termination of ⇒ first note that no transformation rule increases
the size of the terms in the right-hand sides of a matching problem. Thus,
Rule (iv) can only be applied finitely often. But since every sequence of
transformations with Rule (i) eventually triggers an application of Rule (iii)
or (iv), Rule (i) cannot be used infinitely often either.

(ii) If M⇒ ⊥ due to Rule (iii) then sm ` ∈ M with s = f(. . . ) and ` = g(. . . )
where f 6= g. But then for every n ∈ IN the terms sµn = f(. . . ) and `σ =
g(. . . ) are different. Hence, M is not solvable.
IfM⇒⊥ due to Rule (ii) then xm` ∈M with x ∈ V \Vincr and ` = f(. . . ).
But since x is not an increasing variable we know that xµn ∈ V for all n ∈ IN.
Thus, the terms xµn and `σ = f(. . . ) are different for all n. Hence, M is
not solvable.

(iii) We first consider Rule (i) for M = {s1 m `1, . . . , sk m `k}.

M is solvable
iff ∃σ, n : s1µn = `1σ ∧ · · · ∧ skµn = `kσ
iff ∃σ′, n : s1µn+1 = `1σ

′ ∧ · · · ∧ skµn+1 = `kσ
′ (as si ∈ V for some i)

iff M′ = {s1µm `1, . . . , skµm `k} is solvable

For Rule (iv) the result follows from the fact that f(s1, . . . , sk)µn = f(`1, . . . ,
`k)σ iff siµ

n = `iσ for all 1 ≤ i ≤ k.
(iv) If M is solvable then due to (ii) and (iii), M cannot be transformed to ⊥.

So let M′ be a normal form of M w.r.t. ⇒. Then, obviously M′ has the
form {s1 m x1, . . . , sk m xk} and M′ is solvable due to (iii). Thus, there are
a substitution σ and a number n such that for all 1 ≤ i ≤ k the equality
siµ

n = xiσ is valid. Hence, for all i 6= j with xi = xj the identity problem
(si u sj , µ) is solvable.
For the other direction let M ⇒∗ M′ = {s1 m x1, . . . , sk m xk} where for
every i 6= j with xi = xj there is some nij with siµ

nij = sjµ
nij . Let n be

the maximum of all nij . Then, obviously siµn = sjµ
n for all these i and j.

We define σ = {x1/s1µ
n, . . . , xk/skµ

n}. First note that σ is well defined by
construction. But as then siµn = xiσ is valid for all 1 ≤ i ≤ k we know that
M′ is solvable. Using (iii) we finally conclude that M is solvable. ut

Example 15. We illustrate the transformation rules by continuing Ex. 11.
For the loop of Ex. 2 we can reduce all but one matching problem to ⊥ by

Rule (iii). Only the matching problem (eq(x, y) m eq(x, x), µ) is transformed by
Rule (iv) into its solved form {xm x, y m x}. Hence, by Thm. 14 the loop is an
innermost loop iff the identity problem (x u y, µ) is not solvable.

For the loop of Ex. 3, we had to find out whether (g(x) m g(g(g(x))), µ′)
is solvable. Applying Rule (iv) yields (x m g(g(x)), µ′). Since x is an increasing
variable for µ′, we now have to apply Rule (i) and obtain (g(x) m g(g(x)), µ′) as
xµ′ = g(x). Repeated application of Rules (iv) and (i) results in the solved form
(x m x, µ′). Hence, by Thm. 14 the matching problem (g(x) m g(g(g(x))), µ′) is
solvable as no identity problems are created. Thus, we have detected that the
loop of Ex. 3 is not an innermost loop.



3.4 Deciding Identity Problems

Note that for left-linear TRSs, identity problems are never created, since there
the right-hand sides of a general matching problem are always variable disjoint.
However, in order to handle also non-left-linear TRSs, it remains to give an
algorithm which decides solvability of an identity problem.5 This algorithm is
presented in Fig. 1, and we now explain its steps one by one.

Input: An identity problem (s u t, µ).
Output: “Yes”, if the identity problem is solvable, and “No”, if it is not.

(i) While µ contains a cycle of length n > 1 do µ := µn.
(ii) S := ∅

(iii) If s = t then stop with result “Yes”.
(iv) If there is a shared position p of s and t such that s|p = f(. . . ) and t|p =

g(. . . ) and f 6= g then stop with result “No”.
(v) If there is a shared position p of s and t such that s|p = x, t|p = g(. . . ), and

x is not an increasing variable then stop with result “No”.
Repeat this step with s and t exchanged.

(vi) If there is a shared position p of s and t such that s|p = x, t|p = y, x 6= y,
and x, y /∈ Dom(µ) then stop with result “No”.

(vii) Add the triple (x, p, t|p) to S for all shared positions p of s and t such that
x = s|p 6= t|p where x is an increasing variable.
Repeat this step with s and t exchanged.

(viii) If (x, p1, u1) ∈ S and (x, p2, u2) ∈ S where
(a) u1 and u2 are not unifiable or where
(b) u1 = u2 and p1 < p2,
then stop with result “No”.

(ix) s := sµ, t := tµ
(x) Continue with Step (iii).

Fig. 1. An algorithm to decide solvability of identity problems

First we replace the substitution µ by µn such that µn does not contain
cycles. Here, a substitution δ contains a cycle of length n iff δ = {x1/x2, x2/x3,
. . . , xn/x1, . . . } where the xi are pairwise different variables. Obviously, if δ
contains a cycle of length n then in δn all variables x1, . . . , xn do not belong
to the domain any more. Thus, Step (i) terminates and afterwards, µ does not
contain cycles of length 2 or more.

Note that the identity problem (s u t, µ) is solvable iff (s u t, µn) is solvable.
Hence, after Step (i) we still have to decide solvability of (s u t, µ) for the
modified µ. The advantage is that now µ has a special structure. For all x ∈
Dom(µ), either x is an increasing variable or for some n the term xµn is a variable
5 It could also be possible to express identity problems as primal unification problems

and to use an algorithm for primal unification [13] instead. But then one would have
to extend the results of [13] to allow arbitrary dependencies of function symbols.
Moreover, our algorithm has the advantage of being very easy to implement.



which is not in Dom(µ). For such substitutions µ, the terms s, sµ, sµ2, . . . finally
become stationary at each position, i.e., for every position p there is some n such
that either all terms sµn|p, sµn+1|p, sµn+2|p, . . . are of the form f(. . . ), or all
these terms are the same variable x /∈ Dom(µ). Therefore, it is possible to define
sµ∞ as the (possibly infinite) term where root(sµ∞|p) = f iff root(sµn|p) = f
for some n, and sµ∞|p = x iff there is some n such that sµm|p = x for all m ≥ n.

If the identity problem is solvable then there is some n such that sµn = tµn

which will be detected in Step (iii). The reason is that with Steps (ix) and (x)
one iterates over all pairs (s, t), (sµ, tµ), (sµ2, tµ2), . . . .

If the identity problem is not solvable, then this could be due to a stationary
conflict, i.e., sµ∞ 6= tµ∞. Then the identity problem is unsolvable since sµn =
tµn would imply sµ∞ = tµ∞. If the terms sµ∞ and tµ∞ differ, then there is
some position p such that the symbols at position p in sµ∞ and tµ∞ differ, or
sµ∞|p is a variable and tµ∞|p is not a variable (or vice versa), or both sµ∞|p
and tµ∞|p are different variables. Recall that the terms s, sµ, sµ2, . . . and the
terms t, tµ, tµ2, . . . finally become stationary. Hence, if we choose n high enough,
then the conflict at position p can already be detected by inspecting sµn|p and
tµn|p. Thus, then one of three cases in Steps (iv)–(vi) will hold.

With the steps described up to now, we can detect all solvable identity
problems and all identity problems which are not solvable due to a station-
ary conflict. However, there remain other identity problems which are not solv-
able, but which do not have a stationary conflict. As an example consider
(x u y, {x/f(x), y/f(y)}). Then sµ∞ = f(f(f(. . . ))) = tµ∞ but this identity
problem is not solvable since xµn = fn(x) 6= fn(y) = yµn for all n ∈ IN. We call
such identity problems infinite.

The remaining steps (ii), (vii), and (viii) are used to detect infinite identity
problems. In the set S we store sub-problems (x, p, u) such that whenever the
identity problem is solvable, then xµm = uµm must hold for some m to make
the terms sµn and tµn equal at position p.

We give some intuition why the two abortion criteria in Step (viii) are correct.
For (viii–a), note that if u1 and u2 are not unifiable then xµm cannot be both
u1µ

m and u2µ
m, which means that the sub-problems (x, p1, u1) and (x, p2, u2)

(resp. (x u u1, µ) and (x u u2, µ)) are not solvable. For (viii–b), in order to make
xµm equal to u1µ

m, we again produced the same problem at a lower position.
Then the original identity problem is again not solvable, since this repeated
generation of the same sub-problem would continue forever. As usual, p1 < p2

denotes that position p1 is strictly above p2.
The following theorem shows that all answers of the algorithm are indeed

correct and it also shows that it always returns an answer. The termination
proof is quite involved since we have to show that the criteria in Step (viii)
suffice to detect all infinite identity problems.

Theorem 16 (Solving Identity Problems). The algorithm in Fig. 1 to de-
cide solvability of identity problems is correct and it terminates.

Proof. One can easily show that in the k-th iteration, S is the following set Sk.



Sk = {(x, p, u) | x ∈ Vincr ∧ x 6= u ∧ ∃m ≤ k :
(sµm|p = x ∧ u = tµm|p) ∨ (tµm|p = x ∧ u = sµm|p)}

Since the correctness of Steps (i)–(vi) was already illustrated in the explana-
tion of the algorithm, we only prove the correctness of Step (viii) formally. So
let (x, p1, u1) and (x, p2, u2) be elements of some Sk. Hence, there exist m1 ≤ k
and m2 ≤ k such that w.l.o.g. for both i = 1 and i = 2, we have sµmi |pi

= x and
tµmi |pi

= ui where x is a variable with x 6= ui. If the identity problem (s u t, µ)
is not solvable then there is nothing to show. Otherwise, there is some n with
sµn = tµn. Since sµmi |pi = x 6= ui = tµmi |pi , we know that n > mi for both i.
Hence, we can conclude the following equalities for both i ∈ {1, 2}:

xµn−mi = sµmi |piµ
n−mi = sµn|pi = tµn|pi = tµmi |piµ

n−mi = uiµ
n−mi (13)

Assume that we have applied (viii–a) and the algorithm wrongly returned
“No”. This directly leads to a contradiction since by (13), u1µ

n = xµn = u2µ
n

proves that u1 and u2 are unifiable.
Now assume that we applied (viii–b) and wrongly obtained “No”. W.l.o.g. let

p1 < p2. Since sµm1 |p1 is the variable x, we must apply µ at least one more time
to obtain a term with the position p2 and thus, m1 < m2. As xµn−m1 = u1µ

n−m1

by (13), there must be some smallest number n′ ≤ n such that xµn
′−m1 =

u1µ
n′−m1 is valid. From x 6= u1 we conclude n′ > m1 and from sµn

′ |p1 =
xµn

′−m1 = u1µ
n′−m1 = tµn

′ |p1 we derive that also the subterms sµn
′ |p2 of

sµn
′ |p1 and tµn

′ |p2 of tµn
′ |p1 are identical. Again, n′ > m2 must hold and we

obtain xµn
′−m2 = u2µ

n′−m2 . But this is a contradiction to the minimality of n′

since u1 = u2 and n′ −m2 < n′ −m1.
To prove termination, we have already argued in the explanation of the al-

gorithm why we can detect all solvable identity problems and all those problems
which have a stationary conflict. So it remains to prove that all infinite problems
can be detected. To this end, we start with three observations on infinite identity
problems, i.e., unsolvable identity problems (s u t, µ) where sµ∞ = tµ∞.

First, if (s u t, µ) is infinite then (sµ u tµ, µ) is infinite as well.
Second, if (s u t, µ) is infinite then there is no position p where (s|p u t|p, µ)

has a stationary conflict (i.e., s|pµ∞ 6= t|pµ∞). Otherwise there would also be a
stationary conflict for (s u t, µ) which contradicts the infinity of (s u t, µ).

And third, whenever (s u t, µ) is infinite then there is some position p such
that s|p 6= t|p, at least one of the terms s|p or t|p is an increasing variable, and
(s|pµ u t|pµ, µ) is infinite, too. This can be proved as follows. Let p be one of
the longest (i.e., lowest) shared positions of s and t such that (s|p u t|p, µ) is not
solvable. (Such positions must exist since (s u t, µ) is not solvable.) Due to the
second observation we know that (s|p u t|p, µ) again is infinite. Moreover, using
the maximality of p we conclude that at least one of the terms s|p or t|p is a
variable. Since (s|p u t|p, µ) is infinite, this variable must be increasing. Finally,
by the first observation, (sµ|p u tµ|p, µ) is infinite as well.

Now we show that if there were an infinite run of the algorithm, we would
insert an infinite number of triples into S where the corresponding positions p0,



p0 p1, p0 p1 p2, . . . are getting longer and longer: Since (s u t, µ) is infinite, due
to the third observation there is a position p0 such that a triple (x0, p0, s|p0)
or (x0, p0, t|p0) is added to S. Moreover, (sµ|p0 u tµ|p0 , µ) is infinite. Hence,
again using the third observation we obtain a position p1 such that (sµ|p0µ|p1 u
tµ|p0µ|p1 , µ) = (sµ2|p0p1 u tµ2|p0p1 , µ) is infinite where sµ2|p0p1 and tµ2|p0p1 are
different terms, one of them being an increasing variable x1. Thus, again the
corresponding triple (x1, p0 p1, sµ|p0 p1) or (x1, p0 p1, tµ|p0 p1) is added to S. By
iterating this reasoning, we obtain the desired infinite sequence of triples in S.

As there exist only finitely many increasing variables, there must be some
x which occurs infinitely often in this sequence. Thus, we obtain an infinite
subsequence (x, p0 . . . pi1 , ui1), (x, p0 . . . pi2 , ui2), . . . where i1 < i2 < . . . and
p0 . . . pi1 < p0 . . . pi2 < . . . . Due to Kruskal’s tree theorem [16], there must be
some ij and ik such that ij < ik and uij is embedded in uik . If uij = uik then
this is a contradiction to an infinite run of the algorithm since then the criterion
in Step (viii–b) would hold and the algorithm would be stopped. Otherwise,
uij is strictly embedded in uik . But then uij cannot be unified with uik since
the embedding relation is stable under substitutions. Hence in that case, the
criterion in Step (viii–a) will stop the algorithm. ut

Example 17. We illustrate the algorithm with the identity problem (x u y, µ)
where µ = {x/f(y, u0), y/f(z, u0), z/f(x, u0), u0/u1, u1/u0}.

As µ contains a cycle of length 2 we replace µ by µ2 = {x/f(f(z, u0), u1),
y/f(f(x, u0), u1), z/f(f(y, u0), u1)}. Since xµ∞ = f(f(f(. . . , u1), u0), u1) = yµ∞,
we know that the problem is either solvable or infinite. Hence, the criteria in
Steps (iv)–(vi) will never apply. We start with s = x and t = y. Since the terms
are different we add (x, ε, y) and (y, ε, x) to S. In the next iteration we have
s = f(f(z, u0), u1) and t = f(f(x, u0), u1). Again, the terms are different and
we add (x, 11, z) and (z, 11, x) to S. The next iteration yields the new triples
(y, 1111, z) and (z, 1111, y), and after having applied µ three times, we obtain
the two last triples (x, 111111, y) and (y, 111111, x). Then due to the criterion
(viii–b), the algorithm terminates with “No”.

By simply combining all theorems of Sect. 3, we finally obtain a decision
procedure which solves the question whether a loop is also an innermost loop.

Corollary 18 (Deciding Innermost Loops). For every loop

s1 →R s2 →R . . .→R sm →R tD s1µ

of a TRS R, it is decidable whether that loop is also an innermost loop.

Example 19. In Ex. 15 we observed that the loop of Ex. 2 is an innermost loop iff
(x u y, µ) is not solvable where µ = {x/suc(x)}. We apply the algorithm of Fig. 1
to show that this identity problem is not solvable. Hence, we show that the loop
is an innermost loop and thus, the TRS of Ex. 1 is not innermost terminating.

Since µ only contains cycles of length 1, we skip Step (i). So, let s = x and
t = y. Then none of the steps (iii)–(vi) is applicable. Hence, we add (x, ε, y) to
S and continue with s = suc(x) and t = y. Then, in Step (v) the algorithm is
stopped with the answer “No” due to a stationary conflict.



4 Integration into the Dependency Pair Framework

In [7], we showed that in order to find loops automatically, it is advantageous to
use the dependency pair framework [1,6,10] because of a reduced search space.
There are two main reasons for this: First, one can drop the contexts when
looking for loops, i.e., one can drop the D in “→+

R ◦D” and will still be able to
detect every looping TRS [7, Thm. 23]. Second and more important, by using
dependency pairs one can often prove termination of large parts of the TRS, and
hence only has to search for loops for a small subsystem of the original TRS.

While the results of this paper have only been presented for TRSs, it is easy
to extend our notion of “innermost looping” (Def. 5) to DP problems – the basic
data structure within the dependency pair framework. Then the methods of
Sect. 3 can again be used to decide whether a looping DP problem is innermost
looping. Moreover, one can extend [7, Thm. 23] to the innermost case, i.e., a TRS
is innermost looping iff the corresponding DP problem is innermost looping. The
details of these extensions can be found in [21, Chapter 8].

5 Conclusion

To prove non-termination of innermost rewriting, we first extended the notion of
a loop to the innermost case. An innermost loop is an innermost reduction with
a strong regularity which admits the same infinite reduction as an ordinary loop
does for full rewriting. Afterwards, we developed a novel procedure to decide
whether a given loop is also an innermost loop. Our procedure can be combined
with any method to detect loops for full rewriting, regardless whether it directly
searches for loops of the TRS or whether it performs this search within the
dependency pair framework.

We have implemented our procedure in combination with dependency pairs
in our termination prover AProVE [8] which already featured a method to de-
tect loops, cf. [7]. Note that while proving the soundness and the termination
of our novel decision procedure is non-trivial, the procedure itself is very easy
to implement. To evaluate its usefulness empirically, we tested it on the ter-
mination problem data base (TPDB). This is the collection of examples used
in the annual International Competition of Termination Tools [19]. Currently,
the TPDB contains 129 TRSs where at least one tool has been able to dis-
prove termination in the competition in 2007. With the results of this pa-
per, AProVE now also disproves innermost termination for 93 of these TRSs
(where we use a time limit of 1 minute per example). In contrast, we are not
aware of any other existing tool for disproving innermost termination. The
fact that from the remaining 36 TRSs at least 30 are innermost terminat-
ing demonstrates the power of our approach. Moreover, of course AProVE can
also disprove innermost termination of Ex. 1. Concerning efficiency, the check
whether a loop that was found is also an innermost loop needs less than 8
seconds in total for all TRSs of the TPDB. For further details on our experi-
ments and to run this new version of AProVE via a web interface, we refer to
http://aprove.informatik.rwth-aachen.de/eval/decidingLoops.

http://aprove.informatik.rwth-aachen.de/eval/decidingLoops
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