
Loops under Strategies

René Thiemann and Christian Sternagel?

Institute of Computer Science, University of Innsbruck, Austria
{rene.thiemann|christian.sternagel}@uibk.ac.at

Abstract. Most techniques to automatically disprove termination of
term rewrite systems search for a loop. Whereas a loop implies non-
termination for full rewriting, this is not necessarily the case if one
considers rewriting under strategies. Therefore, in this paper we first
generalize the notion of a loop to a loop under a given strategy. In a
second step we present two novel decision procedures to check whether a
given loop is a context-sensitive or an outermost loop. We implemented
and successfully evaluated our method in the termination prover TTT2.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore,
much effort has been spent on developing and automating powerful techniques for
showing termination of TRSs. An important application area for these techniques
is termination analysis of functional programs. Since the evaluation mechanism
of functional languages is mainly term rewriting, one can transform functional
programs into TRSs and prove termination of the resulting TRSs to conclude
termination of the functional programs [6]. Although “full” rewriting does not
impose any evaluation strategy, this approach is sound even if the underlying
programming language has an evaluation strategy.

But in order to detect bugs in programs, it is at least as important to prove
non-termination of programs or of the corresponding TRSs. Here, the evaluation
strategy cannot be ignored, because a non-terminating TRS may still be termi-
nating when considering the strategy. Thus, in order to disprove termination of
programming languages with strategies, it is important to develop automated
techniques to disprove termination of TRSs under strategies.

Only a few techniques for showing non-termination of TRSs have been in-
troduced so far [4,7,9,10,12]. These techniques can be used to detect loops—a
specific form of derivation which implies non-termination—and are successfully
implemented in many tools (e.g., AProVE[5], Jambox [2], Matchbox [16], NTI [12],
TORPA [17], TTT2 [8]).

If one wants to prove non-termination under strategies then up to now there
are two different approaches. The first one is to directly analyze the loops whether
they also imply non-termination under a given strategy S. This approach was
successfully applied for the innermost strategy in [15] where a decision procedure
was given to determine whether a loop is an innermost loop.
? This author is supported by FWF (Austrian Science Fund) project P18763.

The second approach is to use a complete transformation τS for strategy
S such that R is terminating under S iff τS(R) is (innermost) terminating.
Then one first applies the transformation and then searches for a loop in τS(R)
afterwards. Here, the methods of [3] and [13,14] are applicable which can be used
to disprove context-sensitive and outermost termination.

Although the second approach of using the transformations [3,13,14] seems
to be a good solution to disprove context-sensitive and outermost termination,
there are two main drawbacks. The first problem is a practical one. Often the
loops ofR are transformed into much longer loops in τS(R) and hence, the search
space for loops may become critical. And even more severe is the problem, that
some loops of R are not even translated to loops in τS(R) and hence, one even
looses power if the search problem for loops is ignored.

Thus, there is still need to extend the first approach—to ensure or even
decide that a given loop is a loop under strategies—to other strategies besides
innermost. To this end, in this paper we first generalize the notion of a loop and
an innermost loop to a loop under some arbitrary strategy. Then we develop two
new decision procedures for context-sensitive loops and outermost loops.

The paper is structured as follows. In Sect. 2 we recapitulate the required
notions of rewriting and generalize the notion of a loop for rewriting strategies.
Moreover, we present a decision procedure for the question whether a given loop
is a context-sensitive loop. Then in Sect. 3 we show how to formulate the same
question for the outermost strategy as a set of matching problems. How these
matching problems can be transformed to a simpler kind of problems—identity
problems—is the content of Sect. 4. Afterwards, in Sect. 5 we provide a decision
procedure for solvability of identity problems. All of our techniques have been
implemented in the Tyrolean Termination Tool 2 (TTT2) and the empirical results
are presented in Sect. 6, before we conclude in Sect. 7.

2 Loops

We only regard finite signatures and TRSs and refer to [1] for the basics of
rewriting. We use `, r, s, t, u, . . . for terms, f, g, . . . for function symbols, x, y, . . .
for variables, σ, µ for substitutions, i, j, k, n,m, o for natural numbers, p, q, . . .
for positions where ε is the root position, and C,D, . . . for contexts. Here, con-
texts are terms which contain exactly one hole �. For contexts, the term C[t]
is like C where � is replaced by t, i.e., �[t] = t and f(s1, . . . , C, . . . , sn)[t] =
f(s1, . . . , C[t], . . . , sn). We write t|p for the subterm of t at position p, i.e., t|ε = t
and f(s1, . . . , sn)|ip = si|p. The set of variables is denoted by V.

Throughout this paper we assume a fixed TRS R and we write t→p s if one
can reduce t to s at position p with R, i.e., t = C[`σ] and s = C[rσ] for some
` → r ∈ R, substitution σ, and context C with C|p = �. Here, the term `σ is
called a redex at position p. The reduction is an outermost reduction, written
t o→p s, iff t contains no redex at a position q above p (written q < p). If the
position is irrelevant we just write → or o→. The TRS R is non-terminating iff

2

there is an infinite derivation t1 → t2 → It is outermost non-terminating iff
there is such an infinite derivation using o→ instead of →.

An obvious approach to disprove termination is to search for a loop, i.e., a
derivation where the starting term t is reduced to a term containing an instance
of t, i.e., t→+ C[tµ]. The corresponding infinite derivation is

t→+ C[tµ]→+ C[C[tµ]µ]→+ . . .→+ C[C[. . . C[tµ] . . . µ]µ]→+ . . . (?)

where the derivation t →+ C[tµ] is repeated over and over again. This infinite
derivation (?) is obtained because → is closed under both substitutions and
contexts, also known as stability and monotonicity.

However, in general it is not clear whether (?) also is an infinite derivation if
one considers a specific evaluation strategy S. If this is the case then and only
then we speak of an S-loop.

To formally define an S-loop we first need to make the derivations within
(?) precise. Therefore, we must represent terms like C[C[. . . C[tµ] . . . µ]µ] with-
out using “. . . ”. Moreover, we must know the positions of the reductions since
several strategies—like innermost, outermost, or context-sensitive—only allow
reductions at certain positions. To this end, we define the notion of a context-
substitution which combines insertion into a context with the application of a
substitution.

Definition 1 (Context-substitutions). A context-substitution is a pair
(C, µ) consisting of a context C and a substitution µ. The n-fold application
of (C, µ) to a term t, written t(C, µ)n is defined as follows.

• t(C, µ)0 = t

• t(C, µ)n+1 = C[t(C, µ)nµ]
C

C

C

t
µ

µ

µ

µ

µ

µ

Fig. 1. The term t(C, µ)3

From the definition it is obvious
that in t(C, µ)n the context C is added
n-times above t and t is instantiated
by µn. Note that also the added con-
texts are instantiated by µ. For the
term t(C, µ)3 this is illustrated in Fig. 1.

The following lemma shows that
context-substitutions have similar prop-
erties to both contexts and substitu-
tions.

Lemma 1 (Properties of context-substitutions).

(i) t(C, µ)nµ = tµ(Cµ, µ)n.
(ii) t(C, µ)m(C, µ)n = t(C, µ)m+n.

(iii) If C|p = � then t(C, µ)n|pn = tµn.
(iv) Whenever t→q s and C|p = � then t(C, µ)n →pnq s(C, µ)n.

3

Proof. (i) We perform induction on n. If n = 0 then

t(C, µ)nµ = t(C, µ)0µ = tµ = tµ(Cµ, µ)0 = tµ(Cµ, µ)n.

Otherwise, n = k + 1 and we obtain

t(C, µ)nµ = t(C, µ)k+1µ

= C[t(C, µ)kµ]µ

(by ind.) = C[tµ(Cµ, µ)k]µ

= Cµ[tµ(Cµ, µ)kµ]

= tµ(Cµ, µ)k+1

= tµ(Cµ, µ)n

(ii) We perform induction on n. If n = 0 then

t(C, µ)m(C, µ)n = t(C, µ)m(C, µ)0 = t(C, µ)m = t(C, µ)m+n.

Otherwise, n = k + 1 and we obtain

t(C, µ)m(C, µ)n = t(C, µ)m(C, µ)k+1

= C[t(C, µ)m(C, µ)kµ]

(by ind.) = C[t(C, µ)m+kµ]

= t(C, µ)m+k+1

= t(C, µ)m+n.

(iii) We perform induction on n. If n = 0 then t(C, µ)n|pn = t(C, µ)0|ε = t =
tµ0 = tµn. Otherwise, n = k + 1 and we obtain

t(C, µ)n|pn = t(C, µ)k+1|ppk

= C[t(C, µ)kµ]|ppk

= t(C, µ)kµ|pk

= t(C, µ)k|pkµ

(by ind.) = (tµk)µ
= tµn.

(iv) We perform induction on n. If n = 0 then

t(C, µ)n = t→p0q s = s(C, µ)n.

Otherwise, n = k + 1 and by induction hypothesis we have t(C, µ)k →pkq

s(C, µ)k. Thus,

t(C, µ)n = C[t(C, µ)kµ]→ppkq C[s(C, µ)kµ] = s(C, µ)k+1 = s(C, µ)n. ut

4

Here, property (i) is similar to the fact that C[t]µ = Cµ[tµ], and (ii) expresses
that context-substitutions can be combined just as substitutions where σmσn =
σm+n. Moreover, the property of contexts that C[t]p = t if C|p = � is extended
in (iii), and finally stability and monotonicity of rewriting are used to show in
(iv) that rewriting is closed under context-substitutions.

With the help of context-substitutions we can now describe the infinite
derivation in (?) more concisely. Since t→+ C[tµ] = t(C, µ) we obtain

t(C, µ)0 →+ t(C, µ)(C, µ)0 = t(C, µ)1 →+ . . .→+ t(C, µ)n →+ . . . (??)

Hence, the terms that occur during the derivation are precisely defined and for
every n the positions of the reductions are prefixed by an additional pn where p
is the position of the hole in C, cf. Lemma 1 (iv). In other words, every reduction
takes place at the same position of the subterm tµn of t(C, µ)n.

Now it is natural to define that a derivation t→+ t(C, µ) is called an S-loop
iff all steps in (??) respect the strategy S.1

Definition 2 (S-loops). Let S be a strategy. A loop t1 →q1 t2 →q2 . . . tn →qn

tn+1 = t1(C, µ) with C|p = � is an S-loop iff all reductions ti(C, µ)m →pmqi

ti+1(C, µ)m respect the strategy S for all 1 ≤ i ≤ n and m ≥ 0.

As a direct consequence of Def. 2 one can conclude that every S-loop of a
rewrite system R proves non-termination of R under strategy S.

Example 1. We consider the TRS Rn for arithmetic with n-bit numbers.

p(0)→ 0 (1)
p(s(x))→ x (2)

minus(x, 0)→ x (3)
minus(x, x)→ 0 (4)

minus(x, s(y))→ p(minus(x, y)) (5)

plus(0, y)→ y (6)
plus(s(x), y)→ s(plus(x, y)) (7)

inf → s(inf) (8)

s2
n

(x)→ overflow (9)

Here, the last rule is used to model that an overflow occurred due to the
n-bit restriction. We focus on the loops

t1 = minus(x, inf)→ minus(x, s(inf))→ p(minus(x, inf)) = C1(t1, µ1) and
t2 = plus(inf, y)→ plus(s(inf), y)→ s(plus(inf, y)) = C2(t2, µ2)

where µ1 = µ2 = { }, C1 = p(�), and C2 = s(�). Here, the first loop is an
outermost loop, but the second one is not. The reason for the latter is that in
every iteration one more s is created. Hence, this will lead to a redex w.r.t. Rule
(9). Note that this example will be hard to handle with the transformational
approaches: using [14] creates a TRS where all infinite reductions are non-looping
and [13] is not even applicable due to non-left-linearity of Rule (4).
1 Another natural definition of an S-loop would just require that t(C, µ)n →+

t(C, µ)n+1 are S-derivations for all n. This alternative was already used in the set-
ting of dependency pairs in [4, Footnote 6]. However, there are problems using this
definition which are described in [15, Sect. 2].

5

Note that a loop is not only determined by the precise derivation t1 →+ tn+1,
but also by the specific context C that is used. To see this consider the TRS
R = {a → f(a, a), f(f(x, y), z) → b}. Then a → f(a, a) is a looping derivation.
For C = f(a,�) this is an outermost loop. However, for C ′ = f(�, a) we do not
obtain an outermost loop since f(a, a) o→ f(f(a, a), a) 6 o→ f(f(f(a, a), a), a). Hence,
the choice of C is essential.

For automatic non-termination analysis under strategies one main question is
whether a given loop is an S-loop, i.e., whether the loop implies non-termination
even under strategy S. In [15] it was already shown that this question is decidable
for innermost loops.2 There, one has the problem that innermost rewriting is not
stable, although it is monotonic.

In context-sensitive rewriting [11] we have the inverse situation: first, stabil-
ity is given whereas monotonicity is absent. And second, whereas the decision
procedure for innermost loops is quite involved and already known, for context-
sensitive loops we can present a novel decision procedure that is rather straight-
forward, but nevertheless important.

Theorem 1 (Deciding context-sensitive-loops). A loop t →+ C[tµ] is a
context-sensitive loop (using replacement map ν) iff both the derivation t →+

C[tµ] respects the context-sensitive strategy and the hole in C is at a ν-replacing
position.

Proof. Let t1 →q1 t2 →q2 . . . tn →qn
tn+1 = t1(C, µ) be a loop where C|p = �.

Then the following statements are all equivalent.

• the loop is a context-sensitive loop
• all ti(C, µ)m →pmqi ti+1(C, µ)m are context-sensitive reductions
• all pmqi are ν-replacing positions of ti(C, µ)m

• p is a ν-replacing position of C and each qi is a ν-replacing position of tiµm

• the hole in C is at a ν-replacing position and the derivation t1 →+ t1(C, µ)
is a context-sensitive derivation ut

In the rest of this paper we consider the outermost strategy. As main result
we develop a decision procedure for the question whether a given loop is an out-
ermost loop. Note that for outermost rewriting neither stability nor monotonicity
are given. To see this consider the TRS R = {a → a, f(x) → x, g(f(a)) → a}.
Then a o→ a, but f(a) 6 o→ f(a). Moreover, g(f(x)) o→ g(x), but g(f(a)) 6 o→ g(a).

The problem of missing stability was already present for innermost loops.
Therefore, many techniques of [15] for innermost loops can be reused for out-
ermost loops, too. However, to handle the missing monotonicity of outermost
rewriting we have to extend these techniques by an additional context. And
these contexts will require significant extensions of the techniques of [15] and
are not so easy to treat as in the context-sensitive case.
2 Note that in [15] one did not regard contexts, i.e., for an innermost loop one just re-

quired that all reductions tiµ
m →qi ti+1µ

m are innermost reductions. However, that
definition of an innermost loop is equivalent to Def. 2 since innermost rewriting (de-
noted by i→) is monotonic. Thus, tiµ

m i→qi ti+1µ
m iff ti(C, µ)m i→pmqi ti+1(C, µ)m.

6

3 Deciding Outermost Loops

Recall the definition of an outermost reduction. An outermost reduction of t
at position p requires that there is no redex at a position q above p, i.e., all
subterms t|q with q < p must not be matched by some left-hand side of a rule
in R. Hence, the question of an outermost reduction can be formulated as a
question of matching.

However, we do not have to consider a single outermost reduction but we
want to know whether each reduction of a term t(C, µ)m at position pmq is an
outermost reduction (where C|p = � and q ∈ Pos(t)). Looking at Fig. 1 one
sees that there are two different cases how to obtain a subterm at a position
above pmq that is matched by some left-hand side. First, the subterm may be
a subterm of tµm. Or otherwise, the subterm starts within the context. For the
former case we can reuse the so called matching problems [15, Def. 12] and for the
latter we need an extended version of matching problems containing contexts.

Definition 3 ((Extended) matching problems). A matching problem is a
pair (M, µ) where M is a set of pairs of terms sm `. It is solvable iff there is a
solution (k, σ) such that for all sm ` ∈M the equation sµk = `σ is satisfied.

An extended matching problem is a quintuple (D m `, C, t,M, µ). It is solv-
able iff there is a solution (n, k, σ) such that the equation D[t(C, µ)n]µk = `σ is
satisfied and (k, σ) is a solution to the matching problem (M, µ).

To simplify presentation we write (D m `, C, t, µ) instead of (D m `, C, t,∅, µ)
and we write (sm `, µ) instead of ({sm `}, µ). Moreover, we use the notion
“matching problem” also for extended matching problems.

To check whether t(C, µ)m has a redex above position pmq one can now
construct a set of initial matching problems. Essentially, one considers matching
problems for the subterms of t above q. Additionally, for each subterm of t(C, µ)m

that starts with a subcontext C|p′ of C, we build an extended matching problem.

Definition 4 (Initial matching problems). Let t →q u be a reduction and
(C, µ) be a context-substitution with C|p = �. Then the following initial match-
ing problems are created for this reduction and context-substitution.

• (t|p′ m `, µ) for each `→ r ∈ R and p′ < q
• (C|p′ m `, Cµ, tµ, µ) for each `→ r ∈ R and p′ < p

Example 2. Consider the loop t1 = minus(x, inf) →2 minus(x, s(inf)) = t2 →ε

p(minus(x, inf)) = t1(C, µ) of Ex. 1 where C = p(�) and µ = { }. For the sec-
ond reduction at root position we only build the extended matching problems
MP1` = (p(�) m `, p(�),minus(x, s(inf)), µ) for all left-hand sides ` of R. For
the first reduction we obtain the similar extended matching problems MP2` =
(p(�) m `, p(�),minus(x, inf), µ), but additionally we also get the matching prob-
lems MP3` = (minus(x, inf) m `, µ).

The following theorem states that we have setup the right initial matching
problems. If we consider all initial problems of all reductions ti →qi

ti+1 of a

7

loop, then solvability of one of these problems is equivalent to the property that
the loop is not outermost.

Theorem 2 (Outermost loops and matching problems). Let t→q u and
(C, µ) be given such that C|p = �. All reductions t(C, µ)m →pmq u(C, µ)m are
outermost iff none of the initial matching problems for t →q u and (C, µ) is
solvable.

Proof. We first prove that any solvable initial matching problem shows that there
is at least one reduction of t(C, µ)m at position pmq which is not an outermost
reduction. There are two cases. First, if (t|p′ m `, µ) is solvable, then there is a
solution (k, σ) such that t|p′µk = `σ. Then t(C, µ)k|pkp′ = tµk|p′ = t|p′µk = `σ
shows that there is a redex in t(C, µ)k above pkq. Thus, t(C, µ)k →pkq u(C, µ)k

is not an outermost reduction.
Otherwise, (C|p′ m `, Cµ, tµ, µ) is solvable. Hence, there is a solution (n, k, σ)

such that C|p′ [tµ(Cµ, µ)n]µk = `σ. Here, we show that the term t(C, µ)n+1+k

has a redex at position pkp′ which is above position pn+1+kq:

t(C, µ)n+1+k|pkp′ = t(C, µ)n(C, µ)(C, µ)k|pkp′ = t(C, µ)n(C, µ)µk|p′
= C[t(C, µ)nµ]µk|p′ = C|p′ [t(C, µ)nµ]µk

= C|p′ [tµ(Cµ, µ)n]µk = `σ

For the other direction we show that if some reduction t(C, µ)m at position
pmq is not an outermost reduction, then one of the initial matching problems
must be solvable. So suppose, the reduction of t(C, µ)m is not outermost. Then
there must be some position q′ < pmq such that the corresponding subterm
t(C, µ)m|q′ is a redex `σ. Again, there are two cases.

First, if q′ ≥ pm then q′ = pmp′ where p′ < q as q′ < pmq. Hence, `σ =
t(C, µ)m|q′ = t(C, µ)m|pmp′ = tµm|p′ = t|p′µm. Thus, the initial matching prob-
lem (t|p′ m `, µ) has the solution (m,σ).

In the other case q′ < pm. Thus, we can split the position q′ into pkp′ where
k < m and p′ < p. Moreover, there must be some n ∈ N that satisfies m =
n+ 1 + k. We conclude

`σ = t(C, µ)m|q′ = t(C, µ)n+1+k|pkp′

= t(C, µ)n(C, µ)(C, µ)k|pkp′ = t(C, µ)n(C, µ)µk|p′
= C[t(C, µ)nµ]µk|p′ = C[tµ(Cµ, µ)n]µk|p′
= C|p′ [tµ(Cµ, µ)n]µk.

Thus, the initial matching problem (C|p′ m `, Cµ, tµ, µ) is solvable. ut

Note that whenever C = � then there is no initial matching problem which
is an extended matching problem. Hence, by Thm. 2 one can already decide
whether a loop t→+ tµ is an outermost loop by using the techniques of [15] to
decide solvability of matching problems. For example it can be detected that all
matching problems MP3` of Ex. 2 are not solvable.

However, in the general case we also generate extended matching problems.
Therefore, in the next section we develop a novel decision procedure for solvabil-
ity of extended matching problems like MP1` and MP2` of Ex. 2.

8

4 Deciding Solvability of Extended Matching Problems

Since extended matching problems are only generated if C 6= �, in the following
sections we always assume that C 6= �. We take a similar approach to [15]
where we transform each matching problem into >, ⊥, or into solved form. Here
> and ⊥ represent solvability and non-solvability. And if a matching problem is
in solved form then often solvability can immediately be decided. We explain all
transformation rules in detail directly after the following definition.

Definition 5 (Transformation of extended matching problems). Let MP =
(D m `0, C, t,M, µ) be an extended matching problem whereM = {s1m`1, . . . , smm
`m}. Then MP is in solved form iff each `i is a variable. Let Vincr = {x ∈ V |
∃n : xµn /∈ V} be the set of increasing variables.

We define a relation ⇒ which simplifies extended matching problems that are
not in solved form. So, let `j = f(`′1, . . . , `

′
m′).

(i) MP ⇒ (Di′ m `′i′ , C, t,M∪ {ti m `′i | 1 ≤ i ≤ m′, i 6= i′}, µ) if j = 0 and D =
f(t1, . . . , Di′ , . . . , tm′).

(ii) MP ⇒ (D m `0, C, t, (M\ {sj m `j}) ∪ {ti m `′i | 1 ≤ i ≤ m′}, µ) if j > 0 and
sj = f(t1, . . . , tm′).

(iii) MP ⇒ ⊥ if j = 0 and D = g(. . .) where f 6= g.
(iv) MP ⇒ ⊥ if j > 0 and sj = g(. . .) where f 6= g.
(v) MP ⇒ ⊥ if j > 0 and sj ∈ V \ Vincr.

(vi) MP ⇒ (Dµm `0, Cµ, tµ, {siµm `i | 1 ≤ i ≤ m}, µ) if j > 0 and sj ∈ Vincr.
(vii) MP ⇒ > if j = 0, D = �, and (M∪ {tm `0}, µ) is solvable.

(viii) MP ⇒ (C m `0, Cµ, tµ,M, µ) if j = 0, D = �, and (M∪ {tm `0}, µ) is not
solvable.

Recall that MP = (D m `0, C, t, {s1 m `1, . . . , sm m `m}, µ) is solvable iff there
is a solution (n, k, σ) such that D[t(C, µ)n]µk = `0σ and siµ

k = `iσ for all 1 ≤
i ≤ m. Hence, whenever D 6= � or si /∈ V then one can perform a decomposition
(Rules (i) and (ii)) or detect a clash (Rules (iii) and (iv)) as in a standard
matching algorithm.

If sj = x is a non-increasing variable then sjµ
k will always be a variable.

Thus, Rule (v) correctly returns ⊥. But if sj = x is an increasing variable then
there might be a solution if k > 0. Hence, one can just apply µ once on the whole
matching problem using Rule (vi). Note that in the result of Rule (vi) both t
and C are also instantiated. This reflects the property of context-substitutions
that t(C, µ)nµ = tµ(Cµ, µ)n, cf. Lemma 1.

Whereas Rule (v) and a simplified version of Rule (vi) have already been
present in [15], here we also need two additional rules to handle contexts. Note
that for n = 0 and D = � the term D[t(C, µ)n]µk is just tµk and thus, one
only has to consider a non-extended matching problem. Now, in Rules (vii) and
(viii) there is a case distinction whether this non-extended matching problem is
solvable, i.e., whether n = 0 yields a solution or not. If it is solvable then also a
solution of MP is found and Rule (vii) correctly returns >. If it is not possible

9

then there is only one way to continue: apply the context-substitution at least
once, and this is exactly what Rule (viii) does.

Before we formally state the soundness of the transformation rules in Thm. 3
we illustrate their application on the extended matching problems of Ex. 2.

Example 3. We first consider MP1` = (p(�) m `, p(�),minus(x, s(inf)), µ). If `
is not one of the left-hand sides p(0) or p(s(x)) then ⊥ is obtained by Rule
(iii). If one considers ` = p(0) then (p(�) m p(0), p(�),minus(x, s(inf)), µ) ⇒
(� m 0, p(�),minus(x, s(inf)), µ) by Rule (i). And as (minus(x, s(inf)) m 0, µ) is
not solvable, Rule (viii) yields (p(�) m 0, p(�),minus(x, s(inf)), µ). Finally, an
application of Rule (iii) returns ⊥ and thereby shows that the matching problem
is not solvable. Since the transformation for ` = p(s(x)) also results in ⊥, we
have detected that none of the matching problems MP1` is solvable.

A similar transformation shows that none of the matching problems MP2` is
solvable. Hence, the loop of Ex. 2 is an outermost loop.

Theorem 3 (Soundness and termination of the transformation rules).

(i) If MP ⇒ ⊥ then MP is not solvable.
(ii) If MP ⇒ > then MP is solvable.

(iii) If MP ⇒ MP ′ then MP is solvable iff MP ′ is solvable.
(iv) The relation ⇒ is terminating and confluent.3

Proof. (i) There are three cases. If j = 0 and D = g(. . .) then MP is not
solvable since D[t(C, µ)n]µk = g(. . .)µk = g(. . .) 6= f(. . .) = `0σ. Similarly,
if j > 0 and sj = g(. . .) then sjµ

k = g(. . .) 6= f(. . .) = `jσ shows that
MP is not solvable. In the last case, j > 0 and sj = x ∈ V \ Vincr. Then,
sjµ

k = xµk 6= f(. . .) = `σ where the inequality is due to the fact that xµk

will always be a variable. The reason is that x /∈ Vincr.
(ii) If MP ⇒ > then j = 0, D = �, and (M∪ {tm `0}, µ) is solvable, i.e.,

there is some solution (k, σ) such that for all (ui, `i) ∈ M ∪ {t m `0} we
have uiµ

k = `iσ. Here, we identify u0 = t and ui = si for i > 0. We
prove that (n = 0, k, σ) is a solution for MP . To this end, first observe
that for i > 0 we directly have siµ

k = uiµk = `iσ. Moreover, we have
D[t(C, µ)n]µk = �[u0(C, µ)0]µk = u0µ

k = `0σ.
(iii) We consider all rules separately and start with Rule (i), so let j = 0 and

D = f(t1, . . . , Di′ , . . . , tm′). We show that (n, k, σ) is a solution for MP iff it
is a solution for MP ′ = (Di′ m `′i′ , C, t,M∪ {ti m `′i | 1 ≤ i ≤ m′, i 6= i′}, µ).
AsM occurs in both MP and MP ′ and as µ, k, and σ are unchanged we only
have to consider the remaining equalities, i.e., the equality D[t(C, µ)n]µk =
`0σ for MP and the equalities Di′ [t(C, µ)n]µk = `′iσ and tiµk = `′iσ for each
i 6= i′, 1 ≤ i ≤ m′. But since

D[t(C, µ)n]µk = f(t1, . . . , Di′ , . . . , tm′)[t(C, µ)n]µk

= f(t1, . . . , Di′ [t(C, µ)n], . . . , tm′)µk

= f(t1µk, . . . , Di′ [t(C, µ)n]µk, . . . , tm′µk)

3 Here we need the assumption C 6= �. Otherwise, Rule (viii) would not terminate.

10

and `0σ = `jσ = f(`′1, . . . , `
′
m′)σ = f(`′1σ, . . . , `

′
m′σ) we conclude that

D[t(C, µ)n]µk = `0σ iff both Di′ [t(C, µ)n]µk = `′iσ and tiµ
k = `′iσ for each

i 6= i′, 1 ≤ i ≤ m′.
The reasoning for Rule (ii) is similar to the one for Rule (i). Let j > 0
and sj = f(t1, . . . , tm′). We show that (n, k, σ) is a solution for MP iff it is a
solution for MP ′ = (D m `0, C, t, (M\ {sj m `j}) ∪ {ti m `′i | 1 ≤ i ≤ m′}, µ).
Since M\ {sj m `j} occurs in both MP and MP ′ and since D, µ, n, k, and
σ are unchanged we only have to consider the remaining equalities, i.e.,
the equality sjµ

k = `jσ for MP and the equalities tiµk = `′iσ for each
1 ≤ i ≤ m′. But since sjµk = f(t1, . . . , tm′)µk = f(t1µk, . . . , tm′µk) and
`jσ = f(`′1, . . . , `

′
m′)σ = f(`′1σ, . . . , `

′
m′σ) we know that sjµk = `jσ iff tiµk =

`′iσ for each 1 ≤ i ≤ m′.
Next, we consider Rule (vi). First observe, that whenever there is a solution
(n, k, σ) for MP then there also is a solution with k + 1, namely (n, k +
1, σµ). The reason is that D[t(C, µ)n]µk = `0σ implies D[t(C, µ)n]µk+1 =
D[t(C, µ)n]µkµ = `0σµ and similarly, siµk = `iσ implies siµk+1 = `iσµ.
Now, (Dµm `0, Cµ, tµ, {siµm `i | 1 ≤ i ≤ m}, µ) is solvable iff there is a so-
lution (n, k, σ) such that Dµ[tµ(Cµ, µ)n]µk = `0σ and siµk+1 = `iσ for each
1 ≤ i ≤ m. But since

Dµ[tµ(Cµ, µ)n]µk = Dµ[t(C, µ)nµ]µk

= D[t(C, µ)n]µµk

= D[t(C, µ)n]µk+1

this is equivalent to solvability of MP by the above observation.
Finally we consider Rule (viii), where MP ′ = (M∪ {tm `0}, µ) is not solv-
able, j = 0, and D = �. First observe, that since MP ′ is not solvable, there
cannot be a solution of MP where n = 0. The reason is that if (n = 0, k, σ)
would be a solution then sjµ

k = `′σ for each 1 ≤ j ≤ m. Moreover,
tµk = �[t(C, µ)0]µk = D[t(C, µ)n]µk = `0σ. Thus, (k, σ) would be a so-
lution to the matching problem MP ′ in contradiction to the requirement
that MP ′ is not solvable.
Using this observation we prove that MP ′′ = (C m `0, Cµ, tµ,M, µ) is solv-
able iff MP is solvable. By the above observation, MP is solvable iff there is
a solution (n + 1, k, σ) and we show that this is equivalent to the existence
of a solution (n, k, σ) for MP ′′. The reason is that since k, σ, µ, and M are
unchanged, we know that k, σ is a solution for (M, µ) as part of MP iff it
is a solution for (M, µ) as part of MP ′′. And moreover, D[t(C, µ)n+1]µk =
�[t(C, µ)n+1]µk = t(C, µ)n+1µk = C[t(C, µ)nµ]µk = C[tµ(Cµ, µ)n]µk. So,
the equalities concerning the contexts D = � of MP and C of MP ′′ are
identical.

(iv) To show termination of ⇒ first note that an application of one of the Rules
(iii), (iv), (v), or (vii) obviously yields termination. For the remaining rules
note that no transformation rule increases the size of the terms `i. Thus,
Rules (i) and (ii) can only be applied finitely often. But since every sequence
of transformations with Rule (vi) eventually triggers an application of Rule

11

(ii) or (iv), Rule (vi) cannot be used infinitely often either. Similarly, each
application of Rule (viii) triggers an application of Rule (i) or (iii) and thus,
Rule (viii) can only be used finitely many times.

Confluence is due to the following two reasons. First, once j has been chosen
there is only one rule to apply since the rules are non-overlapping.

To show that the choice of j is uncritical we perform a large but simple
case distinction. Note that it cannot happen that MP is reduced to both
⊥ and > due to the previous results (i) and (ii) of this theorem. Next, we
consider that MP ⇒ ⊥ by Rule (iii) and MP ⇒ MP ′ using some other index
j′ 6= 0. But then regardless of the chosen j′ one can afterwards apply Rule
(iii) again to reduce MP ′ ⇒ ⊥. Here one needs the fact, that if D = g(. . .)
has a conflict with `0 = f(. . .) then Dµ = g(. . .) still has this conflict.
Similarly, if MP ⇒ ⊥ by Rule (iv) and MP ⇒ MP ′ then again MP ′ ⇒ ⊥
by Rule (iv). And also if MP ⇒ ⊥ by Rule (v) then for all MP ⇒ MP ′

we know that MP ′ ⇒ ⊥ by Rule (v). Here, one needs the observation that
sj ∈ V \ Vincr implies sjµ ∈ V \ Vincr. Next, we consider the case that
MP ⇒ > by Rule (vii) and MP ⇒ MP ′. If one used Rule (vi) to obtain MP ′

then MP ′ = (� m `0, Cµ, tµ, {siµm `i | 1 ≤ i ≤ m}, µ) and one can apply
Rule (vii) afterwards to reduce MP ′ ⇒ >. This is possible since the result-
ing matching problem ({tµm `0} ∪ {siµm `i | 1 ≤ i ≤ m}, µ) is satisfiable iff
({tm `0} ∪ {si m `i | 1 ≤ i ≤ m}, µ) is satisfiable. Otherwise, one has applied
Rule (ii) to obtain MP ′. But then again Rule (vii) is applicable on MP ′ =
(� m `0, C, t, (M\ {f(t1, . . . , tm′) m f(`′1, . . . , `

′
m′)})∪{ti m `′i | 1 ≤ i ≤ m′},

µ). The reason is again that the resulting matching problems that are con-
sidered in (vii) are equi-satisfiable as the only difference is between the one
pair f(t1, . . . , tm′) m f(`′1, . . . , `

′
m′) and the set of pairs {si m `i | 1 ≤ i ≤ m}.

We are left to analyze all situations where MP ⇒ MP1 and MP ⇒ MP2

and MP1 6= MP2. If the corresponding rules that have been applied are
(i) and (ii), or twice (ii) then two different decompositions have been per-
formed to obtain MP1 and MP2. Then MP1 ⇒ MP ′ and MP2 ⇒ MP ′

for the matching problem MP ′ where both decompositions have been per-
formed. If MP1 is obtained by one of the decomposition Rules (i) or (ii)
and MP2 is obtained by instantiating the matching problem by (vi) then
again one directly obtains a common successor MP ′ where both the de-
composition and the instantiation have been performed. This is possible as
decomposition and instantiation commute. If MP1 is the result of apply-
ing Rule (ii) and MP2 is the result of (viii) then again one can apply the
corresponding other rule to achieve the same matching problem MP ′. This
is due to the fact that decomposition yields equi-satisfiable matching prob-
lems which are checked by (viii). Finally, we have to consider the case where
MP1 = (� m `0, Cµ, tµ, {siµm `i | 1 ≤ i ≤ m}, µ) is obtained by Rule (vi)
and MP2 = (C m `0, Cµ, tµ, {si m `i | 1 ≤ i ≤ m}, µ) is the result of (viii).
Again, applying the corresponding other rule yields the same matching prob-
lem M′ = (Cµm `0, Cµµ, tµµ, {siµm `i | 1 ≤ i ≤ m}, µ). ut

12

Using the above theorem allows us to transform any initial matching prob-
lem into ⊥, >, or into a matching problem in solved form. In the first two
cases solvability is decided, but in the last case we still need a way to ex-
tract solvability. Note that these resulting matching problems are all of the
form MP = (D m x0, C, t, {s1 m x1, . . . , sm m xm}, µ) where each xi ∈ V. Note
that if all xi are different—which is always the case if one considers left-linear
TRSs—then MP is trivially solvable. One just can choose the solution (n, k, σ)
where n = k = 0 and σ = {x0/D[t], x1/s1, . . . , xm/sm}.

The only problem arises if for some i 6= j we have xi = xj . Then to choose
σ(xi) = σ(xj) one has to know that siµk = sjµ

k for some k. This so called
identity problem already occurred in [15]. However, if i = 0 then we have to
answer a more difficult question, namely whether D[t(C, µ)n]µk = sjµ

k. This
new kind of problem is introduced as extended identity problem.

Definition 6 ((Extended) identity problems). An identity problem is a
pair (s ≈ s′, µ). It is solvable iff there is some k such that sµk = s′µk.

An extended identity problem is a quadruple (D ≈ s, µ, C, t). It is solvable
iff there is a solution (n, k) such that D[t(C, µ)n]µk = sµk.

We now can transform matching problems in solved form into an equivalent
set of (extended) identity problems.

Theorem 4 (Transforming matching problems into identity problems).
Let MP = (D m x,C, t, {s1 m x1, . . . , sm m xm}, µ) be a matching problem in
solved form. It is solvable iff each of the following identity problems is solvable.

• (D ≈ si, µ, C, t) where i is the least index such that x = xi.
• (si ≈ sj , µ) for all j where i < j is the least index such that xi = xj.

Proof. First we prove the easy direction that if MP is solvable then all identity
problems are solvable. The reason is that any solution (n, k, σ) of MP satisfies
the equations D[t(C, µ)n]µk = xσ and siµ

k = xiσ. Thus, whenever x = xi we
obtain D[t(C, µ)n]µk = xσ = xiσ = siµ

k and hence, (n, k) is a solution to
(D ≈ si, µ, C, t). Similarly, whenever xi = xj then siµk = xiσ = xjσ = sjµ

k and
hence, (si ≈ sj , µ) is solvable.

For the other direction suppose that all identity problems are solvable. We
only consider the case that there is some least i′ such that x = xi′ . Hence,
there is some (n, k0) such that D[t(C, µ)n]µk0 = siµ

k0 . Moreover, for all i, j with
i < j and where j is the least index such that xi = xj we obtain some kij such
that siµkij = sjµ

kij . We define k to be the maximum of all these kij ’s and k0.
Moreover, we define σ(x) = D[t(C, µ)n]µk and σ(xi) = siµ

k. Then obviously,
(n, k, σ) is a solution for MP . The only missing part is to show that σ is well-
defined.

So, suppose there are i, j such that xi = xj , but siµk 6= sjµ
k. Note that

for fixed j there must be some least i with these properties. Hence, for this
i we know that siµ

kij = sjµ
kij . But since kij ≤ k we know that siµ

k =
siµ

kijµk−kij = sjµ
kijµk−kij = sjµ

k, a contradiction. Similarly, we obtain σ(x) =
D[t(C, µ)n]µk = D[t(C, µ)n]µk0µk−k0 = siµ

k0µk−k0 = siµ
k = σ(xi). Hence, σ is

indeed well-defined. ut

13

One might wonder why this theorem is sound as each solution of (si ≈ sj , µ)
might yield a different kij . The key point is that the maximum of all these kij ’s
is a solution for all identity problems (si ≈ sj , µ).

Note that [15] describes a decision procedure for solvability of identity prob-
lems (s ≈ s′, µ). Hence, we can already decide solvability of matching problems
(D m x,C, t,M, µ) in solved form where the variable x does not occur in M.
Nevertheless, for the general case we still need a technique to decide solvability
of extended identity problems. Such a technique is described in the next section.

Example 4. Consider the TRS {f(x)→ g(g(x, x), f(s(x))), g(y, y)→ a} with the
loop t = f(x) → g(g(x, x), f(s(x))) = t(C, µ) where µ = {x/s(x)} and C =
g(g(x, x),�). One initial matching problem (g(g(x, x),�) m f(x), Cµ, tµ, µ) is
trivially not solvable due to a symbol clash. But the other initial matching prob-
lem (g(g(x, x),�) m g(y, y), Cµ, tµ, µ) is transformed into the matching problem
MP = (� m y, Cµ, tµ, {g(x, x) m y}, µ). By Thm. 4 solvability of MP is equiva-
lent to solvability of the extended identity problem (� ≈ g(x, x), µ, Cµ, tµ).

5 Deciding Solvability of Extended Identity Problems

In this section we describe a decision procedure for solvability of extended iden-
tity problems. To this end we first introduce the notion of a trace.

Definition 7 (Traces). The trace of term t w.r.t. position p is the sequence of
function symbols and indices that are passed when moving from ε to p in t:

trace(p, t) =

{
ε if t = x or p = ε

f i trace(q, ti) if p = iq and t = f(t1, . . . , tn)

The trace of a context C with C|p = � is trace(C) = trace(p, C). The set of all
traces of a term is Traces(t) = {trace(p, t) | p ∈ Pos(t)}.

Lemma 2 (Properties of traces).

(i) trace(pq, C[t]) = trace(C)trace(q, t) if C|p = �
(ii) trace(p, t) = trace(p, tµ) if p ∈ Pos(t)

(iii) trace(pnq, t(C, µ)n) = trace(C)ntrace(q, tµn) if C|p = � and q ∈ Pos(t)
(iv) trace(p, t) ∈ Traces(t) if trace(pq, t) ∈ Traces(t)

Proof. (i) We perform induction over C. For the base case we have C = �
and thus p = ε. Hence, trace(pq, C[t]) = trace(q, t) = trace(C)trace(q, t). In
the step case we have C = f(. . . , D, . . .) for some context D with C|i =
D, D|p′ = �, and C|p = �. Hence p = ip′. The IH is trace(p′q,D[t]) =
trace(D)trace(q, t). We conclude

trace(pq, C[t]) = trace(ip′q, f(. . . , D[t], . . .))
= f i trace(p′q,D[t])
= f i trace(D)trace(q, t) (by IH)
= trace(C)trace(q, t).

14

(ii) We use induction over p. For the base case we have p = ε. Thus trace(p, t) =
ε = trace(p, tµ). In the step case we have p = iq for some position q. From
p ∈ Pos(t) we conclude that t = f(t1, . . . , tn) where q ∈ Pos(ti). The IH is
trace(q, ti) = trace(q, tiµ). We finish this part by

trace(p, t) = trace(iq, f(t1, . . . , tn))
= f i trace(q, ti)
= f i trace(q, tiµ) (by IH)
= trace(iq, f(t1µ, . . . , tnµ))
= trace(iq, f(t1, . . . , tn)µ)
= trace(p, tµ).

(iii) We use induction over n. For the base case we have n = 0 and hence
trace(pnq, t(C, µ)n) = trace(q, t) = trace(C)ntrace(q, tµn). In the step case
we have n = k + 1, C|p = �, and q ∈ Pos(t); and hence also q ∈ Pos(tµk).
By an easy inductive argument it can also be shown that this implies pkq ∈
Pos(t(C, µ)k). The IH is trace(pkq, t(C, µ)k) = trace(C)ktrace(q, tµk). Thus,

trace(C)k+1trace(q, tµk+1) = trace(C)trace(C)ktrace(q, tµk+1)

= trace(C)trace(C)ktrace(q, (tµk)µ)

= trace(C)trace(C)ktrace(q, tµk) (by (ii))

= trace(C)trace(pkq, t(C, µ)k) (by IH)

= trace(C)trace(pkq, (t(C, µ)k)µ) (by (ii))

= trace(ppkq, C[(t(C, µ)k)µ]) (by (i))

= trace(pk+1q, t(C, µ)k+1).

(iv) From trace(pq, t) ∈ Traces(t) we know that pq ∈ Pos(t) and hence also
p ∈ Pos(t). Thus trace(p, t) ∈ Traces(t) by the definition of Traces(t). ut

In the following algorithm to decide solvability of extended identity problems,
a Boolean disjunction over non-extended identity problems represents solvability
of at least one of these identity problems.

Definition 8 (Decision procedure for extended identity problems). Let
(D ≈ s, µ, C, t) be an extended identity problem where D|q = �, C|p = �.

(i) if trace(D)trace(C)∗ 6⊆
⋃
i∈N Traces(sµi) =: S then there is some m such that

trace(D)trace(C)m /∈ S; return
∨
n<m (D[t(C, µ)n] ≈ s, µ)

(ii) if trace(C)∗ 6⊆
⋃
i∈N Traces(tµi) then return “not solvable”

(iii) let x be a variable which infinitely often occurs in s|p0 , sµ1|p1 , sµ2|p2 , . . .
where each pi is that prefix of qpω which satisfies pi ∈ Pos(sµi); let i be the
minimal number such that sµi|pi

= x

15

(iv) let j be minimal such that tµj |qj
= x where qj is that prefix of pω which

satisfies qj ∈ Pos(tµj); if there is no such j then return “not solvable”
(v) return

∨
n≤max(

|pi|−|qqj |
|p| ,j)

(D[t(C, µ)n] ≈ s, µ)

We will explain the algorithm in detail within the proof of the following
theorem. Afterwards, we present algorithms to automate the non-trivial steps.

Theorem 5. The algorithm of Def. 8 is sound and terminates.

Proof. Termination of the algorithm is obvious. We only remark that the dis-
junction in Step (v) is finite, since |p| > 0 by the assumption C 6= �.

To show soundness of the algorithm first recall the definition of solvability
of (D ≈ s, µ, C, t). This extended identity problem is solvable iff there is a so-
lution (n, k) such that D[t(C, µ)n]µk = sµk. We observe two properties: first,
whenever (n, k) is a solution then (n, k + k′) is also a solution. And second, if
we fix n then the extended identity problem is solvable iff the identity problem
(D[t(C, µ)n] ≈ s, µ) is solvable. From the second observation we conclude that if
one can bound the value of n, then one can reduce solvability of extended iden-
tity problems to solvability of identity problems and is done. And computing
these bounds on n is basically all the algorithm does (in Steps (i) and (v)).

The first idea to extract a bound is to consider how the term D[t(C, µ)n]µk

grows if n is increased. Looking at Fig. 1 on page 3 or using Lemma 2 we see that
D[t(C, µ)n]µk has the trace trace(D)trace(C)n. Thus, if (n, k) is a solution then
sµk must have the same trace. Hence, if trace(D)trace(C)m /∈

⋃
i∈N Traces(sµi) =

S then n < m. This proves soundness of Step (i).
So, after Step (i) we can assume trace(D)trace(C)∗ ⊆ S. Hence, if we increase

the k of sµk then this term grows along the (infinite) trace trace(D)trace(C)ω.
Using the first observation we know that for every solution of the extended
identity problem we can increase k arbitrarily. Thus, D[t(C, µ)n]µk (which is
the same term as sµk) also has to contain longer and longer parts of the trace
trace(D)trace(C)ω when increasing k. Hence, whenever the extended identity
problem is solvable then trace(C)∗ ⊆

⋃
i∈N Traces(tµi) =: T which shows sound-

ness of Step (ii).
If the decision procedure arrives at Step (iii) then both trace(D)trace(C)∗ ⊆ S

and trace(C)∗ ⊆ T , i.e., when increasing k we see no difference of function
symbols of the terms D[t(C, µ)n]µk and sµk along the path qpω. However, there
still might be a difference between D[t(C, µ)n]µk and sµk for each finite value
k. For example, different variables may be used to increase the terms along the
path qpω as in D = �, C = f(�), t = x, s = y, µ = {x/f(x), y/f(y)}. Or one of
the terms is always a bit larger as the other one as in D = �, C = f(�), t =
f(x), s = x, µ = {x/f(x)}. To detect the situation of different variables, Step
(iv) is used, and the latter situation is done via Step (v).

As we are interested in the variables in Steps (iv) and (v), we first compute
a variable x in Step (iii) which infinitely often occurs along the path qpω in
the terms s, sµ, sµ2, This variable must exist, since µ has finite domain and
trace(D)trace(C)∗ ⊆ S. This immediately proves soundness of Step (iv) since

16

whenever D[t(C, µ)n]µk = sµk then by the first observation we can choose k high
enough such that x = sµk|pk

= D[t(C, µ)n]µk|pk
where pk ≤ qpω, i.e., pk must

be of the form qpnq′ where q′ is a prefix of pω. Thus, x = D[t(C, µ)n]µk|qpnq′ =
t(C, µ)nµk|pnq′ = tµn+k|q′ shows that Step (iv) cannot stop the algorithm with
“not solvable”.

The main idea of Step (v) is as in Step (i) to bound n but now for a different
reason. Observe that whenever we increase n then sµk stays the same whereas
D[t(C, µ)n]µk has the subterm tµn+k which depends on n. And since trace(C)∗ ⊆
T we know that with larger n also the terms tµn+k become larger. Thus, there
must be a limit where the size of sµk is reached and it is of no use to search for
larger values of n. And this limit turns out to be m := max(|pi|−|qqj |

|p| , j) which
proves soundness of Step (v). ut

Proof. We only present those details that have been omitted in the proof of
Thm. 5 on page 16.

To prove soundness of Step (ii) we can already assume trace(D)trace(C)∗ ⊆
S due to Step (i). We have to show that trace(C)∗ ⊆

⋃
i∈N Traces(tµi) =: T

whenever the extended identity problem is solvable. So, suppose there is some
m such that trace(C)m /∈ T and that D[t(C, µ)n]µk = sµk. Using the latter
equality in combination with the first observation and trace(D)trace(C)∗ ⊆ S,
we can assume k to be large enough such that

trace(D)trace(C)n+m ∈ Traces(sµk) = Traces(D[t(C, µ)n]µk).

Recall that D|q = � and C|p = �. Using Lemma 2 we derive

trace(D)trace(C)n+m = trace(qpn+m, D[t(C, µ)n]µk)

= trace(Dµk)trace(pn+m, t(C, µ)nµk)

= trace(Dµk)trace(Cµk)ntrace(pm, tµn+k)

= trace(D)trace(C)ntrace(pm, tµn+k).

Thus, trace(C)m = trace(pm, tµn+k) must hold in contradiction to the assump-
tion trace(C)m /∈ T . Hence, Step (ii) is sound.

To show that m = max(|pi|−|qqj |
|p| , j) really is a limit on n in Step (v), we

assume that there is a solution (n, k) where n > m. Note that when executing
Step (v) of the decision procedure, one has obtained minimal values i and j such
that sµi|pi = tµj |qj = x for pi < qpω and qj < pω. Due to the first observation
we may assume k ≥ i. Then D[t(C, µ)n]µk = sµk, k = i + i′ for some i′ ≥ 0,
n = j + j′ for some j′ ≥ 0, n > |pi|−|qqj |

|p| , and hence, |qpnqj | > |pi|. Since both
qpnqj and pi are prefixes of qp∞ we know that there is some q′ 6= ε such that

17

qpnqj = piq
′. Using all these equations we conclude

xµi
′
µi+j

′
= xµj

′+k

= tµj |qjµ
j′+k

= tµkµn|qj

= tµk(Cµk, µ)n|pnqj

= t(C, µ)nµk|pnqj

= D[t(C, µ)n]µk|qpnqj

= sµk|qpnqj

= sµi+i
′
|piq′

= xµi
′
|q′

which gives rise to a contradiction: the instance xµi
′
µi+j

′
of the term xµi

′
cannot

be identical to the proper subterm xµi
′ |q′ of xµi

′
. ut

Input: D, C, s, µ
Output: minimal m such that trace(D)trace(C)m /∈

S
i∈N Traces(sµi) or ∞, otherwise

(1) m := 0, E := D, t := s, S := ∅
(2) if E = f(. . . E′ . . .) and t = f(. . .) where E|i = E′ then E := E′, t := t|i, goto (2)
(3) if E = g(. . .), t = f(. . .), and g 6= f then return m
(4) if E 6= � and t = x /∈ Vincr(µ) then return m
(5) if E 6= � and t = x ∈ Vincr(µ) then t := tµ, goto (2)
(6) if E = � and t ∈ S then return ∞
(7) if E = � and t /∈ S then S := S ∪ {t}, m := m+ 1, E := C, goto (2)

Fig. 2. clash(D,C, s, µ).

For the automation one can use the algorithm of [15] for solvability of non-
extended identity problems. To check whether trace(D)trace(C)∗ ⊆ S in Step
(i) one can check whether clash(D,C, s, µ) = ∞ (cf. Fig. 2) which also delivers
the required number m in case that trace(D)trace(C)∗ 6⊆ S. Of course, clash can
also be used for the test in Step (ii) where we call clash(�, C, t, µ).

Theorem 6. The algorithm clash terminates and is sound.

Proof. Termination of the algorithm in Fig. 2 can be proven as follows. First
note that the term t will always be a subterm of s or a subterm of xµ where
x ∈ Dom(µ). Hence, it is not possible to perform Step (7) infinitely often. Thus,
after the last application of (7) the context E can only become smaller. Hence,
Step (2) cannot be performed infinitely often, too. And since every application
of Step (5) eventually triggers one of the Steps (2) or (3), termination is proven.

Soundness is proven with the help of the following invariant before Step (2).

18

There is some position p and number k such that
trace(D)trace(C)m = trace(p, sµk)trace(E) and t = sµk|p.

First note that the invariant is satisfied initially by taking p = ε and k = 0.
In the remainder of this proof (and also in the upcoming proofs), v is used

for some value v before applying a step and v for the same value after apply-
ing the step. As induction hypothesis we always have some p and k such that
trace(D)trace(C)m = trace(p, sµk)trace(E), and t = sσk|p.

For Step (2) we know that E = f(. . .), E = E|i, t = f(. . .), and t = t|i.
Hence,

trace(D)trace(C)m = trace(p, sµk)trace(E)

= trace(p, sµk) f i trace(E)

= trace(p, sµk)trace(i, t)trace(E)

= trace(p, sµk)trace(i, sσk|p)trace(E)

= trace(pi, sµk)trace(E)

= trace(p, sµk)trace(E)

if we define p = pi and k = k. Moreover, we also obtain t = t|i = sσk|p|i = sσk|p.
For Step (7) we know that E = C and E = �, i.e., trace(D)trace(C)m =

trace(p, sµk)trace(E) = trace(p, sµk). Choosing k = k and p = p yields

trace(D)trace(C)m+1 = trace(p, sµk)trace(C) = trace(p, sµk)trace(E).

Moreover, all other properties of the invariant are trivially satisfied.
In Step (5) where t = tµ we choose k = k + 1 and p = p. Then, t = tµ =

sµk|pµ = sµk+1|p = sµk|p And since p ∈ Pos(sµk) we know that trace(p, sµk) =

trace(p, sµk+1) = trace(p, sµk). Thus, trace(D)trace(C)m = trace(p, sµk)trace(E)
is immediately obtained.

Soundness of Step (3) is due to the fact that

trace(D)trace(C)m = trace(p, sµk)trace(E) = trace(p, sµk) g . . .

whereas

trace(pj, sµk) = trace(p, sµk) f . . .

for all 1 ≤ j ≤ ar(f). Thus, trace(D)trace(C)m /∈
⋃
i∈N Traces(sµi). Moreover,

if m = 0 then minimality of m is obvious. For the other case where m > 0 one
can easily see that E must be a sub-context of C. Hence, trace(D)trace(C)m =
trace(p, sµk)trace(E) implies that trace(D)trace(C)m−1 ≤ trace(p, sµk). Thus,
trace(D)trace(C)m−1 ∈ Traces(sµk) shows minimality of m.

19

Soundness of Step (4) is proven in the similar way as (3). Here, the problem
is that trace(p, sµk) is a maximal trace within

⋃
i∈N Traces(sµi) since sµk

′ |p is a
variable for all k′ ≥ k. Hence, it cannot be extended by f . . . which would be
required since trace(E) = f . . . as E = f(. . .) 6= �.

Finally, for Step (6) we obtain trace(D)trace(C)m = trace(p, sµk), sµk|p = t
as in Step (7). And moreover, since t ∈ S there must be some m′ < m, k′, and
p′ such that trace(D)trace(C)m

′
= trace(p′, sµk

′
) and sµk

′ |p′ = t. Let q, q′ such
that C|q = D|q′ = �. Thus, p = q′qm, p′ = q′qm

′
, and m = m′ + m′′ for some

m′′ > 0. Since

sµk
′
|q′qm′ = sµk

′
|p′ = t = sµk|p = sµk|q′qm′+m′′

we additionally know that k = k′ + k′′ for some k′′ > 0. We conclude

trace(D)trace(C)m
′
trace(C)m

′′
= trace(D)trace(C)m

= trace(q′qm, sµk)

= trace(q′qm
′+m′′ , sµk

′+k′′)

= trace(q′qm
′
, sµk

′+k′′)trace(qm
′′
, sµk

′+k′′ |q′qm′)

= trace(q′qm
′
, sµk

′
)trace(qm

′′
, sµk

′
|q′qm′µk′′)

= trace(D)trace(C)m
′
trace(qm

′′
, tµk

′′
)

and hence, trace(C)m
′′

= trace(qm
′′
, tµk

′′
). By instantiating µ for k′′ more times,

we can thus append an additional trace(C)m
′′

to the trace:

trace(pqm
′′
, sµk+k

′′
) = trace(p, sµk+k

′′
)trace(qm

′′
, sµk+k

′′
|q′qm)

= trace(p, sµk)trace(qm
′′
, tµk

′′
)

= trace(D)trace(C)mtrace(qm
′′
, tµk

′′
)

= trace(D)trace(C)mtrace(C)m
′′

Iterating in this way yields trace(D)trace(C)m+jm′′ ∈
⋃
i∈N Traces(sµi) =: T for

all j ∈ N. And this implies trace(D)trace(C)∗ ⊆ T since whenever a trace is in
T then also all its prefixes are contained in T . ut

For Step (iii) of the decision procedure the function var∞(s, q, p, µ) in Fig. 3
computes a triple (x, pi, i) such that x infinitely often occurs in the sequence
s|p0 , sµ|p1 , sµ2|p2 , . . . where each pk ∈ Pos(sµk) is the maximal prefix of qp∞

and i is the smallest number such that sµi|pi
= x. Note that the precondition is

satisfied, since var∞ is only called if trace(D)trace(C)∗ ⊆
⋃
i∈N Traces(sµi) which

directly implies qp∗ ⊆
⋃
i∈N Pos(sµi).

20

Preconditions: p 6= ε and qp∗ ⊆
S

j∈N Pos(sµj)
Input: s, q, p, µ
Output: (x, pi, i) such that x infinitely often occurs in terms sµj along path qpω

where i and pi < qpω are minimal such that sµi|pi = x

(1) i := 0, u := s, pstart := ε, pend := q, S := ∅
(2) if u = x and (x, , pend,) ∈ S then return (x, pstart

′, i′) where i′ is the smallest value
such that (x, pstart

′, , i′) ∈ S
(3) if u = x and (x, , pend,) /∈ S then u := uµ, S := S ∪ {(x, pstart, pend, i)}, i := i+ 1,

goto (2)
(4) (a) if pend = ε then pend := p

(b) let pend = jp′ and u = f(u1, . . . , un); u := uj , pend := p′, pstart := pstartj, goto (2)

Fig. 3. var∞(s, q, p, µ)

Theorem 7. The algorithm var∞ terminates and is sound.

Proof. Using the preconditions that qp∗ ⊆
⋃
i∈N Pos(sµi) and p 6= ε, termination

of the algorithm in Fig. 3 can be shown as follows. First note that u will always
be a subterm of s or of xµ for some x ∈ Dom(µ). Moreover, pend will always
be a suffix of q or of p. As long as u is not a variable, Step (4–b) makes sure
that at some point a variable is reached (using the preconditions). Further note
that Step (3) can only be used finitely often since µ has finite domain and since
there are only finitely many possible values for pend. Hence, eventually Step (2)
is applied and the algorithm stops.

To prove soundness we first introduce the notion of a minimal extension: the
minimal extension of position q′ w.r.t. the positions q and p is defined if q′ is a
prefix of qpω; then there is a minimal k such that q′ is a prefix of qpk and the
minimal extension of q′ is the unique position p′ such that q′p′ = qpk. Since p
and q are fixed within this proof we just speak of the minimal extension of q′

and omit the “w.r.t. q and p”.
We prove the following three invariants which are established before Step (2).

(i) pend is the minimal extension of pstart.
(ii) It holds that u = sµi|pstart .
(iii) For all j < i it holds that (x, pstart

′, pend
′, j) ∈ S if and only if sµj |pstart

′ = x
and pend

′ is the minimal extension of pstart
′.

First consider invariant (i). Clearly it is satisfied initially since pstartpend =
εq = q = qp0. As induction hypothesis we obtain some minimal k such that
pstartpend = qpk. After Steps (2) and (3) the invariant holds since neither pstart

nor pend are changed.

21

For Step (4) we first consider the case where Step (4–a) is not applied. Then
we know that pend = jp′ and u = f(u1, . . . , un). Hence

pstartpend = (pstartj)p′

= pstartpend

= qpk

Minimality of k is trivial, since pstart is even longer than pstart.
If in the execution of Step (4) case (4–a) is applied we know that pend = ε

and hence, pstart = pstartε = pstartpend = qpk by the IH. Moreover, pstartpend =
pstartjp

′ = pstartp = qpkp = qpk+1. Thus, pend is a minimal extension of pstart

where minimality follows from the fact that pstart = pstartj = qpkj is not a prefix
of qpk.

Now for invariant (ii). Clearly it is satisfied initially. As induction hypothesis
we have u = sµi|pstart .

After Steps (2) the invariant is satisfied, which can be proven directly by the
IH since neither u, nor i, nor pstart are changed.

After Step (3) we have

u = uµ

= sµi|pstartµ

= sµi+1|pstart

= sµi|pstart

using pstart = pstart.
For Step (4) we know that pstart = pstartj, u = f(u1, . . . , un), and u = uj .

Hence
u = uj = u|j = sµi|pstart |j = sµi|pstartj = sµi|pstart

using the IH.
Invariant (iii) is satisfied initially, since i = 0 and S = ∅. As induction

hypothesis we have that (x, pstart
′, pend

′, j) ∈ S iff j < i, sµj |pstart
′ = x, and pend

′

is the minimal extension of pstart
′. Hence for Steps (2) and (4) that do neither

change i nor S, it trivially holds. Which leaves Step (3).
For Step (3) using the IH we only have to consider quadruples where the

last component is i = i − 1. Hence, we are interested in prefixes p′ of qpω such
that sµi|p′ is a variable, together with their minimal extensions. Note that pend

is the minimal extension of pstart by invariant (i). From invariant (ii) and the
condition of (3) we additionally know sµi|pstart = u = x. Hence, (x, pstart, pend, i)
has to be added to S. Moreover, no other quadruples must be added to S since
pstart is the unique prefix of qpω such that the subterm of sµi at that position
is a variable. Furthermore, the variable x at that position is unique and also
the minimal extension pend of pstart is unique. This proves that invariant (iii) is
establish after Step (3) which finishes the proof of the invariants.

22

With the help of the invariants it is now possible to prove soundness. So let
Step (2) be applied. Hence, we have values x, pstart, pend, i where due to invariants
(i) and (ii) there is some k such that pstartpend = qpk and x = sµi|pstart . Moreover,
since Step (2) is applied there also must be some element (x, pstart

′′, pend, i
′′) ∈ S.

Thus, by invariant (iii) we know that there is a k′′ such that pstart
′′pend = qpk

′′

and x = sµi
′′ |pstart

′′ . Since every time something is added to S, the value of the
variable i is increased we must have i′′ < i, so let i = i′′ + j for some j > 0.

Obviously, pstart
′′ ≤ pstart since the variable pstart is only increased. But more-

over, pstart
′′ < pstart must be satisfied. Suppose pstart

′′ 6< pstart, hence pstart = pstart
′′

and thus

x = sµi|pstart = sµi
′′+j |pstart = sµi

′′+j |pstart
′′ = sµi

′′
|pstart

′′µj = xµj .

But then xµj
′

will always be a variable regardless of j′ and therefore, when
traversing some term sµj

′
along the path qpω one will reach a variable at po-

sition pstart at the latest. This is in contradiction to the requirement qp∗ ⊆⋃
j∈N Pos(sµj).

We continue to conclude from pstart
′′ < pstart, pstartpend = qpk, and pstart

′′pend =
qpk

′′
that k′′ < k, so let k = k′′ + k′ + 1. Since pend is the minimal extension of

pstart and since k > 0 we know that pend must be a suffix of p, i.e., p = pprepend

for some prefix ppre of p. Thus,

pstartpend = qpk
′′
pk
′
p = pstart

′′pendp
k′p = pstart

′′pendp
k′pprepend

and hence, by removing the final pend we obtain pstart = pstart
′′pendp

k′ppre. Thus,

xµj |pendpk′ppre
= sµi

′′
|pstart

′′µj |pendpk′ppre
= sµi|pstart

′′pendpk′ppre
= sµi|pstart = x.

Hence, each time one applies µ for j more times on variable x then at position
pendp

k′ppre one sees x again. Thus, each term sµi
′′
µjn|pstart

′′(pendpk′ppre)n is the vari-
able x. Hence, to prove that x infinitely often occurs in terms sµj

′
along path qpω

it suffices to show that all positions pstart
′′(pendp

k′ppre)n are prefixes of qpω. To this
end we show by a simple case-distinction on n that pstart

′′(pendp
k′ppre)npend ∈ qp∗.

If n = 0 then we just obtain pstartpend which is qpk
′′ ∈ qp∗. Otherwise,

pstart
′′(pendp

k′ppre)npend = pstart
′′pendp

k′ppre(pendp
k′ppre)n−1pend

= qpk
′′+k′ppre(pendp

k′ppre)n−1pend

= qpk
′′+k′(pprependp

k′)n−1pprepend

= qpk
′′+k′+(n−1)(k′+1)+1 ∈ qp∗.

Minimality of the returned values i′ and pstart
′ are then obvious by the com-

putation of i′ and pstart
′ using invariant (iii). utFinally, for Step (iv) a small adaptation of var∞ yields the last required

algorithm idx in Fig. 4 to check whether x occurs along pω in some term tµj .

Theorem 8. The algorithm idx terminates and is sound.

23

Preconditions: p 6= ε and p∗ ⊆
S

i∈N Pos(tµi)
Input: x, t, p, µ
Output: (j, q) if j is minimal such that tµj |q = x where q ∈ Pos(tµj) is prefix of pω

or ⊥, if there is no such j

(1) j := 0, u := t, pstart := ε, pend := ε, S := ∅
(2) if u = x then return (j, pstart)
(3) if u = y 6= x and (y, pend) ∈ S then return ⊥
(4) if u = y 6= x and (y, pend) /∈ S then j := j+1, S := S∪{(y, pend)}, u := uµ, goto (2)
(5) (a) if pend = ε then pend := p

(b) let pend = ip′ and u = f(u1, . . . , un); u := ui, pend := p′, pstart := pstarti, goto (2)

Fig. 4. idx(x, t, p, µ)

Proof. Using the preconditions that p∗ ⊆
⋃
i∈N Pos(tµi) and p 6= ε, termination

of the algorithm in Fig. 3 can be shown as follows. First note that u will always
be a subterm of t or of yµ for some y ∈ Dom(µ). Moreover, pend will always be
a suffix of p. As long as u is not a variable, Step (5–b) makes sure that at some
point a variable is reached (using the preconditions). Further note that Step (4)
can only be used finitely often since µ has finite domain and since there are
only finitely many possible values for pend. Hence, eventually Step (2) or Step
(3) must be applied and the algorithm stops.

To prove soundness we first prove the following invariants which are valid
before Step (2).

(i) pstartpend = pk for some k
(ii) u = tµj |pstart

(iii) (y,) ∈ S iff tµi|qi = y and i < j where qi is the unique position s.t. qi < pω

and qi ∈ Pos(tµi).

The invariants are obviously satisfied after execution of Step (1). For Steps
(2) and (3) there is nothing to prove. So, let us consider Step (4). Then invariant
(i) directly follows from the IH since neither pstart nor pend is changed. Moreover,

u = uµ = tµj |pstartµ = tµjµ|pstart = tµj |pstart

shows that invariant (ii) is satisfied where we again used the IH. Finally, by
using the IH of (iii) we only have to show that tµj−1|qj−1 = tµj |qj

= y where qj
is the maximal prefix of pω s.t. qj ∈ Pos(tµj). But this follows from IHs (i) and
(ii) since pstart < pω, pstart ∈ Pos(tµj), and y = u = tµj |pstart . Due to the latter
equality we see that pstart is maximal, and thus, pstart = qj . Hence, we obtain
y = tµj |pstart = tµj |qj

and have therefore proven all invariants for Step (4).
It remains to prove the invariants for Step (5). Since neither j nor S are

changed, there is nothing to show for invariant (iii). For invariant (i) there are
two cases. If Step (5–a) is applied then the IH yields

pstartpend = (pstarti)p′ = pstartε(ip′) = pstartpendp = pkp = pk+1

24

where the intermediate value of pend = p = ip′. Otherwise,

pstartpend = (pstarti)p′ = pstart(ip′) = pstartpend = pk

shows that invariant (i) is established. For proving invariant (iii) we know that
pstart = pstarti, u = f(u1, . . . , un), and u = ui. Hence

u = ui = u|i = tµj |pstart |i = tµj |pstarti = tµj |pstart

using the IH.
With the help of the invariants we now show that the function returns the

correct result where we start with Step (2). By invariants (i) and (ii) we know
that x = u = tµj |pstart where pstart is a prefix of pω. Thus, it remains to show
minimality of j. So, suppose there is some i < j such that x = tµi|qi

for some
position qi < pω. Then by invariant (iii) we know that there is some entry
(x,) ∈ S. This contradicts the fact that the algorithm only inserts pairs into S
where the first component is not x.

We finally have to prove soundness of Step (3). So, suppose that the algorithm
returns ⊥ for some value of j, pend, and u = y whereas there are j′ and qj′ < pω

such that tµj
′ |qj′ = x. Note that due to invariant (iii) we know j′ ≥ j and by

invariants (i) and (ii) we conclude j′ 6= j, and hence j′ > j.
Now consider a modification of the algorithm where Step (3) is missing and

where Step (4) ignores the condition (y, pend) /∈ S. Then still all three invariants
are satisfied. Hence, this modified algorithm can never terminate with ⊥ and
thus, must terminate using Step (2) immediately after the value of j has been
increased to j′. We will show that this gives rise to a contradiction. The reason
is that the values of u = y and pend have already been encountered earlier during
the run when inserting (y, pend) into S. And between this initial insertion and the
application of Step (3) of the original algorithm, one has applied a sequence of
steps which obviously does not include any application of Step (2). But since the
upcoming steps of the modified algorithm are completely determined by u and
pend, one will perform this sequence of steps over and over again. This contradicts
the fact that the modified algorithm terminates by Step (2). ut

Note that both algorithms var∞ and idx become unsound if one only considers
equal variables in the set S, but not equal positions pend.

6 Empirical Results

In the following we first give some details about the actual implementation of
our method and after that empirical results. To find loops, we use unfoldings as
defined in [12], Section 3 (without any refinements mentioned in later sections).
For efficiency reasons we restrict to non-variable positions. Further we do not
use a combination of forward and backward unfoldings by default. Our basic
method uses the following heuristic to decide the direction of the unfoldings:

25

For systems that are duplicating but whose inverse is non-duplicating we unfold
backwards. For all other systems we unfold forwards.

In contrast to finding loops for full termination, for a specific strategy S,
we cannot always stop when a loop was found (since it could turn out to be
no longer relevant when switching from full rewriting to S-rewriting). Hence we
compute a lazy list of potential loops that is checked one at a time corresponding
to S. If the checked loop is no S-loop, the next loop is requested (and lazyness
makes sure that the necessary computations are only done after the previous
element dropped out).

For context-sensitive rewriting as well as outermost rewriting we reduce the
search space by filtering the set of unfoldings after each iteration. In both cases
we remove derivations containing rewrite steps that disobey the strategy.

As already mentioned in the introduction there is the transformational ap-
proach for both, context-sensitive rewriting [3] and outermost rewriting [13,14].
In both cases a problem for finding loops, is that the length of an existing loop
may increase dramatically, or even worse, a loop is transformed into a non-
looping infinite derivation.

To evaluate our implementation in TTT2 we used all 291 (214) outermost
examples as well as all 109 (15) context-sensitive examples of version 5.0.2 of the
Termination Problems Data Base.4 Here, in brackets the number of those TRSs
is given, where outermost resp. context-sensitive termination has not already
been proven. The results on these possibly non-terminating TRSs are as follows:

outermost TRSs CSRs
AProVE TrafO TTT2 TTT2

NO score 37 30 191 4
avg. time (msec) 6689 6772 340 38

For outermost rewriting we compare to the sum of non-termination proofs
(NO score) achieved by AProVE and TrafO5 at the January 2009 termination
competition.46 The success of our technique is clearly visible: TTT2 was able
to disprove termination of nearly 90 % of all possible non-terminating TRSs,
including all examples that could be handled by AProVE and TrafO (which use
the transformational approaches of [14] and [13] respectively).

For context-sensitive rewriting we just give the NOs of TTT2 since we are not
aware of any other tool that has disproven context-sensitive termination of a
single TRS. Here, our implementation could at least solve one quarter of the
potentially non-terminating TRSs.

The details of our experiments are available at http://cl-informatik.
uibk.ac.at/~griff/experiments/lus.php.

4 http://termcomp.uibk.ac.at
5 http://www.win.tue.nl/~mraffels/trafo.html
6 The numbers for TTT2 differ from those of the competition since the competition

version did not feature the reduction of the search space which is described above.

26

http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php
http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php
http://termcomp.uibk.ac.at
http://www.win.tue.nl/~mraffels/trafo.html

7 Conclusion and Future Work

To prove non-termination of rewriting under strategy S, we first extended the
notion of a loop to an S-loop. An S-loop is an S-reduction with a strong regu-
larity which admits the same infinite reduction as an ordinary loop does for full
rewriting. Afterwards, we developed two novel procedures to decide whether a
given loop is a context-sensitive loop or an outermost loop. It is easy to see that
the conjunction of both procedures decides context-sensitive outermost loops.

Since [6] only describes a way to prove termination of Haskell programs, it
might be an interesting future work to combine our technique for outermost
loops with [6] to also disprove termination of Haskell programs.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. J. Endrullis. Jambox. Available at http://joerg.endrullis.de.
3. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive

rewrite systems. Journal of Functional Programming, 14(4):379–427, 2004.
4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-

tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, pages 216–231,
2005.

5. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286,
2006.

6. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termina-
tion analysis for Haskell: From term rewriting to programming languages. In Proc.
RTA ’06, LNCS 4098, pages 297–312, 2006.

7. J. Guttag, D. Kapur, and D. Musser. On proving uniform termination and re-
stricted termination of rewriting systems. SIAM J. Computation, 12:189–214, 1983.

8. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. RTA ’09, LNCS, 2009.

9. W. Kurth. Termination und Konfluenz von Semi-Thue-Systemen mit nur einer
Regel. PhD thesis, Technische Universität Clausthal, Germany, 1990.

10. D. Lankford and D. Musser. A finite termination criterion. Unpublished Draft.
USC Information Sciences Institute, 1978.

11. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1:1–61, 1998.

12. Étienne Payet. Loop detection in term rewriting using the eliminating unfoldings.
Theoretical Computer Science, 403(2-3):307–327, 2008.

13. M. Raffelsieper and H. Zantema. A transformational approach to prove outermost
termination automatically. In Proc. WRS ’08, ENTCS 237, pages 3–21, 2009.

14. R. Thiemann. From outermost termination to innermost termination. In Proc.
SOFSEM ’09, LNCS 5404, pages 533–545, 2009.

15. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In
Proc. RTA ’08, LNCS 5117, pages 366–380, 2008.

16. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc.
RTA ’04, LNCS 3091, pages 85–94, 2004.

17. H. Zantema. Termination of string rewriting proved automatically. Journal of
Automated Reasoning, 34:105–139, 2005.

27

http://joerg.endrullis.de

	Loops under Strategies
	René Thiemann and Christian Sternagel

