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Abstract. Monotone algebras are frequently used to generate reduction
orders in automated termination and complexity proofs. To be able to
certify these proofs, we formalized several kinds of interpretations in the
proof assistant Isabelle/HOL. We report on our integration of matrix
interpretations, arctic interpretations, and nonlinear polynomial inter-
pretations over various domains, including the reals.

1 Introduction

Since the first termination competition1 in 2004 it is of great interest whether a
proof – that has been automatically generated by a termination or complexity
tool – is indeed correct. The increasing complexity of generated proofs makes cer-
tification (i.e., checking correctness) more and more tedious for humans. Hence
the interest in automated certification of termination and complexity proofs.
This led to the general approach of using proof assistants for certification.

In this paper we present one of the key ingredients of our certifier, CeTA [34],
namely the machinery for checking order constraints for (weakly) monotone al-
gebras in the form of polynomial, matrix, and arctic interpretations. These con-
straints frequently arise in both termination and complexity proofs. For example,
during the full run on the termination problem database in 2013, 3759 certifi-
able proofs have been generated. In 3170 of these proofs interpretations are used.
Hence, they would not be certifiable by CeTA without the results of this paper.

In order to properly certify such proofs – and not just implement an inde-
pendent but untrusted machinery for constraint checking – we take a two-phase
approach. In the first phase, we prove general properties in Isabelle/HOL [25].
For example, we show that indeed all of the above interpretations are sound,
i.e., they may be used for termination proofs.

In the second phase, we have to check concrete applications of interpretations
on a concrete set of constraints. For example, at this point we need to ensure
monotonicity of a given polynomial or to validate the growth rate of some ma-
trix interpretation. To this end, we develop appropriate algorithms, prove them
correct within Isabelle/HOL, and then invoke Isabelle’s code generator [11] to ob-
tain our certifier CeTA. The consequences of applying code generation are twofold:
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while we obtain a high execution speed, there is the additional requirement that
all the algorithms that are used for certification have to be fully executable (in
the sense of functional programming).

Contribution and Overview. After giving some preliminaries in Section 2, we
present our main contributions. In Section 3 we start with a generic formal-
ization of polynomial and matrix interpretations that may be instantiated by
several carriers like the naturals, the rationals, and the reals; we also support
recent monotonicity criteria that are not present in other certifiers. Our inte-
gration of arctic interpretations (Section 4) reveals how the theory on arctic
naturals and arctic integers can be unified. Moreover, it shows how to support
arctic interpretations which are monotone in presence of a fresh binary symbol,
a novelty. We further report on how we achieve executability for an interesting
subset of the real numbers (Section 5). At this point, we also have to develop
algorithms for computing n-th roots of numbers in order to efficiently factor
numbers. Afterwards, we present our work on certifying complexity proofs (Sec-
tion 6): as far as we know CeTA is the first certifier which supports complexity
proofs at all. We finally conclude in Section 7.

All of the proofs that are presented (or omitted) in the following have been
made available in the archive of formal proofs [29,30,33] or in IsaFoR,2 an Is-
abelle/HOL formalization of rewriting. We further provide example termination
and complexity proofs3 which show applications of the various kinds of interpre-
tations and can all be certified by CeTA.

2 Preliminaries

We assume familiarity with term rewriting (see, e.g., Baader and Nipkow [1]) but
briefly recall notions that are used in the following. Terms are defined inductively:
a term is either a variable x or is constructed by applying a function symbol f
from the signature F to a list of argument terms f(t1, . . . , tn).

A pair of terms (s, t) is sometimes considered a (rewrite) rule, then we write
s → t. A set R of rules is called a term rewrite system (TRS for short). In
contrast to many authors, we do not assume any a priori restrictions on rules
of TRSs (the most frequent ones being that the left-hand side of a rule is not a
variable and that rules do not introduce fresh variables on their right-hand side;
both or either of the previous conditions are sometimes referred to as variable
condition in the literature). Whenever there are restrictions, we mention them
explicitly. TRSs induce a rewrite relation by closing their rules under contexts
and substitutions. More precisely the rewrite relation of R, denoted by →R, is
defined inductively by s →R t whenever there are a rule ` → r ∈ R, a context
C, and a substitution σ such that s = C[`σ] and t = C[rσ].

2 http://cl-informatik.uibk.ac.at/software/ceta
3 http://cl-informatik.uibk.ac.at/software/ceta/experiments/interpretations
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A semiring is a structure (A,+, ·, 0, 1) such that (A,+, 0) is a commutative
monoid with neutral element 0 and (A, ·, 1) is a monoid with neutral element 1.
Moreover, · distributes over +, 0 6= 1, and 0 · x = x · 0 = 0 for all x ∈ A.

An (F-)algebra A is a carrier set A equipped with an interpretation func-
tion fA : An → A for every n-ary f ∈ F . We call an algebra A monotone
w.r.t. a binary relation > when all interpretation functions are monotone, i.e.,
fA(. . . , a, . . .) > fA(. . . , b, . . .) whenever a > b. A well-founded monotone alge-
bra is a monotone algebra (A, >) such that > is well-founded. For any algebra
A, terms can be interpreted w.r.t. an assignment α, written [t]α. Then, s >A t
denotes [s]α > [t]α for all α.

A binary relation → is terminating (or well-founded) if there are no infinite
derivations a1 → a2 → a3 → · · · . Given two binary relations →α, →β we write
→α/→β to abbreviate →∗β · →α · →∗β , i.e., the rewrite relation of →α relative to
→β . Termination of→α/→β is also called relative termination of→α w.r.t.→β .

We call a pair of two orders on terms (�,�) a reduction pair whenever it
satisfies the following requirements: � is well-founded, � and � are compatible
(i.e., � · � ⊆ �) and stable (i.e., closed under substitutions), and � is monotone
(i.e., closed under contexts). If in addition � is monotone, we call (�,�) a mono-
tone reduction pair. Reduction pairs are employed for termination proofs inside
the dependency pair framework, monotone reduction pairs for direct termination
and complexity proofs.

3 Polynomial and Matrix Interpretations

Two widely used approaches to synthesize reduction pairs are polynomial inter-
pretations (Lankford [18]) and matrix interpretations (Endrullis et al. [8]).

To support polynomial interpretations within CeTA, we formalized nonlin-
ear multivariate polynomials [30] within Isabelle/HOL. Since similar tasks have
already been conducted CoLoR [3] and Coccinelle [6] (using the approach of
CiME [7]), we just shortly mention two distinguishing features of our work.

A formalization of polynomial orders has already been described by Blan-
qui and Koprowski [3]. Whereas their formalization fixes the carrier to N, our
polynomial orders are parametric in the carrier, cf. theory Poly Order. Hence,
we can treat polynomial orders over N, Q, and R within the same framework
by just instantiating the carrier to the respective ordered semiring. Here, for
both Q and R we use δ-orders as the strict order to achieve well-foundedness –
as described by Lucas [20]: x >δ y := x − y ≥ δ ∧ y ≥ 0 where δ is some fixed
positive number. Notice that each carrier may have its own specialties, e.g., x2 is
monotone over N, but not monotone for δ-orders if δ < 1. This required the ad-
dition of properties in the parametric setting. For example, we added a Boolean
parameter power-mono which describes whether polynomials like xk with k > 1
are strictly monotone; it is always satisfied for N but demands δ ≥ 1 for Q and
R.

As far as we know we provide the first formalization of the improved mono-
tonicity criteria for polynomials over N of Neurauter et al. [24] that can ensure
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monotonicity of polynomials like 2x2 − x which are not monotone over Q and
R. We made them available in the archive of formal proofs [30], theory NZM.

To support matrix interpretations, we basically follow the ideas of Courtieu
et al. [7], i.e., we integrate matrix interpretations as linear polynomial interpre-
tations where the carrier consists of matrices. To this end, we first developed
a list-based and executable formalization of matrices [29] within Isabelle/HOL
and afterwards connected it in the theory Linear Poly Order to obtain matrix
interpretations in IsaFoR. Again, one of the distinguishing features of our work
is the parametric carrier – for example in [7] the carrier is fixed to N. Note that
the demand for other carriers like Q and R was clearly shown by Neurauter and
Middeldorp [23]: matrix interpretations over R are strictly more powerful than
those over Q which in turn are strictly more powerful than those over N.

Having developed the abstract results on these interpretations, it was easy to
integrate executable criteria within CeTA that check applications of polynomial or
matrix interpretations within concrete termination proofs – if the carrier consists
of (matrices over) rational or natural numbers. However, more work had to be
done for the reals. Before we discuss these problems in Section 5, we consider
another kind of semiring in the next section.

4 Arctic Interpretations

The semirings (AN,max,+,−∞, 0) and (AZ,max,+,−∞, 0) are called arctic
semiring and arctic semiring below zero, respectively. Here, AA denotes the
extension of A by the element −∞, i.e., A ∪ {−∞}, max{x,−∞} = x, and
x + −∞ = −∞ + x = −∞ for all x. Waldmann and Koprowski [16] first used
these semirings in the well-founded monotone algebra setting.

In the following we unify and extend (see Sternagel and Thiemann [28] for
an earlier account) the arctic interpretations introduced by Waldmann and Ko-
prowski. To do so, we first introduce the notion of an ordered arctic semiring.

Definition 1. Let (A,+, ·, 0, 1) be a semiring. Then an ordered arctic semiring,
denoted by (A,+, ·, 0, 1, >,≥, pos), satisfies the additional requirements:

– ≥ is reflexive and transitive; > · ≥ ⊆ > and ≥ · > ⊆ >
– 1 ≥ 0; ¬pos(0); pos(1); x > 0; x ≥ 0; and x = 0 whenever 0 > x
– + is left-monotone w.r.t. ≥, i.e., x+ z ≥ y + z whenever x ≥ y
– + is monotone w.r.t. >, i.e., w + x > y + z whenever w > y and x > z
– · is left- and right-monotone w.r.t. ≥ and left-monotone w.r.t. >
– pos(x+ y) whenever pos(x); and pos(x · y) whenever pos(x) and pos(y)
– {(x, y) | x > y ∧ pos(y)} is well-founded

Interpretation into an ordered arctic semiring yields a reduction pair.

Theorem 2. Let A be an algebra over an ordered arctic semiring with interpre-
tations fA(x1, . . . , xn) = f0 + f1 · x1 + · · · + fn · xn such that pos(fi) for some
0 ≤ i ≤ n. Then (�A,�A) is a reduction pair.
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Examples for ordered arctic semirings are given in the following:

Example 3. The arctic semiring, the arctic semiring below zero, and the arctic
rational semiring (AQ,max,+,−∞, 0) are ordered arctic semirings for x > y :=
(y = −∞ ∨ (x 6= −∞ ∧ x >A y)) (where >A is >N and >Z for naturals and
integers, respectively; and x >δ y for some δ > 0 for the rationals), x ≥ y :=
(y = −∞∨ (x 6= −∞∧ x ≥N/Z/Q y)), and pos(x) := (x 6= −∞∧ x ≥N/Z/Q 0).

Note that the ordered arctic semiring over AQ together with Theorem 2,
unifies and extends Theorems 12 and 14 of Waldmann and Koprowski [16]. The
main advantage of our approach is that we only require interpretations to have
at least one positive fi (instead of always requiring the constant part f0 to be
positive). Although our result is slightly more general, we could completely reuse
the original proof structure of [16] to formalize Theorem 2.

Waldmann and Koprowski also showed that for string rewriting (i.e, terms
over a signature of function symbols that are at most unary) arctic interpreta-
tions are monotone and thus may be used for rule removal on standard termina-
tion problems. In order to apply this technique in the dependency pair framework
together with usable rules we also need CE -compatibility, i.e., the rules of the
TRS CE = {c(x, y) → x, c(x, y) → y} must be oriented where c is some fresh
symbol. But by considering CE we leave the domain of string rewriting.

Nevertheless, we want to obtain CE -compatibility for monotone arctic inter-
pretations. As an application consider the technique of Giesl et al. [9, Thm. 28]
which allows us to remove all non-usable rules and all strictly oriented rules from
a dependency pair problem, provided that the dependency pairs and rules are
weakly oriented, the rules in CE are strictly oriented, and � is monotone. To this
end we first need signature extensions for relative termination (see also [31]).

Theorem 4 (Signature Extensions Preserve Relative Termination). Let
R and S be TRSs over a common signature F . Moreover, suppose that no right-
hand side of a rule in S introduces fresh variables. Then →R/→S terminates
for terms over arbitrary extensions of F , whenever it does so for terms over F .

The above statement is not true when S violates the variable condition.

Example 5. Consider R = {a → b} relative to S = {c → x}. Over the common
signature F = {a/0, b/0, c/0} we have relative termination. However, extending
F by {f/2} yields the infinite derivation where C = f(b,�).

s = f(a, c)→R C[c]→∗S C[s]→R C[C[c]]→∗S · · ·

Finally, we have to show that for monotone � we get CE -compatibility.

Lemma 6. Consider a reduction pair (�,�) and TRSs R, S over a common
signature of at most unary function symbols F such that no rule of S introduces
fresh variables. Moreover, let R ⊆ � and S ⊆ �. Then monotonicity of �
implies termination of →CE∪R/→CE∪S .
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Proof. By Theorem 4 together with monotonicity of �, we obtain termination
of →R/→S for arbitrary extensions of F . Consider a lexicographic path order
where all symbols are equal in precedence in combination with an argument
filter that projects unary function symbols to their argument and keeps all other
symbols unchanged. Then, this combination yields a monotone reduction pair
(>,≥). Moreover, R and S are compatible with ≥ (since all terms are collapsed
to a single variable or constant). Since also CE ⊆ > we obtain relative termination
of →CE w.r.t. →R∪S and thus termination of →CE∪R/→CE∪S . ut

While the above lemma does not quite yield CE -compatibility, it can be used
to show that from every reduction pair (�,�) that satisfies the above condi-
tions we obtain a corresponding CE -compatible reduction pair (�′,�′). More
specifically, take �′ = (→CE∪R/→CE∪S)+ and �′ =→∗CE∪S .

Now if we start from a monotone reduction pair (�,�), and a set of rules
P over an at most unary signature and take R = P ∩ � and S = P ∩ �, then
the resulting reduction pair (�′,�′) is CE -compatible, monotone, and orients all
rules of P that were also oriented by the original reduction pair.

5 Interpretations over the Reals

Whereas all basic operations on Q are executable, this is not the case for R. To
solve this problem, automated tools only work on a subset of the real numbers
[21,36,37]. For example, in the setting of Zankl and Middeldorp [36] numbers
may be chosen from Q[

√
2], the field extension of Q by

√
2. All these numbers

are of the form p+ q
√

2 where p and q range over Q. In [37], Zankl et al. allow
even more generic forms, e.g., where

√
2 may be replaced by

√
b for a fixed

natural number b with
√
b /∈ Q, i.e., we consider Q[

√
b].

Fixing the base b, all numbers in Q[
√
b] can be represented by pairs (p, q)

(encoding p+ q
√
b), where all ordered semiring operations are again executable.

For example, (p1, q1) ·(p2, q2) := (p1p2+bq1q2, p1q2+p2q1) and (p, q) > 0 := (p ≥
0 ∧ q > 0) ∨ (p > 0 ∧ q ≥ 0) ∨ (p ≥ 0 ∧ q < 0 ∧ p2 > bq2) ∨ (p ≤ 0 ∧ q > 0 ∧ p2 <
bq2) where the definition of (p, q) > 0 can be used to decide the comparison
p1 + q1

√
b > p2 + q2

√
b by choosing p = p1 − p2 and q = q1 − q2 [37, Def. 10].

A larger subset of the real numbers, namely the algebraic real numbers,
has been formalized by Cohen [5]. However, since this formalization has been
conducted using Coq, it cannot easily be integrated into our Isabelle/HOL de-
velopment. Moreover, as far as we know, all real numbers which are currently
generated by automated termination tools are contained in Q[

√
b] for some fixed

b which can be chosen in the configuration of the tool. Hence, for certification it
suffices to formalize this subset of the real numbers. Although a full integration
of real algebraic numbers in Isabelle might be welcome, we pursued the more
lightweight approach which was sufficient to support Q[

√
b].

We consider some alternatives for representing Q[
√
b] in Isabelle/HOL. The

first alternative is to fix some b and create a new type pair b consisting of pairs
of rational numbers. Then addition, multiplication, comparison, etc. are defined
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as above, and we have to prove that this new type forms an ordered semiring
(one that is completely independent from the real numbers). The disadvantage
of this approach is that for each b we have to define a new type. As we can only
define finitely many types within a finite Isabelle formalization, our certifier will
be limited to a fixed number of choices for b.

For higher flexibility, we can alternatively create a type triples that addition-
ally takes the parameter b as third component. The problem in this approach
is to give a total definition for all operations, e.g., what should be the result of
(1, 1, 2) ·(1, 1, 3), i.e., how can we represent the number (1+1 ·

√
2) ·(1+1 ·

√
3) =

1 +
√

2 +
√

3 +
√

6 as a triple p+ q
√
b for suitable values of p, q ∈ Q and b ∈ N.

A third possibility would be to not create a type at all, but use locales [2]
and explicit domains. We do not go into the details here, but just mention that
this approach is currently not applicable, since other parts of the formalization –
like the theories on nonlinear polynomial interpretations – utilize the type class
for semirings, and do not support the more flexible locales.

Our final solution is to not define a new type to form the semirings Q[
√
b],

but to perform data refinement [10] instead, i.e., provide an implementation
type for the reals. This has the following advantages: For a start, the Isabelle
distribution already contains the result that R is an ordered semiring. Thus all
the properties of the reals can be used when formalizing monotone algebras over
the reals. Moreover, our implementation can be partial, e.g., we do not have to
support the multiplication of arbitrary numbers like (1 +

√
2) · (1 +

√
3). Finally,

as soon as a better implementation is available, we can just replace the current
one by the new one, and do not have to change the theories which show that the
reals can be used to generate monotone algebras.

5.1 A first implementation of R via triples (p, q, b)

In the following we implement the reals by the type mini-alg containing all triples
(p, q, b) ∈ Q×Q× N that satisfy the invariant q = 0 ∨

√
b /∈ Q. Such a quotient

type is easily created and accessed via the lifting and transfer package [15].
For this data refinement, we first have to declare how mini-alg is mapped

into the reals. This is done by a function real-of : mini-alg→ R, defined as:

real-of (p, q, b) = p+ q
√
b

Next, we tell the code generator that real-of should be seen as the constructor
for real numbers, i.e., from now on we consider the reals as being defined by
the datatype definition datatype R = real-of mini-alg where real-of is the unique
constructor which takes a triple as input. Afterwards, the desired operations on
reals must be implemented via lemmas on this new “constructor” real-of . E.g.,
the unary minus operation is implemented by proving the following lemma:

−real-of (p, q, b) = real-of (−p,−q, b)

Often, we only implement partial operations, e.g., for some binary operations we
require triples with compatible bases. For example, addition is defined by the
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lemma

real-of (p1, q1, b1) + real-of (p2, q2, b2) =

if compatible (p1, q1, b1) (p2, q2, b2)

then (if q1 = 0 then real-of (p1 + p2, q2, b2) else real-of (p1 + p2, q1 + q2, b1))

else abort (λ . real-of (p1, q1, b1) + real-of (p2, q2, b2)) ()

where compatible (p1, q1, b1) (p1, q2, b2) is defined as q1 = 0 ∨ q2 = 0 ∨ b1 = b2,
and abort f x = f x. That is, two triples are compatible iff one of them encodes
a rational number, or the bases are identical. The equation for abort allows us to
prove the above lemma, but is not used to generate code, since this would lead
to nontermination in case of incompatible triples. Instead, the code generator
issues an appropriate error in the target language at this point. This trick was
already described by Lochbihler [19].

Above we defined several operations on reals like addition, multiplication,
greater-than, and a mapping from Q into R. Some of the binary operations are
partial and require compatible triples as input. However, the above mentioned
operations do not make use of the invariant of mini-alg . The invariant is required
for operations like equality and inverse. For example, for the multiplicative in-
verse of a triple (p, q, b) we use the triple (p/d,−(q/d), b) where the divisor is
d = p2 − bq2. To ensure that d 6= 0 whenever real-of (p, q, b) 6= 0 we need the
invariant that

√
b is irrational. Similarly, also for equality – which is defined as

p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2) for compatible triples (p1, q1, b1) and
(p2, q2, b2) – we require the invariant that

√
b is irrational. Otherwise, the above

implementation of equality would return false for the inputs (0, 1, 4) and (2, 0, 4),
but real-of (0, 1, 4) = 0 + 1 ·

√
4 = 2 = 2 + 0 ·

√
4 = real-of (2, 0, 4).

So far, we defined all required field operations and comparisons, each of which
is implemented by a constant number of operations on rational numbers. How-
ever, we are lacking a way to really construct irrational numbers. To this end
we provide a partial implementation of the square root function that is only de-
fined for input triples encoding rational numbers. The definition for nonnegative
rational numbers with numerator n and denominator d is

sqrt (
n

d
, 0, b) = if

√
nd ∈ Z then (

√
nd

d
, 0, 0) else (0,

1

d
, nd) (1)

where the case-analysis is solely performed to satisfy the invariant of triples of
type mini-alg . In (1) we make use of a square root function on integers which
can decide for a given integer i whether

√
i ∈ Z or not. If so, it also returns

the resulting number, cf. Thiemann [32, Thm. 14]. We modified this square root
function such that it can additionally compute b

√
ic and d

√
ie. In this way, we

are able to implement b·c and d·e on triples of type mini-alg.
In total, our implementation provides the following operations on reals: +,

−, ×, ·−1, >, ≥, =, b·c, d·e, and
√
·. Only the last three require the computation

of square roots. All binary operations succeed if their operands are compatible
(which is always the case if a fixed base b is chosen), and only the last operation
is restricted to rational numbers as input. This implementation supports all
operations that we require for monotone algebras except for one.
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5.2 A second implementation of R via triples (p, q, b)

First note that CeTA not only accepts or rejects a termination proof, but also
provides a detailed error message in case of rejection. To this end, we have to print
numbers occurring in interpretations, i.e., we need a function show : R→ string.

An easy solution might be to postulate such a function and provide an imple-
mentation via the axiom: show (real-of (p, q, b)) = the string “p + q * sqrt(b)”.

One might argue that adding this axiom is not really relevant, as it is only
used for error messages. However, adding it immediately introduces an inconsis-
tency in the logic:

“4 + 1 * sqrt(18)” = show (real-of (4, 1, 18)) = show (4 + 1 ·
√

18)

= show (4 + 3 ·
√

2) = show (real-of (4, 3, 2)) = “4 + 3 * sqrt(2)”

That is, the wrong fact that the first and the last string are identical is derivable.
As a consequence, we want to avoid this inconsistent axiom which stems from

the fact that real-of is not injective, e.g., the number
√

18 can be represented
by both (0, 3, 2) and (0, 1, 18). To this end, we define a new type of triples,
mini-alg-unique. It is similar to mini-alg but adds another invariant: every triple
(p, q, b) must satisfy q = 0∧b = 0∨q 6= 0∧prime-product b, where prime-product b
demands that b is a product of distinct primes. For example, 2 and 6 = 2 · 3 are
prime products, but 18 = 2 · 3 · 3 is not, since 3 occurs twice.

In the remainder of this section we assume that we perform data refinement
of R by implementing it via triples of type mini-alg-unique. While most of the
algorithms work as for mini-alg, we list the most important differences.

The main advantage of mini-alg-unique is that real-of is now injective. As a
result, equality of reals can easily be implemented as equality of triples without
checking for compatibility. For example, since (1, 2, 3) 6= (2, 2, 2) we conclude
1 + 2 ·

√
3 6= 2 + 2 ·

√
2. This also allows us to define a total function for com-

parisons which is implemented via b·c: if the numbers are equal, then the re-
sult is determined, and otherwise we multiply both numbers iteratively by 1024
until there is a difference after applying b·c. For example, the algorithm shows
1+2·

√
3 < 2+2·

√
2 since b1024·(1+2·

√
3)c = 4571 < 4944 = b1024·(2+2·

√
2)c.

As real-of is injective, it is now also possible to define show on the reals, and
later on implement it for triples of type mini-alg-unique. To this end, assume
we have already defined a function mau-show which pretty prints triples t as
strings. The specification of show in the logic is

show x = (if ∃t. x= real-of t then mau-show (THE t. x= real-of t) else “nothing”)

while its implementation is given by the lemma: show (real-of t) = mau-show t,
where THE t. P t results in the unique t satisfying P t, if such a t exists, and
is undefined, otherwise. In the definition of show, existence of t is established
before calling mau-show and uniqueness follows from the injectivity of real-of.

The last algorithm that requires an adaptation is the implementation of sqrt.
The definition from (1) is not suitable any more, as

√
nd /∈ Z does not guarantee

nd to be a prime product. Therefore, a preprocessing is required which factors
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every natural number m (like nd) into m = s2 · p where s, p ∈ N and either p is
a prime product or p is 1. In the latter case,

√
m is the natural number s, and in

the former case the triple (0, s, p) represents the number
√
m and also satisfies

the invariant of mini-alg-unique.
For the factorization algorithm, we do not fully decompose m into prime

factors – which would roughly require
√
m iterations – but use the following

algorithm, requiring only 3
√
m iterations. First check whether

√
m is irrational.

If not, then we are done by returning (
√
m, 1). Otherwise, we check whether m

has a factor between 2 and b 3
√
mc. If we detect such a factor p, then we store p,

and continue to search factors of m/p with a new upper bound of b 3
√
m/pc. If

there is no such factor, then we conclude that m is a prime product as follows:
assume that m is not a prime product, i.e., m = p · p · q for some prime p and
natural number q. Then q 6= 1 since otherwise

√
m = p ∈ N is not irrational.

Hence, m has both p and q as factors. But since we tested that m does not divide
any of the numbers up to b 3

√
mc, we know that both p and q are larger than

3
√
m. Hence, m = p · p · q > ( 3

√
m)3 = m, a contradiction.

Note that, for implementing the factorization algorithm, we not only need the
square root algorithm of [32, Sect. 6], but also require an algorithm to compute
b 3
√
mc. To this end, we extended the work of [32] to arbitrary n-th roots, i.e.,

we can check n
√
p ∈ Q and compute b n

√
pc for every n ∈ N and p ∈ Q. Here,

Porter’s [26] formalization of Cauchy’s mean theorem was extremely helpful to
show soundness of our n-th root algorithm. The algorithm itself uses a variant
of Newton iteration to compute precise roots, which uses integer divisions where
one usually works on rational or floating point numbers.

5.3 Summary

We performed data refinement to implement the subset Q[
√
b] of the reals as

triples (p, q, b) representing p+ q ·
√
b. The first implementation has the advan-

tage of being more efficient, but several operations are only supported partially,
where in binary operations the same basis

√
b must be present. The second im-

plementation is less partial and even allows to define a show function on reals,
at the cost of having to perform a factorization of prime products, which we
implemented via an algorithm with 3

√
n iterations. To this end, we also formal-

ized a generic n-th root algorithm. This part of the formalization has been made
available in the archive of formal proofs [33].

Using this formalization, we are able to certify each application of monotone
algebras over the reals within termination proofs generated by TTT2 [17].

6 Complexity Proofs

Monotone algebras are not only a useful tool for termination analysis, but also
for complexity analysis. In the following, we first introduce basic notions regard-
ing complexity – including a modularity result of Zankl and Korp [35] – and
afterwards provide details on complexity results for matrix interpretations and
polynomial interpretations which have been integrated into IsaFoR and CeTA.

10



6.1 Complexity and modularity

To measure the complexity of a TRS R, we use the following notions and ideas
of [4,12,14]. The derivation height of a term w.r.t. some binary relation → on
terms is defined as dh→(t) = max{n | ∃s. t →n s} and measures the height of
the derivation tree of t. The derivational complexity of → is given by dc→(n) =
max{dh→(t) | |t| ≤ n}. That is, the maximal length of derivations with starting
terms of size n is bounded by dc→(n). While in dc→(n) all starting terms are
considered, allowing for terms like doublen(1), there is the alternative notion
of runtime complexity, where starting terms are restricted to basic terms. In
detail, rc→,C(n) = max{dh→(t) | |t| ≤ n, t ∈ BC} where BC denotes the set of
basic terms, i.e., terms of the form f(c1, . . . , cn), with all the ci only built over
symbols from C. Here C typically is the set of constructors of the TRS of interest.

Note that all of dh→, dc→, and rc→,C are only well-defined if max is applied
to a finite set. However, this is not necessarily the case, as on the one hand →
may be infinitely branching or nonterminating, and on the other hand, there
might be infinitely many terms of size n if the signature is infinite. In order to
avoid having to worry about these side-conditions within our formalization, we
instead define the following function

deriv-bound-rel→ (SE , f) = (∀n t. (t ∈ SE (n) =⇒ @s. t→f(n)+1 s))

checking whether a given function f is an upper bound for the complexity. Here,
SE describes the set of starting elements depending on a natural number n, usu-
ally limiting the size of elements. We can easily model runtime and derivational
complexity: deriv-bound-rel→ (λn. {t | |t| ≤ n}, f) and deriv-bound-rel→ (λn. {t |
|t| ≤ n, t ∈ BC}, f) express that dc→ and rc→,C are bounded by f , respectively.

The above definitions are contained in the theory Complexity, which also
contains the first formalization of the modularity result by Zankl and Korp [35,
Thm. 4.4]. Here, we stay in an abstract setting where →1, →2, and →3 are
arbitrary binary relations (not necessarily ranging over terms), cf. the theorem
deriv-bound-relto-class-union that is part of IsaFoR.

Theorem 7. Let →i be binary relations (with i ∈ {1, 2, 3}). Moreover, let
deriv-bound-rel→1/(→2∪→3) (SE , g1) and deriv-bound-rel→2/(→1∪→3) (SE , g2) for
two functions g1, g2 ∈ O(f). Then there is a function g ∈ O(f) such that
deriv-bound-rel (→1∪→2)/→3

(SE , g).

6.2 Complexity via monotone interpretations

In order to ensure complexity bounds via some monotone algebra (A, >) with
carrier A, one first needs a function of type A→ N which bounds the number of
decreases. To be more precise, in the generic setting for semirings within IsaFoR
we require a function bound such that for each a ∈ A there are no a1, a2, . . .
such that a > a1 > . . . > abound(a)+1, and moreover bound has to grow linearly
in its argument, cf. Complexity Carrier for further details.
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We defined various valid bound functions for the different kind of carriers. For
example, we have chosen boundN(n) = n for the naturals, boundδ(x) = dx/δe for
δ-orders on the rationals and reals, and boundmat(A)(m) = boundA(||m||) for
matrices over carrier A, where || · || denotes the linear norm of a matrix.

Obviously, whenever each reduction step t → s within a derivation corre-
sponds to a decrease [t]α > [s]α then dh→(t) ≤ bound([t]α) for every assign-
ment α and term t. Thus, dh→R/→S (t) ≤ bound([t]α) whenever ` >A r for each
`→ r ∈ R and ` ≥A r for each `→ r ∈ S. At this point in the formalization we
fix α to be the zero-assignment α0 where α0(x) = 0 for all x.

Since bound has to grow linearly in its argument, to get asymptotic bounds
it suffices to estimate [t]α0

for each t ∈ SE (n), depending on n.

For polynomial interpretations we formalized the criterion of strongly linear
interpretations of Hofbauer [13].

Theorem 8. Let F be a subset of the signature. Whenever fA(x1, . . . , xn) =
cf +

∑n
i=1 xi for each f ∈ F then

– [t]α0
is linearly bounded in |t| whenever F is the full signature.

– [t]α0
is bounded by O(|t|d) whenever F = C, t ∈ BC, and d is the largest

degree of a polynomial within the interpretation.

The two alternatives have been formalized in Poly Order, where the first one
(linear-bound) is used for derivational complexity and the second one (degree-
bound) for runtime complexity. Further note that the above theorem can be
combined with several ordered semirings, so that currently CeTA can check com-
plexity proofs involving polynomial interpretations over N, Q, and R.

Furthermore, we also support complexity proofs via matrix interpretations.
To be more precise, we provide the first formalization of the criterion of Moser,
Schnabl, and Waldmann [22] that for upper triangular matrix interpretations we
get an upper bound of [t]α0 ∈ O(|t|d) where d is the dimension of the matrix.

To this end, we have first proven [22, Lem. 5] that ||mn|| ∈ O(nd−1) is
satisfied for an upper triangular matrix m of dimension d. This fact has been
made available as upper-triangular-mat-pow-value in Matrix Comparison within
the archive of formal proofs [29]. Here, we want to stress that the formalization
has been much more verbose than the paper: in [22] the proof is two lines long,
whereas the formalization takes 300 lines. However, this is not surprising since
the two lines have been expanded to a more detailed paper proof (one full page)
in Schnabl’s PhD thesis [27], and even this proof contains a “straightforward”
inner induction which is not spelled out.

In Matrix Comparison we also prove that the linear norm is sub-multi-
plicative, i.e., ||m1×m2|| ≤ ||m1|| · ||m2||, a property that is required to achieve
[22, Thm. 6], but is not mentioned in the paper.

Again, all of our results have been proven in a generic way for several semi-
rings, which includes the semirings on N, Q, and R. In this way, we generalized
[22, Thm. 6] which was only proven for the natural numbers. Especially the
proof that the linear norm is sub-multiplicative required the development of a
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completely new proof: at least three mathematical textbooks contain the same
incomparable statement, which states the property for a whole class of norms,
but only for the reals. However, we required the property only for the linear
norm, but for matrices of type An×m where A is generic. Therefore, the proofs
within the textbooks – which all use a limit construction on the reals – could
not be formalized. Instead, we performed an inductive proof over the shared
dimension of the matrices, cf. linear-norm-submultiplicative for more details.4

7 Conclusion

We presented an overview of our Isabelle/HOL formalization of interpretations
over various carriers, which is part of the formalized library IsaFoR and employed
in the fully verified certifier CeTA. The kinds of interpretations we support are
linear polynomial interpretations, which also allow for matrix interpretations,
and nonlinear polynomial interpretations. As we have shown above, supported
carriers range from natural numbers, over integers and rational numbers, to real
numbers, as well as corresponding arctic carriers. This unifies and extends pre-
vious work. Since CeTA needs to certify given proofs containing explicit numbers
and interpretation functions we also had to take care that our formalization
supports executable algorithms for all required operations (like addition, multi-
plication, various comparisons, the square root function, etc.). For real numbers
this is not a trivial task. Our solution was to perform data refinement to a subset
of the reals that suffices for our purposes. Finally we presented our formalization
of complexity related results. In contrast to typical formulations in the litera-
ture, we only provide upper bounds, but in return do not have to care about
well-definedness issues that would arise otherwise.

Acknowledgments. We are grateful to Bertram Felgenhauer for pointing us
to Cauchy’s mean theorem when proving soundness of our root algorithm.

The authors are listed in alphabetical order regardless of individual contri-
butions or seniority.
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10. F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data refinement in Is-
abelle/HOL. In Proc. 4th ITP, volume 7998 of LNCS, pages 100–115. Springer,
2013. doi:10.1007/978-3-642-39634-2_10.

11. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
Proc. 10th FLOPS, volume 6009 of LNCS, pages 103–117. Springer, 2010. doi:10.
1007/978-3-642-12251-4_9.

12. N. Hirokawa and G. Moser. Automated complexity analysis based on the depen-
dency pair method. In Proc. 4th IJCAR, volume 5195 of LNCS, pages 364–379.
Springer, 2008. doi:10.1007/978-3-540-71070-7_32.

13. D. Hofbauer. Termination Proofs and Derivation Lengths in Term Rewriting Sys-
tems. Dissertation, Technische Universität Berlin, Germany, 1991. Available as
Technical Report 92-46, TU Berlin, 1992.

14. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In Proc. 3rd RTA, volume 355 of LNCS, pages 167–177. Springer, 1989. doi:10.
1007/3-540-51081-8_107.

15. B. Huffman and O. Kuncar. Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In Proc. 3rd CPP, volume 8307 of LNCS, pages 131–146. Springer,
2013. doi:10.1007/978-3-319-03545-1_9.

16. A. Koprowski and J. Waldmann. Arctic termination . . . below zero. In Proc.
24th RTA, volume 5117 of LNCS, pages 202–216. Springer, 2008. doi:10.1007/
978-3-540-70590-1_14.

17. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. 20th RTA, volume 5595 of LNCS, pages 295–304. Springer, 2009.
doi:10.1007/978-3-642-02348-4_21.

18. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

19. A. Lochbihler. Light-weight containers for Isabelle: Efficient, extensible, nestable.
In Proc. 4th ITP, volume 7998 of LNCS, pages 116–132. Springer, 2013. doi:10.
1007/978-3-642-39634-2_11.

20. S. Lucas. On the relative power of polynomials with real, rational, and inte-
ger coefficients in proofs of termination of rewriting. Appl. Algebr. Eng. Comm.,
17(1):49–73, 2006. doi:10.1007/s00200-005-0189-5.

14

http://dx.doi.org/10.1007/3-540-55602-8_161
http://dx.doi.org/10.1007/978-3-642-32347-8_6
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/978-3-642-11266-9_24
http://dx.doi.org/10.1007/978-3-642-11266-9_24
http://dx.doi.org/10.1007/s10817-007-9087-9
http://dx.doi.org/10.1007/s10817-007-9087-9
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/978-3-642-39634-2_10
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.1007/3-540-51081-8_107
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/978-3-540-70590-1_14
http://dx.doi.org/10.1007/978-3-540-70590-1_14
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1007/978-3-642-39634-2_11
http://dx.doi.org/10.1007/978-3-642-39634-2_11
http://dx.doi.org/10.1007/s00200-005-0189-5


21. S. Lucas. Practical use of polynomials over the reals in proofs of termination. In
Proc. 9th PPDP, pages 39–50. ACM, 2007. doi:10.1145/1273920.1273927.

22. G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In Proc. 28th FSTTCS,
volume 2 of LIPIcs, pages 304–315. Schloss Dagstuhl, 2008. doi:10.4230/LIPIcs.
FSTTCS.2008.1762.

23. F. Neurauter and A. Middeldorp. On the domain and dimension hierarchy of
matrix interpretations. In Proc. 18th LPAR, volume 7180 of LNCS, pages 320–
334. Springer, 2012. doi:10.1007/978-3-642-28717-6_25.

24. F. Neurauter, H. Zankl, and A. Middeldorp. Monotonicity criteria for polynomial
interpretations over the naturals. In Proc. 5th IJCAR, volume 6173 of LNAI, pages
502–517. Springer, 2010. doi:10.1007/978-3-642-14203-1_42.

25. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. doi:10.1007/
3-540-45949-9.

26. B. Porter. Cauchy’s mean theorem and the Cauchy-Schwarz inequality. Archive of
Formal Proofs, March 2006. http://afp.sf.net/entries/Cauchy.shtml.

27. A. Schnabl. Derivational Complexity Analysis Revisited. PhD thesis, University of
Innsbruck, Austria, 2011.

28. C. Sternagel and R. Thiemann. Certification extends termination techniques. In
Proc. 11th WST, 2010. arXiv:1208.1594.

29. C. Sternagel and R. Thiemann. Executable matrix operations on matrices of ar-
bitrary dimensions. Archive of Formal Proofs, June 2010. http://afp.sf.net/

entries/Matrix.shtml.
30. C. Sternagel and R. Thiemann. Executable multivariate polynomials. Archive of

Formal Proofs, August 2010. http://afp.sf.net/entries/Polynomials.shtml.
31. C. Sternagel and R. Thiemann. Signature extensions preserve termination. In

Proc. 19th CSL, volume 6247 of LNCS, pages 514–528. Springer, 2010. doi:10.
1007/978-3-642-15205-4_39.

32. R. Thiemann. Formalizing bounded increase. In Proc. 4th ITP, volume 7998 of
LNCS, pages 245–260. Springer, 2013. doi:10.1007/978-3-642-39634-2_19.

33. R. Thiemann. Implementing field extensions of the form Q[
√
b]. Archive of Formal

Proofs, February 2014. http://afp.sf.net/entries/Real_Impl.shtml.
34. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA.

In Proc. 22nd TPHOLs, volume 5674 of LNCS, pages 452–468. Springer, 2009.
doi:10.1007/978-3-642-03359-9_31.

35. H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In
Proc. 21st RTA, volume 6 of LIPIcs, pages 385–400. Schloss Dagstuhl, 2010. doi:10.
4230/LIPIcs.RTA.2010.385.

36. H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In
Proc. 16th LPAR, volume 6355 of LNCS, pages 481–500. Springer, 2010. doi:10.
1007/978-3-642-17511-4_27.

37. H. Zankl, R. Thiemann, and A. Middeldorp. Satisfiability of non-linear arithmetic
over algebraic numbers. In Proc. SCSS, volume 10-10 of RISC-Linz Technical
Report, pages 19–24, 2010.

15

http://dx.doi.org/10.1145/1273920.1273927
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.1007/978-3-642-28717-6_25
http://dx.doi.org/10.1007/978-3-642-14203-1_42
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://afp.sf.net/entries/Cauchy.shtml
http://arxiv.org/abs/1208.1594
http://afp.sf.net/entries/Matrix.shtml
http://afp.sf.net/entries/Matrix.shtml
http://afp.sf.net/entries/Polynomials.shtml
http://dx.doi.org/10.1007/978-3-642-15205-4_39
http://dx.doi.org/10.1007/978-3-642-15205-4_39
http://dx.doi.org/10.1007/978-3-642-39634-2_19
http://afp.sf.net/entries/Real_Impl.shtml
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.385
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.385
http://dx.doi.org/10.1007/978-3-642-17511-4_27
http://dx.doi.org/10.1007/978-3-642-17511-4_27

	Formalizing Monotone Algebras for Certification of Termination and Complexity Proofs

