
Aachen
Department of Computer Science

Technical Report

The DP Framework for Proving
Termination of Term Rewriting

René Thiemann

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2007-17

RWTH Aachen · Department of Computer Science · (revised version) February 2008

The publications of the Department of Computer Science of RWTH Aachen (Aachen
University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

The DP Framework for Proving Termination
of Term Rewriting

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der Rheinisch-Westfälischen

Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

René Thiemann

aus

Stadtlohn

Berichter: Prof. Dr. Jürgen Giesl

Prof. Dr. Aart Middeldorp

Tag der mündlichen Prüfung: 24.10.2007

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar

Abstract

Termination is the fundamental property of a program that for each input, the evalua-
tion will eventually stop and return some output. Although the question whether a given
program terminates is undecidable, many techniques have been developed which can be
used to answer the question of termination for many programs automatically. Especially,
termination of term rewriting is an interesting and widely studied area: Since the basic
evaluation mechanism of many programming languages is term rewriting, one can suc-
cessfully apply the termination techniques for term rewriting to analyze termination of
programs automatically. Nevertheless, there still remain many programs that cannot be
handled by any current technique that is amenable to automation.

In this thesis, we extend existing techniques and develop new methods for mechanized
termination analysis of term rewrite systems. Currently, one of the most powerful tech-
niques is the dependency pair approach. Up to now, it was regarded as one of several
possible methods to prove termination. We show that dependency pairs can instead be
used as a general concept to integrate arbitrary techniques for termination analysis. In
this way, the benefits of different techniques can be combined and their modularity and
power are increased significantly. We refer to this new concept as the “dependency pair
framework” to distinguish it from the old “dependency pair approach”.

Moreover, this framework facilitates the development of new methods for termination
analysis. To demonstrate this, we design several novel techniques within the dependency
pair framework. They can successfully be applied to prove termination of previously
challenging programs. For example, our work describes new ways how to handle programs
using accumulators, programs written in higher-order languages, and programs which
only terminate w.r.t. a given evaluation strategy. We additionally show how to disprove
termination, even under strategies.

All presented techniques are formulated in a uniform setting and are implemented in
our fully automated termination prover AProVE. The significance of our results is demon-
strated at the annual international Termination Competition, where the leading auto-
mated tools try to analyze termination of programs from different areas of computer
science: Without the contributions of this thesis, AProVE would not have reached the
highest scores both for proving and disproving termination in the years 2004 – 2007.

Acknowledgments

Zuallererst möchte ich mich bei Prof. Dr. Jürgen Giesl bedanken. Seit meiner Zeit am
Lehr- und Forschungsgebiet hat er mich in jeder erdenklichen Weise unterstützt, sei es
durch die vielen interessanten Anregungen und Diskussionen, durch die gemeinsame Ar-
beit bei der Entwicklung neuer Papiere, durch die Freiheit, meinen Arbeitsschwerpunkt
sowohl thematisch als auch geographisch weitestgehend frei zu wählen, oder durch die
Unterstützung zum Umgang mit den “Kleinen” Freuden des privaten Lebens.

I am grateful to Prof. Dr. Aart Middeldorp for being a member of my thesis committee,
and for being a stimulating adversary in developing techniques for termination proving.

Ich danke vor allem auch meinem Kollegen Peter Schneider-Kamp. Zusammen mit ihm
gab es immer wieder neue interessante Ideen zu diskutieren und zu entwickeln, und ich
hoffe, nicht nur ich habe es genossen, selbst die abschreckendsten Beweise zur gegenseitigen
Überprüfung auszutauschen. Zudem hätte ich ohne ihn wohl so manche halbe Stunde
häufiger am Bahnhof gesessen.

Ich danke auch meinen Kollegen Stephan Swiderski und Carsten Fuhs für so manches
interessante Gespräch und für das Korrekturlesen meiner Dissertation.

Thanks are given to everybody on the floor of I2 for a pleasant and friendly research
environment.

Vielen Dank geht auch an die restlichen Mitglieder des AProVE-Teams. Ohne ihre Un-
terstützung hätten kaum so viele Techniken vom Papier auf den Rechner gebracht werden
können. Zudem haben die vielen guten Ideen bei der Implementierung mit Sicherheit
einen nicht unbeachtlichen Teil zum Erfolg bei den Wettbewerben beigetragen.

Und natürlich will ich mich auch bei Karin bedanken. Obwohl ich vor mehreren Dead-
lines kaum für sie ansprechbar war, hat sie mich immer unterstützt und mir Rückhalt
gegeben.

René Thiemann

Contents

1. Introduction 1

2. The Dependency Pair Framework 7
2.1. Q-Restricted Rewriting . 7
2.2. Dependency Pairs . 10

3. Processors Without Search 17
3.1. Dependency Graph . 18
3.2. Switching to Innermost Termination . 24
3.3. Usable Rules . 27
3.4. Star-Estimation of the Dependency Graph 31
3.5. Reducing Q . 33

4. Processors Based on Orders 37
4.1. Reduction Pairs . 37
4.2. Needed Rules . 42
4.3. Rule Removal . 53
4.4. Usable Rules w.r.t. an Argument Filter . 54
4.5. Needed Rules w.r.t. an Argument Filter . 56
4.6. Subterm Criterion . 61

5. Processors Based on Pair Transformations 67
5.1. Instantiation . 71
5.2. Forward Instantiation . 72
5.3. Rewriting . 73
5.4. Narrowing . 79

6. Processors for Applicative Rewriting 85
6.1. From Applicative to Functional Form . 87
6.2. Needed Rules for Applicative DP Problems 93
6.3. Argument Filters for Applicative DP Problems 97

7. Processors Based on Semantic Labeling 105
7.1. Semantic Labeling with Models . 105
7.2. Semantic Labeling with Quasi-Models . 113
7.3. Semantic Labeling and Unlabeling . 120

8. Processors for Non-Termination Analysis 129
8.1. Looping Problems . 130
8.2. Switching to Termination . 133
8.3. Detecting Looping Problems . 135

II Contents

9. Conclusion 143

Bibliography 149

A. Proofs 159
A.2. Proofs of Chapter 2 . 159
A.3. Proofs of Chapter 3 . 160
A.4. Proofs of Chapter 4 . 164
A.5. Proofs of Chapter 5 . 177
A.6. Proofs of Chapter 6 . 182
A.7. Proofs of Chapter 7 . 190
A.8. Proofs of Chapter 8 . 194

List of Processors 201

Index 203

1. Introduction

Termination is an essential property of programs and thus, techniques to verify and to
analyze termination are of great interest in program verification and analysis. To apply
termination techniques successfully even on complex programs, these techniques should
be as powerful as possible. Additionally, it is desirable to have a push-button approach
which does not need human guidance. Therefore, all these termination techniques should
be fully mechanizable. However, the halting problem is undecidable, and the question
whether a program terminates on all inputs is not even semi-decidable. Since we want
to answer the latter question, our goal can only be to develop and extend termination
techniques which can successfully analyze termination of many typical programs.

Whereas the research on automated termination analysis of imperative programming
languages is a young discipline [BCDO06, BMS05, CPR06, CS02, PR04a, PR04b, Tiw04],
more research has been done for functional programming languages [Abe04, BFG+04,
Gie95, GWB98, LJB01, PS97, TT00, Wal94, Xi02], and for logic programming [CLS05,
DD94, DS02, LMS03, MR03, Sma04].

Since term rewriting is the fundamental principle underlying the evaluation in many
programming languages, it is possible to reduce the question of termination of programs to
termination of term rewrite systems (TRSs). For example, transformational approaches
for logic programs have been developed in [AM93, AZ95, GW93, KKS98, Mar94, Mar96,
Raa97, SGST06] and a transformational approach for the functional programming lan-
guage Haskell has been recently developed in [GSST06]. In this way, termination analysis
of TRSs becomes especially important since every enhancement in this area will have a
positive impact on program verification of many programming languages.

Therefore, in this thesis we aim at improving the power of automated termination
analysis of TRSs.

Termination of TRSs has been studied for decades. While early work focused on the
development of suitable reduction orders [Der87, KB70, KL80, Lan79, Ste95], in the last
years new techniques were developed which build upon these orders and which try to
increase their power and applicability. One of the most powerful such techniques is the
dependency pair approach (DP approach) [AG00, GA01, GAO02]. Apart from the DP
approach, there also exist several other recent powerful techniques (e.g., semantic labeling
[Zan95], the monotonic semantic path order [BFR00], match-bounds [GHW03, GHWZ07],
etc.) for termination proofs of TRSs. Up to now, all these techniques were seen as separate
approaches on their own.

However, in this thesis we first design a framework which allows the combination of
termination techniques in a modular and uniform way. And second, existing techniques
to prove termination of TRSs are improved and new techniques are developed, including
methods to disprove termination. In these two ways, we improve the power of automated
termination analysis significantly.

To be more precise, we make the following contributions. Here, the first three items
(i) – (iii) are novel results which are not tailored to a specific termination technique,
and each of the remaining items (iv) – (ix) are improvements of particular termination

2 Chapter 1. Introduction

techniques, where sometimes a known method is extended or where we design completely
new techniques.

(i) We show that dependency pairs are suitable as a general framework to integrate
arbitrary methods for termination proofs. In this way, the benefits of all available
termination techniques can be combined in a completely modular way and the clas-
sical DP approach is just a special case of our new DP framework. By combining
termination techniques within the DP framework (instead of trying to apply them
on a TRS directly, one after another), the flexibility, modularity, and power of these
techniques are increased significantly.

(ii) To treat the termination problem for several different evaluation strategies in a
uniform way, we introduce the notion of Q-restricted rewriting, which generalizes
both rewriting and innermost rewriting. We extend every termination technique
investigated in this thesis to Q-restricted rewriting and present all of them in a
uniform setting. This even includes some techniques like semantic labeling which
have not been applicable for strategies like innermost rewriting before.

Moreover, due to the increased expressiveness of Q-restricted rewriting we achieve
many new completeness results which cannot be obtained for innermost rewriting
directly. These results are especially useful for disproving termination.

(iii) Many termination techniques make use of common notions which are defined purely
syntactically, e.g., there is a notion of usable rules [AG00] applied in several termina-
tion methods. However, there have been various incomparable syntactic refinements
to obtain less usable rules [GTS05b, GTSF06, TGS04], and similar refinements also
exist for other notions. The problem here is that with every improvement of such a
syntactic notion, one has to check for every termination technique which uses that
notion, whether one can replace the old syntactic version by the improved one. This
boils down to adapting all proofs of all these termination techniques, clearly being
a large effort.

To solve this problem, in this thesis we introduce new semantic notions, e.g., for
the usable rules, such that all previous syntactic notions are just estimations of the
new semantic notion, and we integrate the semantic notions into every termination
technique such that one can use them with every estimation. Hence, due to our
results one can integrate every future improvement of an estimation into every
termination technique without adapting a single proof.

Moreover, for the automation we design improved estimations which are syntacti-
cally defined and which encompass all previous syntactic versions. These improve-
ments considerably increase the power of around half of the termination techniques
examined in the thesis.

(iv) There exist many termination techniques which are more powerful if they are used
to prove innermost termination. Therefore, it is beneficial if it suffices to prove
innermost termination instead of termination. In the previous work of [Gra95],
classes of TRSs have been identified where this switch can be done.

We extend that work to the DP framework, which results in two major benefits.
First, in the DP framework there are strictly less requirements to switch to innermost
termination than on the level of TRSs. And second, due to the modular structure of

3

the DP framework, one can simplify the original termination problem before trying
to switch to innermost termination. For that reason, the conditions for this switch
are satisfied much more often, since only a subproblem instead of the whole TRS
has to satisfy the requirements.

(v) The most important technique to prove termination is to use well-founded orders.
Then termination can be shown by finding an order on terms that satisfies a certain
set of constraints. While there is still active research on developing new kinds of
orders (e.g., there are novel orders which are based on negative polynomial inter-
pretations [HM07] or on matrix interpretations [EWZ06, HW06]) we focus on the
orthogonal goal to reduce the set of constraints.

Our work is a significant extension of the work of [Urb01]: due to our results the con-
straints for termination and for innermost termination are almost identical. Thus,
proving full termination becomes almost as easy as proving only innermost termi-
nation. Moreover, we develop techniques to reduce the set of constraints for both
termination and innermost termination proofs further, e.g., by considering that cer-
tain positions of terms are ignored by the order. This is especially important for
programs using an accumulator, and in that way the resulting set of constraints is
often satisfied by the simple embedding order, whereas the original set of constraints
is not solvable by any order that is currently amenable to automation.

(vi) Some termination techniques of the DP approach transform dependency pairs,
namely the techniques of instantiation, rewriting, and narrowing [AG00, GA01].
We develop the additional new transformation of forward instantiation, which is
sometimes crucial for a successful termination proof.

But even more important is our extension of the narrowing transformation. Com-
pared to the original narrowing transformation, our extension produces far less new
pairs, which is often required to successfully prove termination, especially if one
considers programs using an accumulator.

(vii) To analyze programs of higher-order functional languages like Haskell, one can trans-
form them into applicative TRSs [GSST06]. Since standard termination techniques
often fail on TRSs of this special form, we design new dedicated termination tech-
niques, including an extension of the result in [KKSV96] to transform applicative
TRSs back to standard TRSs.

(viii) Semantic labeling [Zan95] is a powerful technique to prove termination of TRSs. We
completely integrate this important technique into the DP framework, including
a generalization to Q-restricted rewriting for both models and quasi-models, and
including new completeness results. The benefit is that one can now apply semantic
labeling at any time during a termination proof, and one often has to search for
models or quasi-models for only a small subproblem. In this way, semantic labeling
becomes even more powerful.

(ix) Finally, we develop techniques to disprove termination. Often, the reason for non-
termination is a loop, a notion we generalize from unrestricted rewriting to Q-
restricted rewriting. While up to now it was not even known whether it is decidable
if a given loop is also a loop for innermost rewriting, we present a decision procedure
for the more general case of Q-restricted rewriting. Although the correctness proof
of the procedure is highly non-trivial, the resulting algorithm is easy to implement.

4 Chapter 1. Introduction

Moreover, we integrate the concept of a loop into the DP framework, whereas it was
originally defined for TRSs. One benefits from this integration since one can use all
preceding termination techniques to detect those parts of a TRS which are possibly
non-terminating. In this way, one often has to search for loops only in a small part
of the initial system.

Thus, with our contributions one can efficiently disprove termination of programs,
even if one fixes the evaluation strategy to innermost.

Major parts of these contributions have already been published as joint work in 17 ar-
ticles in international journals or in conference proceedings [CSL+06, FGM+07, GSST06,
GST06, GTS05a, GTS05b, GTSF03, GTSF04, GTSF06, GTSS07, SGST06, STA+07,
TG03, TG05, TGS04, TM07, TZGS07].

However, the thesis does not contain all the material of these articles, since here we
focus only on those parts of our work which aim at proving termination of TRSs. To
be more precise, the thesis does not present the results of our papers about transforming
programs to TRSs, and we do not provide all details about the automation of our methods.

But on the other hand, the thesis contains many important new contributions which
have been developed solely by the author and which are unpublished up to now. They
include the new semantic notions and the improved estimations in contribution (iii),
the extension of the narrowing transformation in (vi), the integration and generalization
of semantic labeling in (viii), and the decision procedure of (ix) to detect loops under
strategies.

All techniques presented in this thesis can be efficiently automated, where for the major
search problems one can often use SAT encodings and analyze termination with the help
of modern SAT solvers. This has been done in our implementation of the DP framework:
AProVE [GST06, GTSF04] is a fully automated tool for termination analysis, which is
developed at the Research Group Computer Science 2, RWTH Aachen University. Being
one of the leaders of the AProVE group, the author has designed major parts of AProVE
and contributed over 60,000 lines of Java code to the AProVE source.

In the years 2004 – 2007 AProVE participated in the international Termination Com-
petition [MZ07]. In this annual competition several termination tools try to solve as
many termination problems as possible from the termination problem data base (TPDB)
[TPDB], a collection of termination problems from several sources and different areas of
computer science. For each problem there is a short amount of time to give one of the pos-
sible answers “Yes, it terminates”, “No, it does not terminate”, or “Don’t know” together
with a corresponding proof. In every year AProVE was able to prove and to disprove
termination of more TRSs than any other tool. The fact that without our contributions
AProVE would not have been the winner of the competitions clearly demonstrates that
the results of this thesis indeed improve the power of automated termination analysis
significantly.

The thesis is organized as follows. We start in Chapter 2 by motivating and formally
introducing Q-restricted rewriting and the DP framework (contributions (i) and (ii)). In
this framework one investigates DP problems instead of TRSs. Then in Chapters 3 – 8
the various termination techniques are developed, explained, and formulated in a uniform
way as so-called processors. At the end of each of these chapters there is a short summary.
They contain remarks on the automation of the presented processors, comparisons with
related work, and possible ideas for future work. Moreover, for each contribution it is
remarked, where it has been published or whether it is unpublished up to now.

5

Processors which always simplify DP problems and which have a low computational
complexity are shown in Chapter 3, including the new processor to switch to innermost
termination (contribution (iv)). Additionally, most of the new semantic notions as well as
the corresponding improved estimations (contribution (iii)) are introduced in that chap-
ter. The processors of Chapter 4 also simplify DP problems, but to apply them, one needs
to find orders satisfying corresponding sets of constraints, which most often is at least
an NP-hard problem. Here, we also illustrate how one can reduce the set of generated
constraints (contribution (v)). The dependency pair transformations are investigated in
Chapter 5, including the new forward instantiation processor and the improved narrow-
ing transformation (contribution (vi)). They are especially useful if one analyzes TRSs
which define functions by using tests and selectors instead of using pattern matching.
New techniques to handle higher-order functions which are encoded by applicative TRSs
(contribution (vii)) are discussed in Chapter 6. Moreover, in that chapter we again demon-
strate ways to decrease the set of generated constraints (contribution (v)). How to adapt
semantic labeling to the DP framework (contribution (viii)) can be seen in Chapter 7.
Finally, techniques to disprove termination are developed in Chapter 8, including the de-
cision procedure to detect whether a loop respects the evaluation strategy (contribution
(ix)).

The thesis ends with a conclusion in Chapter 9, which additionally contains some
remarks about our termination prover AProVE along with an outlook on future work.
Moreover, a strategy how to combine all the different processors is presented.

All proofs can be found in the appendix.

2. The Dependency Pair Framework

In this chapter we present the basis for our method to analyze termination of term rewrite
systems (TRSs).

First, in Section 2.1 we introduce basic notions and notations including Q-restricted
rewriting [GTS05a], and we give some initial arguments why we investigate termination
of Q-restricted rewriting instead of full termination or innermost termination. The main
reasons are that with Q-restricted rewriting both full rewriting and innermost rewriting
can be represented in a uniform way. And even more important, certain techniques are
more powerful for Q-restricted rewriting than for innermost rewriting, since innermost
rewriting is not expressive enough.

Afterwards, we recapitulate the basics of dependency pairs in Section 2.2. There we
present the two main components of our dependency pair framework to prove termination
of TRSs. The problems we are working on are so called “dependency pair problems”, or
“DP problems” for short. Then a termination proof in the dependency pair framework is
nothing more but a repeated transformation of DP problems into simpler DP problems by
“processors”, where one starts with the initial DP problem and ends if no DP problems
remains. Of course, it will be possible to disprove termination in the dependency pair
framework, too. It turns out that in this way, one can perform termination proofs in a
modular way, and the framework can easily be extended by developing new processors.

2.1. Q-Restricted Rewriting

A signature F is a finite set of function symbols where each f ∈ F has an arity, written
ar(f). The set T (F ,V) denotes the set of terms over F and the infinite set of variables
V . For a term t we write V(t) for the set of variables occurring in t, the set of positions
of t is Pos(t), and t is called linear iff each variable in t occurs at most once. The root
of a non-variable term is defined as root(f(t1, . . . , tn)) = f . A substitution is a mapping
from variables to terms which is homomorphically extended to a mapping from terms to
terms. The domain of a substitution σ is the set Dom(σ) = {x ∈ V | σ(x) 6= x}. We
often write tσ instead of σ(t) and we use {x1/t1, . . . , xn/tn} to represent substitutions
with finite domain, but we also allow substitutions which have an infinite domain.

A TRS R is a finite set of rewrite rules ` → r where ` and r are from T (F ,V) and
where every rule ` → r satisfies the variable condition, i.e., ` /∈ V and V(`) ⊇ V(r). A
collapsing rule is a rule where the right-hand side is a variable. A TRS R is left-linear,
resp. right-linear, iff all left-hand sides of R (lhs(R)), resp. right-hand sides of R, are
linear. The rewrite relation w.r.t. R is defined as s →R t iff there are a context C, a
position p, and a substitution σ such that s = C[`σ]p, t = C[rσ]p, and `→ r ∈ R. In that
case the subterm `σ is called a redex . To denote that rewriting is only allowed at a certain
position p we use the notation →R,p, and similarly, if we only allow rewriting for a single
rule `→ r, then we write→`→r instead of→{`→r}. A term t is in normal form w.r.t. some
binary relation → iff there is no s such that t → s. The set NF (R) of R-normal forms
consists of those terms which are in normal form w.r.t. →R. A TRS R is terminating iff

8 Chapter 2. The Dependency Pair Framework

→R is well-founded, i.e., if there is no infinite rewrite sequence t1 →R t2 →R t3 →R
We identify rules which only differ by their variable names and we assume that each
occurrence of a rule is variable-renamed when used for rewriting, etc.

In contrast to →R (which we also call the full rewrite relation), there also is the inner-
most rewrite relation which is denoted by i→R and defined as s i→R t iff s→R t where all
direct subterms of the redex are in R-normal form.

We refer to [BN98, Ter03] for further details on term rewriting.

Example 2.1. The following TRS R of [AG00, Example 2] computes subtraction and
division of natural numbers. Here, the naturals are encoded by 0 and s where the numbers
0, 1, 2, . . . are represented by the terms 0, s(0), s(s(0)),

minus(x, 0)→ x (1)

minus(0, s(y))→ 0 (2)

minus(s(x), s(y))→ minus(x, y) (3)

div(0, s(y))→ 0 (4)

div(s(x), s(y))→ s(div(minus(x, y), s(y))) (5)

The computation of “2÷ 2 = 1” corresponds to the following rewrite sequence

div(s(s(0)), s(s(0))) →(5) s(div(minus(s(0), s(0)), s(s(0))))
→(3) s(div(minus(0, 0), s(s(0))))
→(1) s(div(0, s(s(0))))
→(4) s(0)

where in the last step the context C = s(2) and the substitution σ = {y/s(0)} is used for
the reduction, for example. Since there is no possibility to continue the rewrite sequence
any further, the term s(0) is in R-normal form.

If we consider the term t = div(s(minus(0, 0)), s(0)) then both reductions t→R div(s(0),
s(0)) and t →R s(div(minus(minus(0, 0), 0), s(0))) are possible, but only the former is an
innermost reduction.

To handle different evaluation strategies (like innermost or full rewriting) in a uniform
way, we introduce the following notion of Q-restricted rewriting, cf. [GTS05a, Definition
1]. In Q-restricted rewriting, one may only perform a rewrite step if the proper subterms
of the redex are not reducible w.r.t. Q (i.e., if they are Q-normal forms). This notion is
particularly useful when defining techniques for innermost termination proofs later on.

Definition 2.2 (Q-Normal Form, Q-Restricted Rewriting, Q-Termination). Let Q be a
set of non-variable terms and R be a TRS. We define the set NF (Q) of Q-normal forms
as the normal forms of the TRS {q → a | q ∈ Q}1 where a is some constant. Then the
Q-restricted rewrite relation is defined as s Q→R t iff s →R,p t for some position p such
that all direct subterms of the redex s|p are in Q-normal form. A TRS R is Q-terminating
iff Q→R is well founded.

1In [GTS05a] Q is a TRS and not just a set of non-variable terms. However, there it was already
mentioned that one can drop the right-hand sides, since for determining whether a term is in normal
form, it is sufficient to know the left-hand sides. We will illustrate that a set of termsQ is advantageous
to a TRS Q in more detail directly after Definition 6.2 and after Definition 7.16.

2.1. Q-Restricted Rewriting 9

Example 2.3. Consider R = {f(a) → f(a), a → b}. If Q contains the term a, then the
step from f(a) to f(a) is no longer possible with Q→R since the proper subterm a of the
redex f(a) is not a Q-normal form. Thus, R is Q-terminating. On the other hand, if
Q = ∅, then any ordinary rewrite step is also possible with Q-restricted rewriting and
we obtain f(a) Q→R f(a). Hence, then R is not Q-terminating.

Q-restricted rewriting subsumes both innermost and full rewriting. Full rewriting is
Q-restricted rewriting for Q = ∅ and innermost rewriting is Q-restricted rewriting with
Q = lhs(R) (→R = ∅→R and i→R =

lhs(R)→ R). The following lemma states that Q→R is
“increasing” if R is “increasing” and NF (Q) is “increasing”.

Lemma 2.4 (Monotonicity of Q→R). If R ⊆ R′ and NF (Q) ⊆ NF (Q′) then Q→R ⊆ Q′→R′.
Lemma 2.4 indicates that for termination proving it is always advantageous to get

large sets Q as Q ⊇ Q′ implies NF (Q) ⊆ NF (Q′) and hence, Q→R ⊆ Q′→R. Moreover,
Lemma 2.4 already indicates why Q-restricted rewriting is better suitable for termination
analysis than innermost rewriting. There exist several techniques which can simplify
termination proofs by removing rules from the TRS R. For full rewriting and also for Q-
restricted rewriting, removal of rules is always advantageous, since it can never introduce
non-termination (termination of Q→R implies termination of Q→R′ if R′ ⊆ R). But for
innermost rewriting, this is not true. For instance, by removing the rule a→ b from the
innermost terminating TRSR of Example 2.3, we result in a TRSR′ that is not innermost
terminating (hence, i→R′ 6⊆ i→R). Here, Q-restricted rewriting has the advantage that
the terms Q which restrict the set of possible redexes are separated from the rules R used
for rewriting and thus, R and Q can be changed independently.

Often it is interesting whether we are at least as restricted as in the innermost case. A
sufficient but not necessary requirement is Q ⊇ lhs(R). This property is often demanded
in [GTS05a] to apply techniques that are only sound in the innermost case.2 However,
if we choose Q = {a} in Example 2.3 then Q→R = i→R but Q 6⊇ lhs(R). Nevertheless,
the application of techniques for innermost rewriting would be prohibited if they required
Q ⊇ lhs(R).

That this flexibility is sometimes required when modeling real programing languages
by term rewriting is demonstrated in the following extension of Example 2.1.

Example 2.5. Let R be the TRS of Example 2.1 with the following additional rule.

f(x) → f(div(0, 0))

To simulate innermost evaluation of programs we can of course set Q = lhs(R). But then
it possible to construct an infinite rewrite sequence:

f(0) Q→R f(div(0, 0)) Q→R f(div(0, 0)) Q→R . . .
However, in programming languages the evaluation would stop with an error at the second
step, and there is no infinite evaluation possible.

To solve this problem, one can model innermost evaluation of programs more accurately
if we define Q = {f(x), div(x, y),minus(x, y)}. Then, there is no reduction of f(div(0, 0))
possible.

However, in that case Q ⊇ lhs(R) does not hold, but we still want to apply all methods
to proof innermost termination since Q→R is even more restricted than i→R.

2To be more precise, the used criterion in [GTS05a] is Q ⊇ R as Q in [GTS05a] is a TRS and not just
a set of non-variable terms.

10 Chapter 2. The Dependency Pair Framework

To solve this problem here we use a precise criterion to characterize that Q→R is at least
as restricted as the innermost rewrite relation i→R, namely we demand NF (Q) ⊆ NF (R).
However, as the sets NF (Q) and NF (R) = NF (lhs(R)) are both infinite we need a way
to decide this property. This can be done with the following criterion where we only have
to ensure for the finitely many terms of lhs(R) that they are not in Q-normal form.

Lemma 2.6 (Deciding NF (Q) ⊆ NF (Q′)). Let Q and Q′ be sets of terms. Then
NF (Q) ⊆ NF (Q′) iff Q′ ∩ NF (Q) = ∅.

Using Lemma 2.6 we can indeed detect that for Q = {a} we are in the innermost case
in Example 2.3. The reason is that both left-hand sides a and f(a) of R contain the Q-
redex a, and thus, are not in Q-normal form. In the same way it is detected that for the
modified set Q in Example 2.5 innermost rewriting is less restrictive than Q-restricted
rewriting.

Moreover, Lemma 2.6 allows to reduce a set Q to a smaller set Q′ without changing the
corresponding rewrite relations, i.e., Q→R = Q′→R. Whenever a subterm of a term q ∈ Q can
already be matched by another term q′ in Q then one can safely delete q from Q resulting
in a smaller set Q′. By Lemma 2.6 we directly obtain Q→R = Q′→R. The advantage of small
sets Q is that the property “t ∈ NF (Q)” can be determined more efficiently. Consider
Example 2.3 with innermost strategy. We obtainQ = lhs(R) = {f(a), a}. As f(a) contains
the subterm a we can safely remove f(a) from Q and result in Q′ = {a}. Although Q′ ⊂ Q
we have the same rewrite relation i→R = Q→R = Q′→R as mentioned before.

Note that even if we start a termination proof for Q = ∅ we will often have to consider
termination problems where Q = lhs(R) or with Q ⊃ lhs(R). The reason is that there
are classes where termination and innermost termination are equivalent (so one obtains
Q = lhs(R)), and afterwards one will remove rules ofR (then Q ⊃ lhs(R)). In these cases
the Q-restricted rewrite relation is at least as restricted as the innermost rewrite relation.
When using the technique of semantic labeling we can even get termination problems
where Q and lhs(R) are incomparable, cf. Chapter 7. Thus, there is an urgent need to
generalize the termination techniques from full and innermost rewriting to Q-restricted
rewriting.

2.2. Dependency Pairs

Now we extend the dependency pair approach to a dependency pair framework for the
combination of arbitrary termination techniques. We refer to [AG00, GAO02] for further
details on the dependency pair approach and to [GTS05a] for a simplified version of the
dependency pair framework.

First, we present a termination criterion forQ-restricted rewriting based on dependency
pairs. For a TRS R the defined symbols are DR = {root(`) | ` → r ∈ R}. For every
f ∈ DR we introduce a fresh tuple symbol f], where f] has the same arity as f and we
often write F for f]. If t = g(t1, . . . , tm) with g ∈ DR, we let t] denote g](t1, . . . , tm).

Definition 2.7 (Dependency Pair [AG00]). The set of dependency pairs for a TRS R
is DP(R) = {`] → t] | `→ C[t] ∈ R, root(t) ∈ DR, and t is no proper subterm of `}.3

3This definition differs from the classical definition of dependency pairs in [AG00] by integrating a recent
observation of [Der04], that one does not have to build dependency pairs where the right-hand side is
a proper subterm of the left-hand side.

2.2. Dependency Pairs 11

Example 2.8. The defined symbols of the TRS is Example 2.1 are minus and div. Thus,
one obtains the following dependency pairs:

MINUS(s(x), s(y))→ MINUS(x, y) (6)

DIV(s(x), s(y))→ MINUS(x, y) (7)

DIV(s(x), s(y))→ DIV(minus(x, y), s(y)) (8)

To verify Q-termination, we use the notion of chains. Intuitively, a dependency pair
corresponds to a function call and a chain represents a possible sequence of calls that can
occur in a reduction. For termination, we try to prove that there are no infinite chains.

In the following definition, P is a directed graph where the nodes are pairs. Note
that initially, every node is a dependency pair. However, as we will later on see tech-
niques which transform dependency pairs into arbitrary rewrite rules, we only speak
about “pairs” and not about “dependency pairs”. But we do not call the nodes of P
“rules” to distinguish them from the rules of the TRS R.

Definition 2.9 (Pair-Graph, Chain). A pair-graph is a directed graph P = (N,E) where
the nodes N are a finite set of pairs and E ⊆ N ×N are the edges.

For a pair-graph P = (N,E), a set of terms Q, and a TRS R a (possibly infinite)
sequence of pairs s1 → t1, s2 → t2, . . . is a (P ,Q,R)-chain iff (si → ti, si+1 → ti+1) ∈ E,
and there is a substitution σ such that tiσ

Q→∗R si+1σ for all i and all siσ are in Q-normal
form. A chain is minimal iff all tiσ are terminating w.r.t. Q→R.

We often identify a pair-graph P = (N,E) with the set of pairs N . In this way
s→ t ∈ P is a shorthand for s→ t ∈ N , and P\{s→ t} is the pair-graph (N\{s→ t}, E ′)
where E ′ is like E but one removes all edges that are adjacent to the node s → t,
i.e. E ′ = E ∩ (N \ {s→ t})2. The graph operations \ and ⊆ are defined component-wise:
(N,E) ⊆ (N ′, E ′) iff N ⊆ N ′ and E ⊆ E ′, and (N,E) \ (N ′, E ′) = (N \N ′, E \ E ′). We
also use a set of pairs as a pair-graph where we implicitly assume that there are edges
between every two (possibly identical) pairs.

Note that the pair-graph is new compared to the standard definition of a chain [AG00,
GTS05a]. Up to now, P always was just a set of pairs without any graph structure. The
reason for changing from sets of pairs to a graph over pairs is mainly improved efficiency
and modularity (cf. the discussion on page 19 and Example 5.4), but sometimes even the
power will be increased (cf. Example 4.40 and Example 5.12).

Example 2.10. If Q ⊆ lhs(R) then the TRS of Example 2.8 has the following chain
which consists of two occurrences of the dependency pair (8).

DIV(s(x1), s(y1))→ DIV(minus(x1, y1), s(y1)),

DIV(s(x2), s(y2))→ DIV(minus(x2, y2), s(y2))

The reason is that DIV(minus(x1, y1), s(y1))σ
Q→∗R DIV(s(x2), s(y2))σ holds for some substi-

tution σ (e.g., σ(x1) = s(0) and σ(x2) = σ(yi) = 0 for i ∈ {1, 2}) such that all instantiated
left-hand sides DIV(s(xi), s(yi))σ are in Q-normal form. Moreover, the chain is minimal,
since all instantiated right-hand sides of the dependency pairs are terminating w.r.t. Q→R.

As mentioned above, termination corresponds to absence of infinite chains. Here, it
suffices to consider minimal chains, since minimal non-terminating terms (whose proper
subterms are terminating) correspond to infinite minimal chains. The termination cri-
terion for dependency pairs [AG00, Theorems 6 and 31] can easily be generalized to
Q-restricted rewriting.

12 Chapter 2. The Dependency Pair Framework

Theorem 2.11 (Termination Criterion [GTS05a]). The following three properties are
equivalent.

(i) R is Q-terminating

(ii) there is no infinite (DP(R),Q,R)-chain

(iii) there is no infinite minimal (DP(R),Q,R)-chain

The termination criterion in Theorem 2.11 states that to prove Q-termination, it is
sufficient to show that there is no infinite minimal chain. But in order to disprove termi-
nation, it is enough to find any infinite chain (which may also be non-minimal).

With this criterion, we can now state the dependency pair framework. The basic idea
of this framework is to examine a pair-graph P , the set of terms Q, and the TRS R and to
prove absence of infinite (minimal) (P ,Q,R)-chains instead of examining the relation Q→R
directly. There are several advantages of this approach compared to a direct termination
proof.

For example, consider a direct termination proof where one has to find a reduction
order satisfying the constraints ` � r for all rules of R. Note that common reduction
orders fail on the constraints for Example 2.8 whereas it is easily possible to prove absence
of infinite chains using the techniques of Chapter 4 in combination with the embedding
order. This is possible since in contrast to a direct termination proof, the order � does
not have to be monotonic when analyzing chains.

Moreover, in the direct termination proof one has to solve termination of minus and
div together. In contrast, it will be possible to decompose a so-called dependency pair
problem (DP problem, for short) into several independent sub-problems, e.g., one problem
for MINUS and one for DIV. These problems can then be solved separately using different
techniques, which leads to a very modular approach to termination proving.

Formally, a DP problem consists of a pair-graph P , a set of terms Q, a TRS R (where
initially, P = DP(R)), and a flag f ∈ {m, a} which stands for “minimal” or “arbitrary”.
Initially, we have f = m. Our goal is to show that there is no infinite minimal (P ,Q,R)-
chain if f = m and that there is no infinite (possibly non-minimal) (P ,Q,R)-chain if
f = a. In this case, we call the problem finite.

A DP problem (P ,Q,R, f) that is not finite is called infinite. But additionally,
(P ,Q,R, f) is already infinite whenever R is not Q-terminating. So in particular, the ex-
istence of any (possibly non-minimal) infinite (P ,Q,R, f)-chain suffices to conclude that
(P ,Q,R, f) is infinite, even if f = m. While the initial DP problem (DP(R),Q,R, f) is
either finite or infinite, other DP problems (P ,Q,R, f) which can occur in termination
proofs can be both finite and infinite.

Example 2.12. As an example consider the TRS R = {f(a)→ f(a), a→ a}, let Q = ∅,
and let P consist of the dependency pair F(a)→ F(a). Then F(a)→ F(a), F(a)→ F(a), . . .
is an infinite (P ,Q,R)-chain, but there is no infinite minimal (P ,Q,R)-chain, since F(a)
is not terminating. So the dependency pair problem (P ,Q,R) is both finite and infinite.

Such DP problems do not lead to any difficulties. If one detects an infinite DP problem
during a termination proof, one can always abort the proof, since termination has been
disproved (provided that all proof steps were “complete”, i.e., that they preserved the
termination behavior). If the problem is both finite and infinite, then even if one only
considers it as being finite, the proof will still be correct, since then there exists another

2.2. Dependency Pairs 13

resulting dependency pair problem which is infinite and not finite. The reason is that
by Theorem 2.11, non-termination implies that there exists an infinite (minimal) chain.
Indeed, when proving termination of the TRS of Example 2.12 one would also obtain a
DP problem with the infinite minimal chain A→ A, A→ A, . . .

Termination techniques should now operate on dependency pair problems instead of
TRSs. They transform a DP problem into a new set of problems which then have to be
solved instead. Alternatively, they can also return the answer “no”. We refer to such
techniques as processors.

Definition 2.13 (DP Problem). A DP problem D is a quadruple (P ,Q,R, f) that con-
sists of a pair-graph P, a set of terms Q, a TRS R, and a flag f ∈ {m, a}. A DP problem
(P ,Q,R,m) is finite iff there is no infinite minimal (P ,Q,R)-chain and (P ,Q,R, a) is
finite iff there is no infinite (P ,Q,R)-chain. A DP problem (P ,Q,R, f) is infinite iff it
is not finite or if R is not Q-terminating.

A processor is a function Proc which takes a DP problem as input and returns either a
set of DP problems or the result “no”. A processor Proc is sound if for all DP problems
D, D is finite whenever Proc(D) is not “no” and all DP problems in Proc(D) are finite.
A processor Proc is complete if for all DP problems D, D is infinite whenever Proc(D)
is “no” or when Proc(D) contains an infinite DP problem.

Thus, soundness is required in order to use a processor Proc to prove termination (in
particular, to conclude that D is finite if Proc(D) = ∅). Completeness is needed in
order to use Proc to prove non-termination (in particular, to conclude that D is infinite
if Proc(D) = no). Even if one is only interested in proving termination, completeness is
still advantageous, since it ensures that one does not transform non-infinite DP problems
into infinite ones (i.e., applying the processor does not “harm”). The reason for the above
non-symmetric definition of “finite” and “infinite” is that in this way there are more finite
resp. infinite DP problems and therefore, it becomes easier to detect (in)finiteness of a
problem.

That a DP problem is already “infinite” if R is not Q-terminating will be required
for the completeness of the rewriting processor, of the narrowing processor, and of the
processor to switch to termination (cf. Theorems 5.10, 5.19, and 8.9, and Example 5.15 in
Chapter 5) and that a DP problem (P ,Q,R,m) is already “finite” if there are no infinite
minimal chains will be required for the soundness of many processors (cf. Theorems 3.14,
4.12, 4.18, 4.20, 4.32, 4.41, 6.17, and 6.22).

The fact that there are many processors relying on minimality clearly shows that a
processor which changes the minimality flag from m to a has a severe drawback. In that
case one should try to a develop an alternative processor with a similar result which does
not change the minimality flag. How this can be done is discussed with the processor of
Theorem 4.12 in Section 4.2 in more detail.

The following corollary introduces the dependency pair framework (“DP framework”,
for short). The idea is to start with the initial DP problem where P = DP(R) and
f = m. Then this problem is transformed repeatedly by sound DP processors. If the final
processors return empty sets of DP problems, then termination is proved. If one of the
processors returns “no” and all processors used before were complete, then one has proved
that the original TRS is not Q-terminating. The proof of Corollary 2.14 is immediate
from Definition 2.13 and Theorem 2.11.

Corollary 2.14 (Dependency Pair Framework [GTS05a]). Let R be a TRS and Q be a
set of terms. We construct a tree whose nodes are labelled with DP problems or “yes”

14 Chapter 2. The Dependency Pair Framework

or “no” and whose root is labelled with (DP(R),Q,R,m). For every inner node labelled
with D, there is a sound processor Proc satisfying one of the following conditions:

• Proc(D) = no and the node has just one child, labelled with “no”

• Proc(D) = ∅ and the node has just one child, labelled with “yes”

• Proc(D) 6= no, Proc(D) 6= ∅, and the children of the node are labelled with the DP
problems in Proc(D)

If all leaves of the tree are labelled with “yes”, then R is Q-terminating. Otherwise, if
there is a leaf labelled with “no” and if all processors used on the path from the root to
this leaf are complete, then R is not Q-terminating.

Example 2.15. If D0 is the initial DP problem (DP(R),Q,R,m) and Proc0, Proc1, and
Proc2 are sound processors with Proc0(D0) = {D1,D2}, Proc1(D1) = ∅, and Proc2(D2) =
∅ (left tree in Figure 2.16), then one can conclude termination. But if Proc1(D1) =
{D3,D4,D5} and Proc2(D2) = no, and both Proc0 and Proc2 are complete (right tree in
Figure 2.16), then one can conclude non-termination.

D0

zzz
z DDD

D

D1 D2

yes yes

D0

{{{
{ CCC

C

D1

{{{
{ CCC

C D2

D3 D4 D5 no

Figure 2.16.: Trees for Termination Proofs in the Dependency Pair Framework

In the remainder of the thesis, we present several sound processors which can be used
for termination analysis within the DP framework. Of course, it is desirable to find
processors which transform a DP problem (P ,Q,R, f) into a set of “simpler” problems
and whose application can never “harm”. Therefore, we are particularly interested in
processors which decrease P , NF (Q), and R. As stated by Lemma 2.4, decreasing the
set of rules R and decreasing NF (Q) leads to a more restricted rewrite relation and thus,
it can never transform a non-infinite DP problem into an infinite one. In other words,
any processor which removes nodes and edges from P , which removes rules from R, and
which adds terms to Q (and thereby decreases NF (Q)) is complete.

A corresponding lemma in the DP approach also holds for the termination case but not
for the innermost case. Consider for example P = {F(a) → F(a)},R = {a → b}. There
is no infinite innermost P-chain over R, but there is an infinite innermost P-chain over
the empty TRS. Thus, removing rules can introduce infinite chains and thereby prevent
a successful innermost termination proof.

Lemma 2.17 (Completeness of Processors). Let Proc be a processor where for all DP
problems (P ,Q,R, f) the result of Proc((P ,Q,R, f)) is not no and for all (P ′,Q′,R′, f ′) ∈
Proc((P ,Q,R, f)) we have P ′ ⊆ P, NF (Q′) ⊆ NF (Q), and R′ ⊆ R. Then Proc is
complete.

2.2. Dependency Pairs 15

Summary of Chapter 2

In this chapter we have introduced Q-restricted rewriting which allows to represent full
and innermost rewriting in a uniform way. The additional flexibility of Q also helps to
model innermost evaluation in programming languages more accurately. Moreover, we
have extended the DP approach of [AG00] to a DP framework which allows a modular
combination of termination techniques by formulating them as processors.

Most of this work has already been published by us in [GTS05a], but there are some
extensions which are only present in this thesis, namely the pair-graph, the set Q, and the
improved check to detect that Q-restricted rewriting is more restrictive than innermost
rewriting.

It remains to present and extend existing processors and to develop new processors.
This will be done in the following chapters.

3. Processors Without Search

In this chapter we will see processors which always simplify DP problems as they never
increase P , R, or NF (Q).

The processors of Section 3.1 are based on the dependency graph, a concept which is well
known already in the early work about dependency pairs [AG00]. Using the dependency
graph one can decompose DP problems. For example, these processors allow to prove
termination of DIV and MINUS in Example 2.8 independently. As the dependency graph
is not computable, different estimations are proposed in [AG00, GTS05b, HM05, Mid01,
Mid02]. The problem is that all these estimations have been developed for full- or for
innermost-rewriting but not for Q-restricted rewriting. Therefore, in Section 3.1 and
Section 3.4 we present new estimations for dependency graphs which integrate most ideas
of the known estimations4 and which generalize these ideas to Q-restricted rewriting.

An improved version of the processor of [GTS05a] which can enlarge the set Q to
lhs(R) is presented in Section 3.2. This processor allows to switch from full termination
to innermost termination and subsumes the result of [Gra95] that for locally confluent
overlay systems innermost termination and termination coincide.

In Section 3.3 we recapitulate the well-known concept of usable rules [AG00]. The
usable rules are those rules that are used to evaluate the arguments of the right-hand
sides of the dependency pairs. Using the corresponding processor one can replace the
TRS R of a DP problem by the smaller TRS containing only the usable rules. For
example, for MINUS there are no usable rules and for DIV only the minus-rules are usable
in Example 2.8. The problem with the concept of usable rules is again that up to now
they were only presented for full- and for innermost-rewriting. But the situation is even
worse.

There are different definitions of usable rules [AG00, GTS05b, GTSF06]5 and it is
unclear whether one can exchange the definition of usable rules in different papers without
invalidating the theorems that make use of usable rules. To this end we present a new
semantic version of usable rules and show that all previous versions of usable rules are
estimations of the semantic version of usable rules. Moreover, we show for the various
processors that rely on usable rules that they are correct for arbitrary estimations of usable
rules (which over-approximate the set of usable rules). Then we present a new estimation
in Section 3.3 for the general case of Q-restricted rewriting which is better than every
previous version of usable rules. A similar solution will be presented in Section 3.1 in
order to combine the different syntactic versions of Cap.

Finally, in Section 3.5 we will show processors to remove terms from Q. Although
their application results in larger sets NF (Q), they do not harm, since only terms are
removed which cannot block reductions of R and P any more. On the contrary, often
these processors can transform DP problems with NF (Q) ⊂ NF (R) to DP problems with
NF (Q) = NF (R). In this way, all those techniques become applicable which are only

4We do not integrate the estimations based on tree automata of [Mid01].
5We do not consider the generalized usable rules of [GTSS07, Definition 5] in this chapter since these

rules depend on a reduction pair, a concept we will introduce in the next chapter.

18 Chapter 3. Processors Without Search

available for innermost termination.

What all processors of this chapter have in common is that they can be automated
efficiently, as there are no challenging search problems arising when implementing these
processor.

To illustrate the different processors we use the following running example throughout
this chapter. Note that we do not continue with the termination proof of Example 2.8
as that TRS was already shown to be terminating in many papers using standard orders
with techniques that have already been developed in [AG00].

Example 3.1. We consider a TRS for addition and multiplication of natural numbers
combined with a variant of the TRS of Toyama [Toy87]. Here, multiplication is computed
with the help of an accumulator in the third argument.

isZero(0)→ true (9)

isZero(s(x))→ false (10)

plus(0, y)→ y (11)

plus(s(x), y)→ s(plus(x, y)) (12)

plus(plus(x, y), z)→ plus(x, plus(y, z)) (13)

times(x, y)→ mul(x, y, 0) (14)

mul(x, y, z)→ if(isZero(x), x, y, z) (15)

if(true, x, y, z)→ z (16)

if(false, s(x), y, z)→ mul(x, y, plus(y, z)) (17)

f(s(0), s(s(0)), x)→ f(x, x, x) (18)

3.1. Dependency Graph

We now present a processor to decompose a DP problem into several separate sub-
problems. To this end, one tries to determine which pairs can follow each other in chains
by constructing a so-called dependency graph. In contrast to the classical DP approach,
now the dependency graph can be (re-)computed at any time during the termination
proof. This leads to very modular proofs, since one may always decompose DP problems
into sub-problems which can be solved independently, e.g., by different DP processors.

Definition 3.2 (Dependency Graph). Let (P ,Q,R, f) be a DP problem where the pair-
graph P has the set of nodes N . The (P ,Q,R)-dependency graph is a pair-graph (N,E)
and E contains an edge from s → t to u → v iff s → t, u → v is a (P ,Q,R)-chain
(iff s → t, u → v is a path in P and there is substitution σ such that tσ Q→∗R uσ and
{sσ, uσ} ⊆ NF (Q)).

Obviously, whenever there is no edge between s → t and u → v in the dependency
graph then one can delete all corresponding edges in P . Since the dependency graph is in
general not computable, for automation one constructs an estimated graph. To this end,
one has to approximate whether two pairs s → t and u → v form a (P ,Q,R)-chain. In
this case, one draws an arc from s → t to u → v. In this thesis we only consider sound
estimations that contain the real dependency graph. Then, one may remove all edges in
P that are not contained in the estimated graph.

3.1. Dependency Graph 19

Theorem 3.3 (Processors Based on the Dependency Graph). The following processor
Proc is sound and complete. For a DP problem (P ,Q,R, f) with P = (N,E) the processor
Proc returns {(P ∩ P ′,Q,R, f)}, where P ′ is an estimated (P ,Q,R)-dependency graph.

The next step is to exploit the graph-structure of the pair-graph of a given DP problem.
An infinite chain corresponds to an infinite path in the pair-graph. And as this graph is
finite, every infinite chain in the graph must correspond to a cycle in the graph. Therefore,
for every DP problem (P ,Q,R, f) it is sufficient to prove absence of infinite (minimal)
chains for maximal cycles (so-called strongly connected components, SCCs) of P . To be
more precise, a subgraph P ′ of P is called a cycle iff in P ′ every node n is reachable from
every other node (including n itself). A cycle P ′ is called an SCC if P ′ is not a proper
subgraph of any other cycle.

Theorem 3.4 (Processor Based on Graph Decomposition). The following processor Proc
is sound and complete. For a DP problem (P ,Q,R, f) with P = (N,E) the processor
Proc returns {(P1,Q,R, f), . . . , (Pn,Q,R, f)}, where P1, . . . ,Pn are the SCCs of P.

Example 3.5. For the TRS of the running example of this chapter (Example 3.1) we
obtain the following set of dependency pairs.

PLUS(s(x), y)→ PLUS(x, y) (19)

PLUS(plus(x, y), z)→ PLUS(x, plus(y, z)) (20)

PLUS(plus(x, y), z)→ PLUS(y, z) (21)

TIMES(x, y)→ MUL(x, y, 0) (22)

MUL(x, y, z)→ IF(isZero(x), x, y, z) (23)

MUL(x, y, z)→ ISZERO(x) (24)

IF(false, s(x), y, z)→ MUL(x, y, plus(y, z)) (25)

IF(false, s(x), y, z)→ PLUS(y, z) (26)

F(s(0), s(s(0)), x)→ F(x, x, x) (27)

The dependency graph of the initial DP problem has the following structure.

(22)

��

// (23)
OO

��

// (26) //

�� ""E
EE

EE
EE

E
(19)
OO

��

<<

||yy
yy
yy
yy

(24) (25)oo (27) (20)
JJ

(21)//oo
TT

This graph contains two SCCs. The first SCC is the subgraph containing the recur-
sive dependency pairs for multiplication (23) and (25) and the second SCC contains
all dependency pairs for the addition rules (19), (20), and (21). Thus, when applying
Theorem 3.3 and Theorem 3.4 we obtain the two new DP problems ((23)↔ (25),∅,R,m)
and ({(19), (20), (21)},∅,R,m).6 From now on we can prove termination of addition and
multiplication independently.

In [GTS05a] the previous two theorems were integrated in one theorem, which computed
the SCCs P1, . . . ,Pn of the (estimated) dependency graph and then returned the set of

6Recall that the set {(19), (20), (21)} represents the pair-graph where every two (possibly identical) pairs
are connected.

20 Chapter 3. Processors Without Search

pairs of every Pi as result. Note that this combination was necessary as P was a set of
pairs and there was no possibility to store the structure of the (estimated) dependency
graph in P . This older approach has the disadvantage that when using the combined
theorem a second time in a termination proof, one has to recompute all edges. However,
as we have defined P to be a graph, we just have to check the connections between pairs
that are still connected. So in Example 3.5 we will never again check whether (23) is
connected to itself. Thus, the graph structure increases efficiency. For an example where
this effect occurs we refer to a later state in the termination proof of the running example
of this section (Example 3.22).

Moreover, the graph structure increases modularity. It is now easily possible to sepa-
rately apply various (possible incomparable) dependency graph estimations to delete all
edges that can be removed by at least one estimation. Of course, it is possible to develop
a processor that integrates all techniques to delete edges and performs this accumulated
deletions of edges internally. However, this would require a large combined theorem which
has to be updated with every new technique for edge deletion that is discovered in the
future. And such a combined theorem is clearly less desirable than presenting many
separate ideas to delete edges and then combine them in a modular way.

Still, the question how to estimate the dependency graph remains. In the classical
dependency pair approach, several such approximations were developed and for example,
all of them would return the graph given in Example 3.5 with an additional edge from
(27) to itself.7 However, instead of (P ,Q,R)-chains, here one only considered chains
where Q = ∅ (for full termination) or where Q = lhs(R) (for innermost termination).
The latter were called “innermost chains”. By Lemma 2.4, every (P ,Q,R)-chain is also
a (P ,∅,R)-chain (i.e., an ordinary chain in the classical dependency pair approach) and
if NF (Q) ⊆ NF (R), it is also an innermost chain. Thus, all existing methods to (over-
)approximate chains in the dependency pair approach can also be used to approximate
(P ,Q,R)-chains for any Q. Moreover, if NF (Q) ⊆ NF (R), then all approximations for
innermost chains can be applied as well. Hence, one can still use the existing estimation
techniques for (innermost) dependency graphs in order to estimate (P ,Q,R)-dependency
graphs.

The basic idea of most current estimations is the following. To estimate whether two
pairs s → t and u → v form a chain, essentially it must be checked whether there is
some substitution σ such that sσ and uσ are in Q-normal form and tσ Q→∗R uσ. To
this end it is approximated what the term tσ looks like after a reduction. Therefore, a
function Cap8 replaces all subterms of t at position p by a fresh variable, whenever in the
reduction of tσ it is possible to perform a rewrite step at position p. Then it is checked
whether the resulting term Cap(t) can be unified with u. If this is not the case it can be
guaranteed that s → t and u → v do not form a chain. Moreover, in the innermost case
the information that sσ and uσ are normal forms is sometimes also integrated into Cap.
This is done by providing an additional parameter S for Cap where S contains terms like
s and u which are instantiated to normal forms. The set S can also be used if CapS(t)
and u are unifiable. If the mgu instantiates a term of S such that this instance is not in
normal form then there can also be no chain. We illustrate both uses of S in the following
small example.

7For the approximation of [Mid01] we considered the three presented approximation mappings s, nv,
and g.

8In [AG00] one additionally uses the function Ren. But as in [GTS05b], we here combine the traditional
functions Ren and Cap of [AG00] into one new function Cap.

3.1. Dependency Graph 21

Example 3.6. Let R consist of the following rules and let Q = lhs(R).

s(p(x))→ x

p(s(x))→ x

isNegative(p(x))→ true

f(s(x), true)→ f(s(x), isNegative(x))

g(s(y))→ h(y)

h(p(z))→ g(s(p(z)))

Here, s and p denote the successor- and the predecessor-function on the integers, and
isNegative checks whether a number is negative. To demonstrate the use of the set S for
Cap, we consider the connections between the following three DPs.

F(s(x), true)→ F(s(x), isNegative(x)) (28)

G(s(y))→ H(y) (29)

H(p(z))→ G(s(p(z))) (30)

We first check whether (28) has an outgoing edge in the dependency graph. Therefore we
compute CapS(F(s(x), isNegative(x))) for S = {F(s(x), true), . . . }. Obviously, the subterm
isNegative(x)σ can only be reduced if x is instantiated by p(. . .). But this results in a
conflict w.r.t. S, since then the term in S is instantiated to F(s(p(. . .), true)) which is
not in normal form. Hence, due to S we can detect that CapS(F(s(x), isNegative(x))) =
F(s(x), isNegative(x)). And since that term is not unifiable with any left-hand side of the
three dependency pairs, we have proven that (28) has no outgoing edges.

Another effect can be seen when checking the connection between (29) and (30). There,
we have S = {G(s(y)),H(p(z))} and the term CapS(H(y)) = H(y) is unifiable with H(p(z)),
the left-hand side of (30). However, the mgu instantiates y by p(z) and thus, the term
G(s(y)) ∈ S is instantiated such that it is not in Q-normal form any more. Hence, again
due to S there is no connection.

Note that in both cases the use of S was essential. If one drops the condition that
left-hand sides of dependency pairs have to be instantiated to normal forms, then both
(28), (28), . . . and (29), (30), (29), (30), . . . are infinite chains. And exactly this condition
is exploited by S.

However, there have been different definitions of the function Cap which are all syntac-
tical, cf. [AG00, GTS05b, HM05]. Here, we now use the new approach where we define
Cap semantically and then define a concept of an estimated Cap function. It turns out
that all previous definitions of Cap indeed estimate our Cap function.

We obtain the following benefit from a semantic definition of the Cap function: We can
easily reformulate all processors relying (possibly indirectly) on Cap in a way that these
processors can be used for arbitrary estimations of Cap. Then we adapt the proof of these
processors for an estimated Cap-function once. In contrast, if there is no concept of an
estimated Cap-function then every time we change the definition of Cap, we have to check
and possibly adapt the proof for every processor relying on Cap. Note that this usually
involves a lot of work, since many processors rely (indirectly) on Cap. To be more precise
we make use of Cap in the processors of Theorems 3.3 and 3.25, in 5 of the 10 processors
of Chapter 4, in all processors presented in Chapter 5, and in half of the processors in
Chapter 6.

22 Chapter 3. Processors Without Search

Note that we allow Cap to be applied on generalized TRSs, i.e., TRSs where the rules
are arbitrary pairs of terms which do not have to satisfy the variable condition. This will
be required later in Section 3.4, which deals with alternative techniques to estimate the
dependency graph.

Definition 3.7 (Cap-Function). The Cap-function is a mapping from a generalized TRS
R, two sets of terms Q and S, and a term t to another term t′ = CapSR,Q(t). The term
t′ is obtained by replacing all maximal subterms t|p of t by fresh variables whenever there
is a substitution σ and a term u such that Sσ ⊆ NF (Q) and tσ Q→∗R Q→R,p u.9 Moreover,
whenever t|p is a variable and there is any reduction possible in t|pσ then we have to
replace at least t|p by a fresh variable.10

An estimated Cap-function ECap is a function with the following property. Whenever
Cap replaces a subterm at a position p by a fresh variable then there is a subterm at a
higher position p′ ≤ p which is replaced by a fresh variable using ECap.

The essential property of an estimated Cap-function is that ECap(t) contains the struc-
ture of the term tσ after any number of reduction steps.

Lemma 3.8 (Properties of Cap). Let ECap be any estimation of the Cap function. If
tσ Q→∗R u for some substitution σ such that Sσ ⊆ NF (Q) then u = ECapSR,Q(t)µ for
some substitution µ which differs from σ only on the fresh variables that are introduced
by ECap.

Using an estimated Cap function we can now give a first estimation of the dependency
graph.

Definition 3.9 (Estimation of the Dependency Graph). Let ECap be an estimated Cap
function. Then the corresponding estimated (P ,Q,R)-dependency graph with P = (N,E)

is defined as (N,E ′) where (s→ t, u→ v) ∈ E ′ iff ECap
{s,u}
R,Q (t) and u are unifiable by an

mgu δ such that sδ and uδ are in Q-normal form.

Theorem 3.10 (Soundness of the Dependency Graph Estimation). The estimated de-
pendency graph of Definition 3.9 contains the dependency graph.

Now that we know how to estimate the dependency graph by using Cap of course we
also need an estimated Cap-function. The estimation in [AG00] replaces all subterms
with defined root by a fresh variable.11 However, subterms that occurred in the set S are
not replaced, if one is in the innermost case. The more recent approach of [GTS05b] uses
unification with left-hand sides instead of just looking at the root symbol. We general-
ize the approach of [GTS05b] for full- or innermost-rewriting to Q-restricted rewriting.
Basically, we take the estimation of [GTS05b] and integrate various checks on Q-normal
forms resulting in our new improved estimation ICap.

The main idea to compute ICapSR,Q(t) is as follows. If t is a variable then it is replaced by
a fresh one if it cannot be guaranteed that t is instantiated with a normal form w.r.t. Q→R.

9Throughout this thesis →1→2 denotes the composition of binary relations →1 and →2.
10It may be the case that we cannot directly rewrite at the position of the variable but only at a

position deeper in the term. Consider Q = {f(a)}, t = f(x),S = {t},R = {a → b}. Then clearly
for σ = {x/g(a)} we obtain tσ = f(g(a)) Q→R f(g(b)) for the Q-normal form tσ. But there is no
possibility to rewrite xσ at the root position as the only possible substitution σ′ = {x/a} conflicts
with the condition that tσ′ must be a Q-normal form.

11In the termination case additionally the function Ren is applied, which replaces every occurrence of a
variable by a fresh one. Here, the effect of Ren is already integrated in Cap.

3.1. Dependency Graph 23

Otherwise, if t is a function application one applies ICap on the arguments of t resulting
in t′. In this way by Lemma 3.8 we know that t′ has the structure of the term resulting
from rewriting an instance of t below the root. Then t′ is the result if one can guarantee
that there is no reduction at the root position. However, a root reduction can only be
performed if t′ is unifiable with some left-hand side of a rule. If the mgu satisfies some
normal-form conditions then ICap estimates that a reduction may be possible at the root
level and returns a fresh variable. Otherwise, t′ is returned. This idea is presented more
formally in the following definition.

Definition 3.11 (ICap). Let Q and S be sets of terms, let R be a generalized TRS. We
define the improved estimated Cap-function ICap as

• ICapSR,Q(x) = x if NF (Q) ⊆ NF (R) and x is a subterm of a term in S.

• ICapSR,Q(f(t1, . . . , tn)) = f(ICapSR,Q(t1), . . . , ICapSR,Q(tn)) if for every mgu δ of

f(ICapSR,Q(t1), . . . , ICapSR,Q(tn)) and some left-hand side ` of a rule ` → r ∈ R
there is some term in Sδ ∪ {`δ|1, . . . , `δ|n}12 that is not in Q-normal form.

• ICapSR,Q(t) is a fresh variable, otherwise.

Lemma 3.12. ICap is an estimated Cap-function.

Of course one can omit some checks on Q-normal forms in Definition 3.11. Then one
still has an estimated Cap-function as then subterms are replaced by fresh variables at
even higher positions.

To see the difference between the estimation ECap of [AG00] which replaces every term
with defined root by a fresh variable and the new estimation ICap, we consider the TRSR
of Example 3.5, Q = S = ∅, and the term t = isZero(true). We obtain ECapSR,Q(t) = xfresh
as isZero is defined in R. In contrast ICapSR,Q(t) = t since all isZero-rules require that the
argument is 0 or s(x), but there is no rule for true as argument.

Nevertheless, especially for TRSs representing first-order functional programs we often
get the same estimated graphs regardless of whether we use the estimated Cap-function
of [AG00] or ICap of Definition 3.11. However, for TRSs representing higher-order func-
tional programs, ICap produces much better estimations. This is demonstrated already
in [GTS05b] and here we refer to Example 6.1 in Chapter 6 about handling TRSs that
encode higher-order functions.

Example 3.13. We continue the termination proof of the TRS of Example 3.5.
The estimated dependency graph computed by Definition 3.9 using ICap just contains

one edge more than the real dependency graph. The problem is that it cannot be detected
that there is no edge from (27) to itself. We have to unify the terms ICapSR,Q(F(x, x, x)) =
F(x1, x2, x3) and F(s(0), s(s(0)), y) for the set S = {F(s(0), s(s(0)), x),F(s(0), s(s(0)), y)}.
These terms are obviously unifiable and as Q = ∅ every term is in Q-normal form. Thus,
Definition 3.9 cannot detect that there is no edge from (27) to (27) in the dependency
graph.

Hence, after applying Theorem 3.3 and Theorem 3.4 we partition the initial DP prob-
lem into the three new DP problems D1 = ({(19), (20), (21)},∅,R,m), D2 = ((23) ↔
(25),∅,R,m), and D3 = ({(27)},∅,R,m).

12We do not apply δ on the subterms of ` as ` may be a variable for a generalized TRS.

24 Chapter 3. Processors Without Search

Note that in the innermost case where NF (Q) ⊆ NF (R) we would be able to drop the
edge from (27) to (27). The reason is that then ICapSR,Q(F(x, x, x)) is the term F(x, x, x)
which does not unify with F(s(0), s(s(0)), y).

In Example 3.13 we have seen a first reason that it is desirable to have a processor
which changes from termination to innermost termination, as then the DP problem D3

can be deleted. This processor will be presented in the following section.

3.2. Switching to Innermost Termination

As indicated by Lemma 2.17, it is always advantageous to obtain a smaller set NF (Q)
which can be done by enlarging Q. It is especially important to obtain a DP problem
(P ,Q,R, f) with NF (Q) ⊆ NF (R) as there are many processors which produce better
result for the innermost case. We have already seen this in the estimation of the depen-
dency graph (Section 3.1), and we will see it again many times throughout this thesis.
For example, there are less usable rules (Section 3.3) and the transformations of DPs are
more often applicable (Chapter 5).

In the classical dependency pair approach, a switch from termination to innermost
termination was only possible if the whole TRS belongs to a class where innermost ter-
mination implies termination. In particular, this holds for overlay systems (i.e., TRSs
where no left-hand side unifies with a non-variable proper subterm of another left-hand
side) which are locally confluent [Gra95]. So in particular, this includes non-overlapping
TRSs.

Instead, the following processor only requires local confluence for the rules R of the cur-
rent DP problem and no left-hand side of a rule may unify with a non-variable subterm of
a left-hand side of a pair in P . Note that often the TRS R is usually just a small subset of
the original TRS due to previous simplifications by other processors, and R does not have
to be an overlay system, but the rules may have arbitrary critical pairs. One only requires
that R may not overlap with the pairs in P . And again, after applying the processors
in Section 3.1 each component P contains (often strictly) less pairs than the dependency
pairs of the original TRS which is crucial for the running example, cf. Example 3.22. All
this clearly extends the known classes where innermost termination implies termination.
Finally, we show that our results also provide a new simple proof for the above result of
[Gra95].

Theorem 3.14 (Processor to Switch to Innermost Termination). The following processor
is sound and complete. For a problem (P ,Q,R, f), Proc returns

• {(P , lhs(R),R, f)}, if

– for all s→ t ∈ P, non-variable subterms of s do not unify with left-hand sides
of rules from R,

– Q→R is locally confluent on the set of Q-terminating terms w.r.t. R,

– NF (R) ⊆ NF (Q), and

– f = m

• {(P ,Q,R, f)}, otherwise.

3.2. Switching to Innermost Termination 25

The following examples show that each of the requirements is necessary for the sound-
ness of Theorem 3.14. Here, we use the important property that in an innermost chain
we always have to rewrite the instantiated right-hand sides to a normal form w.r.t. R.

Example 3.15. If we do not require minimality then it may happen that there is no
normal form that we can reach from the right-hand sides of P . Consider P = {F(x) →
F(a)} together with R = {a → a} and Q = ∅. Here, there obviously is an infinite chain
although it is not minimal. However, there is no infinite (P , lhs(R),R)-chain any more,
as F(a) is not reducible to an R-normal form.

Example 3.16. It might occur that rewriting right-hand sides can reach instances of left-
hand sides of P but when rewriting further to a normal form one obtains no instance of a
left-hand side of P any more. This is especially true if there are overlaps between P and
R as then a reduction with R might destroy the redex w.r.t. P . For P = {F(a)→ F(a)},
R = {a→ b}, and Q = ∅ there obviously is an infinite minimal chain. But if we change
Q to be the set of left-hand sides of R then there is no infinite chain any more. As F(a) is
not a normal form we have to reduce it to F(b) which cannot be matched by the left-hand
side of the pair in P any more.

Example 3.17. A possible extension of the theorem would be to drop the requirement
NF (R) ⊆ NF (Q) and then return as new second component either Q ∪ lhs(R) or just
lhs(R).

In the former case we encounter the same kind of problem as in the previous example.
Consider P = {F(x) → F(a)}, R = {a → b}, and Q = {b}. Then there is an infinite
minimal chain but again we are forced to evaluate the right-hand side F(a) to F(b) which
is not in normal form w.r.t. Q ∪ lhs(R). Hence, returning {(P ,Q ∪ lhs(R),R, f)} is
unsound.

To obtain a counterexample for the latter case we keep the same P and Q and just
replace R by {a → g(b), g(x) → g(x)}. Then again there is the obvious chain for the
original DP problem where we never perform a rewrite step with R. Note that this chain
really is a minimal chain as the infinite reduction of a→R g(b)→R g(b) . . . is blocked by
Q. But when replacing Q by lhs(R) the infinite reduction is not blocked any more and
like in Example 3.15 we cannot reduce the right-hand side to a normal form any more.

Example 3.18. As a final counterexample for Theorem 3.14 we show that local confluence
is needed. Here we can choose the example of Toyama [Toy87]. For P = {F(0, 1, x) →
F(x, x, x)}, R = {c(x, y) → x, c(x, y) → y}, and Q = ∅ there is an infinite chain if one
instantiates x by c(0, 1):

F(0, 1, c(0, 1))→P F(c(0, 1), c(0, 1), c(0, 1))→∗R F(0, 1, c(0, 1))→P . . .

However, in the innermost case x must be instantiated by a normal form which cannot
match both 0 and 1. Thus, there is no (P , lhs(R),R)-chain which clearly shows that local
confluence is essential.

Before showing the advantages of Theorem 3.14 at the end of Section 3.2 by contin-
uing the termination proof of Example 3.13, we will consider how this processor can be
applied to a DP problem (P ,Q,R,m). All conditions but the second one can be easily
checked. The only problem is to check local confluence of Q→R. In practice, Theorem 3.14
is usually applied for Q = ∅ (i.e., to switch from full to innermost termination). Then

26 Chapter 3. Processors Without Search

local confluence is equivalent to joinability of critical pairs. This property can easily be
approximated by checking joinability in a given number of rewriting steps.

For Q 6= ∅ we will at least give a sufficient criterion for local confluence of Q→R. In this
case it suffices if R has only trivial critical pairs. With such syntactic sufficient conditions
for its applicability, Theorem 3.14 can easily be automated.

Lemma 3.19. Let all critical pairs of R be trivial and let NF (R) ⊆ NF (Q). Then Q→R
is locally confluent on the set of Q-terminating terms w.r.t. R.

The following two examples demonstrate that the restriction NF (R) ⊆ NF (Q) is es-
sential and that indeed we can only guarantee local confluence on those terms that are
terminating w.r.t. Q→R. However, we already have the requirement NF (R) ⊆ NF (Q)
in Theorem 3.14 and we only need confluence on terminating terms. Thus, these two
restriction are not very severe.

Example 3.20. This example demonstrates that local confluence can only be ensured
for terminating terms. Let R = {f(x)→ c, a→ b, b→ b} and Q = {b}. Then R is even
orthogonal and NF (R) ⊆ NF (Q). But for the term t = f(a) we have the two reductions
t Q→R c and t Q→R f(b). And these two new terms are not joinable as the only way to
reduce f(b) is to reduce it to itself, and c is a normal form w.r.t. Q→R.

Example 3.21. If NF (R) is not a subset of NF (Q) then nothing at all can be said about
local confluence of Q→R. For R = {f(x) → c, a → b} and Q = {b} the term t = f(a) is
terminating and it has two different normal forms w.r.t. Q→R: we obtain the reductions
t Q→R c and t Q→R f(b).

As future work it remains to be investigated, whether one really needs trivial critical
pairs of R, or whether it is possible to develop some kind of joinability criterion.

We continue in the termination proof of the running example by using Theorem 3.14.

Example 3.22. We recapitulate some rules and pairs of Example 3.5.

plus(plus(x, y), z)→ plus(x, plus(y, z)) (13)

PLUS(s(x), y)→ PLUS(x, y) (19)

PLUS(plus(x, y), z)→ PLUS(x, plus(y, z)) (20)

PLUS(plus(x, y), z)→ PLUS(y, z) (21)

MUL(x, y, z)→ IF(isZero(x), x, y, z) (23)

IF(false, s(x), y, z)→ MUL(x, y, plus(y, z)) (25)

F(0, s(0), x)→ F(x, x, x) (27)

At the end of Example 3.13 the DP problems D1 = ({(19), (20), (21)},∅,R,m), D2 =
((23)↔ (25),∅,R,m), and D3 = ({(27)},∅,R,m) remained.

Note thatR is locally confluent but it is not an overlay system as rule (13) overlaps with
itself at a non-root position. Thus a global approach working on the whole TRS is not
applicable. Moreover, even for the initial DP problem Theorem 3.14 is not applicable as
here the dependency pairs (20) and (21) violate the condition that P andR do not overlap.
However, after having split the initial DP problem by the processors of Theorem 3.3
and Theorem 3.4, the situation is different. For the two DP problems D2 and D3 the

3.3. Usable Rules 27

requirements of Theorem 3.14 are satisfied. Thus, we can replace these DP problems by
D4 = ((23)↔ (25), lhs(R),R,m) and D5 = ({(27)}, lhs(R),R,m).

As we have increased the Q-component of these two DP problems it now makes sense
to test whether we can delete further edges by Theorem 3.3. For D4 we cannot delete any
edge, but note that due to the graph structure of the P-component of DP problems we
only have to examine the two existing edges instead of all four possible edges.

For D5 we delete the looping edge as we are now in the innermost case. That this is
possible was already explained in more detail in Example 3.13. Hence, by Theorem 3.4
this DP problem is solved. This is especially important as processors based on well-
founded orders – which we will see in Chapter 4 – can only be successful on D5 if the
order is not Cε-compatible. (A Cε-compatible order

(
%

)
must satisfy c(x, y)

(
%

)
x and

c(x, y)
(
%

)
y for some fresh function symbol c.) The problem is that almost all orders used

for automated termination proving are Cε-compatible.13

To summarize, we now remain with the new DP problems D4 and the unchanged DP
problem D1.

Note that by Theorem 3.14, the observation that innermost termination implies termi-
nation for locally confluent overlay systems is obtained as a corollary. While the original
proof for this important result of Gramlich [Gra95] is not at all trivial, the proof of
Theorem 3.14 is quite simple. While there already exists another easy proof [Mid94], in
this way we get an alternative simple proof for Gramlich’s result.

Corollary 3.23 ([Gra95, Theorem 3.23]). Let R be a locally confluent overlay system. If
R is innermost terminating, then it is terminating.

3.3. Usable Rules

If the Q-restricted rewrite relation is contained in the innermost rewrite relation (i.e., if
NF (Q) ⊆ NF (R)), one can remove certain rules from the rewrite system R. That this
has no disadvantage is a result of Lemma 2.17, but on the contrary, often it is crucial
for a successful termination proof. For example, when using the processors of Chapter 4
which are based on well-founded orders, then less rules imply less constraints to satisfy.

The essential idea to reduce the rewrite system R is that whenever there is a reduction
tσ Q→∗R sσ for some R-normal substitution σ then only the so-called usable rules can be
used in this reduction. Hence, instead of all rules one just has to consider the subset of
usable rules which is often much smaller.

Unfortunately, here we encounter the same scenario as for the Cap-function, cf. the
discussion on page 21. There is no semantic definition of usable rules but one can find
different syntactic definitions of usable rules [AG00, GTS05b, GTSF06] which produce
incomparable sets of usable rules. Up to now with every improvement of usable rules one
has to check for every processor relying on usable rules whether that processor is also
correct with the improved version of usable rules.

For that reason we present a new semantic definition of usable rules. It turns out that all
previous syntactic definitions of usable rules are just estimations of our semantic version of
usable rules. Moreover, for all but one processor we have adapted the proof in a way that

13One exception is the class of polynomial orders with negative coefficients [HM07] which are able to
solve the constraints of D5. However, even these orders are not applicable on D3 due to the constraints
of the rules of R. Hence, again the switch to innermost is required.

28 Chapter 3. Processors Without Search

the theorem is valid for every estimation of usable rules without changing the theorem.
Only in case of the rewriting processor in Theorem 5.10 we had to add an additional
requirement. However, this new requirement is satisfied for all current estimations of
usable rules. For details we refer to Section 5.3 about the rewriting processor.

Originally, the usable rules were only introduced for innermost rewriting. For each term
t the usable rules of t should contain all rules that can be used to rewrite an instance of
t. However, as one is in the innermost case the variables of t may only be instantiated by
normal forms. If s→ t is a dependency pair then one can restrict the possible substitutions
σ even further: one is only interested in those rules that can be used in a reduction of tσ
if sσ is in normal form. We generalize this idea to Q-restricted rewriting and we replace
the single term s by a set S of terms that must all be instantiated to normal forms.

Definition 3.24 (Usable Rules). Let Q and S be sets of terms, let R be a TRS. We define
the usable rules USR,Q(t) of a term t as the smallest subset of R which satisfies the following
condition. Whenever there is a substitution σ and a term u such that Sσ ⊆ NF (Q) and
tσ Q→∗R Q→`→r u for some rule `→ r ∈ R then `→ r ∈ USR,Q(t).

The usable rules of a DP problem (P ,Q,R, f) are U(P ,Q,R) =
⋃
s→t∈P U

{s}
R,Q(t).

A function EU estimates the usable rules iff USR,Q(t) ⊆ EUSR,Q(t) ⊆ R for all possible

inputs R, Q, S, and t. Again, EU(P ,Q,R) =
⋃
s→t∈P EU

{s}
R,Q(t).

Using this definition one immediately obtains the following theorem.

Theorem 3.25 (Processors Based on Usable Rules). Let EU be an estimation of usable
rules. Then the following processor Proc is sound and complete. For a DP problem
(P ,Q,R, f), Proc returns {(P ,Q, EU(P ,Q,R), f)}.

Note that for DP problems (P ,Q,R, f) with Q = ∅ virtually always all rules are usable
as one can instantiate a variable with a term containing redexes for every rule. Hence,
for termination there is hardly any difference between the usable rules and R, unless P is
right-ground. But for innermost termination one often obtains U(P ,Q,R) ⊂ R and can
successfully apply the above processor to simplify a DP problem.

The completeness of this processor is only due to our new notions of “Q-restricted
rewriting” and of “(P ,Q,R)-chains”, which use two separate components Q and R. With
Q we restrict potential redexes and R gives the possible rewrite steps. However, in the
original dependency pair approach there is only one corresponding component: the TRSR
determines both the redexes and the restriction on redexes. As a consequence, this proces-
sor would be incomplete in the original dependency pair approach, where one regarded in-
nermost termination and “innermost chains”. As an example let P = {F(a, x)→ F(x, x)}
and R = {f(a, x) → f(x, x), a → b}. Now there is no infinite innermost chain (i.e., no
infinite (P , lhs(R),R)-chain), since the left-hand side of the dependency pair in P is not
in lhs(R)-normal form. As there are no usable rules, this processor would replace R by
the empty set. In the DP framework, one would obtain the DP problem (P , lhs(R),∅, f)
which still has no infinite chain but in the classical dependency pair approach, the second
component of this DP problem would be disregarded. Since there is an infinite (mini-
mal) innermost chain of P ’s dependency pair if the underlying TRS is empty, then this
processor would be incomplete.

Before presenting an estimation of usable rules let us first recapitulate the ideas of
previous versions of usable rules. In [AG00, GTSF06] usable rules are essentially computed
as follows. First, all f -rules are marked as usable whenever a symbol f occurs in rule

3.3. Usable Rules 29

of P . Then, whenever a rule is usable and its right-hand side contains a symbol g then
all g-rules are usable as well. Further improvements to compute usable rules use the fact
that left-hand sides of P are instantiated to normal-forms [GTSF03], and unification is
performed instead of just looking at the root symbols [GTS05b]. Now we combine all
these improvements into one new definition and generalize from the innermost rewrite
relation to Q-restricted rewriting.

Definition 3.26 (Improved Estimated Usable Rules). Let Q and S be sets of terms and
let R be a TRS. Let ECap be an estimated Cap-function. The improved estimated usable
rules of a term t are defined as the smallest set IUSR,Q(t) ⊆ R such that

(i) If t = f(t1, . . . , tn), ` = f(`1, . . . , `n)→ r ∈ R, and if the terms f(ECapSR,Q(t1), . . . ,

ECapSR,Q(tn)) and ` are unifiable with the mgu δ such that all terms in ({`1, . . . , `n}∪
S)δ are in Q-normal form, then `→ r ∈ IUSR,Q(t).

(ii) If t = f(t1, . . . , tn) then IUSR,Q(ti) ⊆ IUSR,Q(t).

(iii) If ` = f(`1, . . . , `n)→ r ∈ IUSR,Q(t) then IU{`1,...,`n}R,Q (r) ⊆ IUSR,Q(t).

(iv) If t = x then IUSR,Q(t) = R in the case that x is not a subterm of any term in S or
NF (Q) 6⊆ NF (R).

Note that in the computation of the improved usable rules for a DP problem (P ,Q,R, f)
case (iv) never applies if NF (Q) ⊆ NF (R): In that computation t always is a subterm of
a right-hand side of P ∪ R and S contains the corresponding left-hand side or all direct
subterms of the left-hand side. Then due to the variable conditions of the TRSs P and
R each variable of t must be contained in S. This shows that Definition 3.26 produces
less rules than previous definitions of usable rules in [AG00, GTS05b, GTSF06]. Since
the usable rules in [GTSF06] do not use unification and since in [GTS05b] there is no
component S, it is easy to construct examples where Definition 3.26 results in strictly
less rules. Moreover, in [GTSF06] only the left-hand sides of pairs are integrated for
normal form checks in the usable rules calculation. This is in contrast to Definition 3.26
which is the first estimation which also considers the left-hand sides of rules for normal
form checks. That this can be useful is demonstrates in the following small example.

Example 3.27. Consider the TRS R with the following rules.

s(p(x))→ x

p(s(x))→ x

isPositive(s(x))→ true

isPositive(0)→ false

isPositive(p(x))→ isPositive(x)

f(p(x), true)→ f(p(x), isPositive(x))

To prove innermost termination we get a DP problem where P consists of the following
dependency pair.

F(p(x), true)→ F(p(x), isPositive(x))

Since the recursive isPositive-rule is usable, one has to add IU{p(x)}R,Q (isPositive(x)) to the
usable rules. Then, without the normal form check with the argument p(x) of the left-
hand side, all isPositive-rules are usable. However, if one performs the normal form check
then the rule isPositive(s(x))→ true is not usable.

30 Chapter 3. Processors Without Search

Note that the TRS is not terminating. Therefore, one cannot prove innermost termi-
nation if one does not consider the normal form checks. This shows that the integration
of additional normal form checks in the estimation of usable rules is sometimes essential.
Here, after having deleted the unusable rule isPositive(s(x))→ true one can indeed easily
prove innermost termination using the processors of the next chapter.

The following theorem provides the essential property of IU that it is an estimation of
U .

Theorem 3.28 (Soundness of the Improved Estimated Usable Rules). The function IU
to compute the improved estimated usable rules estimates U .

It is easy to see that the improved estimation of usable rules has a severe drawback
with condition (iv): if NF (Q) 6⊆ NF (R) then nearly always we obtain the situation that
there is no difference between usable rules and the whole TRS unless P and all rules that
are usable w.r.t. conditions (i)-(iii) are right-ground. Therefore, it might be tempting to
delete condition (iv) in Definition 3.26. Unfortunately, the following example of [Toy87]
shows that this is not possible.

Example 3.29. Let P = {F(0, 1, x) → F(x, x, x)}, let Q = ∅, and let R = {c(x, y) →
x, c(x, y)→ y}. As already seen in Example 3.18, there is an infinite chain if one instanti-
ates the variable x in P by c(0, 1). According to the conditions (i)-(iii) in Definition 3.26
there are no usable rules for this DP problem. If we now drop condition (iv), the usable
rules processor of Theorem 3.25 would result in the DP problem (P ,∅,∅, f) which is
finite. Thus, condition (iv) is essential for the correctness of IU .

Nevertheless, in Section 4 we will present new methods that can drop condition (iv)
even if one is not in the innermost case. Using these methods diminishes the difference
between proving termination and innermost termination considerably.

We now show how the DP problems in our running example can be simplified by the
usable rules processor of Theorem 3.25.

Example 3.30. We recapitulate the following pairs.

PLUS(s(x), y)→ PLUS(x, y) (19)

MUL(x, y, z)→ IF(isZero(x), x, y, z) (23)

IF(false, s(x), y, z)→ MUL(x, y, plus(y, z)) (25)

At the end of Example 3.22 we had to handle the two DP problems D1 and D4. We first
deal with the DP problem D1 = ({(19), (20), (21)},∅,R,m) containing the dependency
pairs for the plus-rules. As NF (∅) 6⊆ NF (R) and as there are variables in the right-hand
side PLUS(x, y) of (19), every rule is usable for this DP problem. Hence, an application
of Theorem 3.25 cannot simplify D1.

This is in contrast to the DP problem D4 = ((23)↔ (25), lhs(R),R,m). Here, the sub-
terms isZero(x) and plus(y, z) clearly unify with all isZero-rules, resp. plus-rules of R. As
NF (lhs(R)) ⊆ NF (R) we do not have to consider case (iv) in Definition 3.26 and thus the
improved estimated usable rules of this DP problem are R′ = {(9), (10), (11), (12), (13)}.
It turns out that for this DP problem, IU even computes the usable rules exactly.
Thus, when applying Theorem 3.25 we delete all remaining rules for computing multi-
plication and for f. As a result we obtain the simplified DP problem D6 = ((23) ↔
(25), lhs(R),R′,m).

3.4. Star-Estimation of the Dependency Graph 31

Here, we see a first example where from a termination proof of a TRS we result in a DP
problem (P ,Q,R, f) where NF (Q) ⊂ NF (R). This indicates that the generalizations
from innermost termination techniques to techniques handling the case NF (Q) ⊆ NF (R)
are strongly required.

Note that in the previous example it would be sufficient to determine the estimated
usable rules by just looking at the root symbols. As for the improved Cap-estimation, we
refer to the TRSs in Chapter 6 like Example 6.1. There, it is clearly demonstrated why
one needs the more powerful estimation of usable rules which is based on unification.

Before we can solve the remaining DP problems of Example 3.30 with the help of well-
founded orders in Chapter 4, in the following section we will see that usable rules can also
be used to estimate the dependency graph.

3.4. Star-Estimation of the Dependency Graph

To estimate the dependency graph in Section 3.1 we analyzed tσ Q→∗R uσ by approximating
what tσ will look like after some reduction steps. An alternative approach is taken in the
graph approximation EDG∗ [Mid02]. There, one reverses the rewrite direction, i.e., one
looks at the reversed TRS R−1 = {r → ` | ` → r ∈ R} and the reversed reduction
uσ →∗R−1 tσ. Now, the idea is again to look at what uσ will look like after some reduction
steps with R−1. Of course, to this end we can again use Cap. Note, that R−1 often is no
TRS but only a generalized TRS which may violate the variable condition. This is the
reason why we defined Cap also for generalized TRSs.

So the basic idea of the EDG∗-estimation is to note that s→ t and u→ v cannot form
a chain if Cap∅

R−1,∅(u) and t are not unifiable.
The idea of EDG∗ is then further improved for the innermost case resulting in the

graph approximation EIDG∗ [HM05]. For EIDG∗, instead of taking the whole TRS R,
one just considers the usable rules R′. To be more precise, instead of checking whether
Cap∅

R−1,∅(u) and t are unifiable, one checks whether Cap∅
R′−1,∅(u) and t are unifiable.

Here, R′ is the set of usable rules of t.
Now we use the ideas of EDG∗ and EIDG∗ to present a new graph estimation for

arbitrary estimations of Cap, for arbitrary estimations of U , and for Q-restricted rewriting
instead of full- or innermost-rewriting. As our notion of usable rules is independent of the
rewrite relation we do not even need two different versions.

Definition 3.31 (Star-Estimation of the Dependency Graph). Let ECap be an esti-
mated Cap-function, let EU estimate U . Then the corresponding estimated star-(P ,Q,R)-
dependency graph with P = (N,E) is defined as (N,E ′) where (s → t, u → v) ∈ E ′ iff
ECap∅

R′,∅(u) and t are unifiable by an mgu δ such that sδ and uδ are in Q-normal form.

Here, R′ are the reversed usable rules of t, i.e., R′ = (EU{s,u}R,Q (t))−1.

Theorem 3.32 (Soundness of the Star-Estimation of the Dependency Graph). The esti-
mated star-(P ,Q,R)-dependency graph of Definition 3.31 contains the (P ,Q,R)-depen-
dency graph.

Of course, by using the estimations given in Definitions 3.11 and 3.26, the star-estima-
tion of the dependency graph can easily be computed.

We consider the following example which demonstrates the difference between the de-
pendency graph estimations of Definitions 3.9 and 3.31.

32 Chapter 3. Processors Without Search

Example 3.33. Let R be the TRS of Example 3.5 and let Q = lhs(R). For P we take
the following pairs:

G(a, 0, x)→ G(a, isZero(x), x) (31)

G(b, 0, x)→ G(b, a, plus(x, x)) (32)

We start with deleting edges due to Definition 3.31. For (31) the usable rules are the two
rules (9) and (10) for isZero. Hence, the reversed usable rules for this pair areR′ = {true→
isZero(0), false → isZero(s(x))}. Now, we compute ICap∅

R′,∅(G(a, 0, x)) = G(a, 0, y). As
this term is not unifiable with any right-hand side of P , both edges starting in (31) are
deleted. The intuitive reason for this deletion is the fact that with Definition 3.31 we can
detect that no instance of isZero(x) can be rewritten to 0, as the only possible results of
isZero are true and false.

However, this reasoning is not possible with Definition 3.9. In that case we would have
detected that an instance isZero(x) can be reduced and therefore the term isZero(x) is
replaced by a fresh variable. And after this replacement the new term is unifiable with
the left-hand side of (31) and thus, due to Definition 3.9 we cannot delete the looping
edge from (31) to itself. This clearly shows that there are instances of DP problems where
Definition 3.31 improves upon Definition 3.9.

But if we look at the edges starting from (32) we get the complementary result that
sometimes Definition 3.9 is better. When applying ICap on the right-hand side of (32)
we obtain G(b, a, y). As this term is not unifiable with any left-hand side of P we are able
to delete both edges starting in (32) due to Definition 3.9.

This is in contrast to Definition 3.31. The usable rules for the pair (32) contain the
collapsing plus-rule (11). This is especially bad, as one can see that whenever the usable
rules that are computed for a connection between two pairs contain a collapsing rule,
then Definition 3.31 will never be able to delete this edge: if a collapsing rule is usable
then reversing these rules results in a generalized TRS R′′ containing a rule where the
left-hand side is a variable. Obviously, every term can be rewritten by R′′. Thus, the
term Cap∅

R′′,∅(t) is a fresh variable for every term t. And as a fresh variable is unifiable
with every right-hand side of P we cannot delete a single edge starting in (32) due to
Definition 3.31.14 This shows that Definition 3.9 is sometimes a better estimation than
Definition 3.31 which finally shows that both estimations are incomparable.

Note that to delete the edges starting in (31) it is essential that usable rules are com-
puted for every right-hand side of P separately, instead of computing them for the whole
DP problem as in Theorem 3.25. Otherwise, the TRS R′ would include the critical gen-
eralized rule y → plus(0, y) and no edge could have been deleted by the star-estimation
of the dependency graph.

As both graph estimations are incomparable we get the best result when applying both
estimations. If one only uses Theorem 3.3 with one estimation then it is not possible to
solve the given DP problem with the processors presented in this chapter. But we can
use the dependency graph processor of Theorem 3.3 with both estimations to delete all
edges. Then the resulting problem can be solved by Theorem 3.4.

14For a complete proof that Definition 3.31 cannot delete an edge in case of a collapsing usable rule we
also have to look at the normal form conditions. If we are checking the connection between s→ t and
u→ v then we unify a fresh variable with u by the mgu δ. Thus, uδ = u and sδ = s. If one of these

terms is not in Q-normal form then one can delete the edge. However, then U{s,u}R,Q (t) is the empty set
in contradiction to the requirement that there is collapsing usable rule.

3.5. Reducing Q 33

3.5. Reducing Q
In this section we introduce a novel processor which tries to reduce the set Q. The obvious
question is why one should want such a processor since it never harms to add terms to Q
(Lemma 2.17). However, the idea is to only remove those terms in Q that cannot block
reductions any more: If a term in Q contains symbols which do not occur in P ∪ R any
more, as one might have deleted the corresponding pairs and rules, then one can safely
remove that term from Q without losing completeness.

Consider the remaining DP problem D6 = ({(23), (25)}, lhs(R),R′,m) for the recursive
calls of mul and if in Example 3.30 where R′ is the set of plus- and isZero-rules, i.e.,
R′ = {(9) − (13)}. Here, the set Q = lhs(R) still contains symbols like times and mul
which neither occur in the pairs nor in the rules. Thus, removing all the terms containing
these symbols from Q results in the new set Q′ = lhs(R′).

There are two advantages one obtains from reducing Q in this way. The first one is
efficiency. As we have seen in the previous sections, for the estimation of the dependency
graph and for the usable rules one has to perform many tests whether some term is in
Q-normal form. And of course, these tests become cheaper for smaller sets Q. The other
advantage is that certain processors are more powerful when Q is reduced. For example,
proving non-termination is easier for small setsQ, cf. Chapter 8, and theA-transformation
and semantic labeling are more powerful if Q does not contain terms of a certain form,
cf. Theorems 6.8 and 6.17 (C) in Chapter 6, and Theorems 7.15, 7.19, and 7.23 in Chapter
7. Moreover, some processors which have only been developed for innermost rewriting
may become applicable after the Q-reduction processors have been applied. Examples
include the processors of [GTSS07] to prove termination by showing that arguments are
increased until they finally reach a bound.

However, it turns out that in general reducing Q forces us to drop minimality to achieve
soundness.

Theorem 3.34 (Q-Reduction Processor). Let (P ,Q,R, f) be a DP problem, let F be the
set of symbols occurring in P ∪R. Then the following processor is sound and complete.

Proc((P ,Q,R, f)) = {(P ,Q∩ T (F ,V),R, a)}
The following example shows that minimality cannot be carried over, even if Q ⊇

lhs(R).

Example 3.35. Let P = {F(x) → F(f(x))}, let Q = lhs(R) ∪ {h(a)}, and let R consist
of the following rules.

f(x)→ x

f(x)→ g(h(x))

g(h(x))→ g(h(x))

Then there is an infinite minimal (P ,Q,R)-chain.

F(a)→ F(f(a)) Q→R F(a)→ . . .

The minimality is due to the fact that the evaluation f(a) Q→R g(h(a)) is blocked as now
h(a) is not in Q-normal form. However, applying Theorem 3.34 results in Q′ = lhs(R)
as the term h(a) contains the symbols a which is not present in P ∪ R. Then the above
chain still is an infinite (P ,Q′,R)-chain, but there does not exist an infinite minimal
(P ,Q′,R)-chain as no instance of F(f(x)) is terminating w.r.t. Q′→R.

34 Chapter 3. Processors Without Search

The problem in the previous example is that terms of Q have been deleted which
contained symbols which are not in F and which occurred below the root. It turns out
that if we are more restrictive than innermost rewriting, and if we delete only those terms
in Q where the root-symbol is not contained in F , then we can preserve minimality.

Theorem 3.36 (Q-Reduction Processor). Let (P ,Q,R, f) be a DP problem with NF (Q)
⊆ NF (R), let F be the set of symbols occurring in P ∪ R. Then the following processor
is sound and complete.

Proc((P ,Q,R, f)) = {(P , {q ∈ Q | root(q) ∈ F},R, f)}

The following example shows that in the previous theorem we really need the condition
NF (Q) ⊆ NF (R), even if we only delete those terms from Q which have a root that is
not contained in F .

Example 3.37. Let P consist of the single rule

F(x0, x1, x2, y0, y0, y1, y1, y2, y2, z) →
F(x0, x1, x2, x0, x1, x1, x2, x2, x0, h(x0, x1, x2))

let Q = {g(c)}, and let R be the set of the following rules.

a0 → b20

a0 → b01

a1 → b01

a1 → b12

a2 → b12

a2 → b20

a0 → c

a1 → c

a2 → c

h(x, x, x)→ h(x, x, x)

Then there is an infinite minimal (P ,Q,R) chain if one chooses σ with σ(xi) = g(ai),
σ(yi) = g(bi,i+1 mod 3), and σ(z) = h(g(a0), g(a1), g(a2)). The reason is that σ(xi) and
σ(xi+1 mod 3) can be joined into σ(yi), but to join all σ(xi) one has to reduce these terms
to g(c). But then the possible infinite reduction of the term h(g(c), g(c), g(c)) is blocked
by Q.

However, note that root(g(c)) = g /∈ F and hence, we may delete the only term in Q.
As one can prove that there is no infinite minimal (P ,∅,R)-chain, this example shows
that one cannot drop the condition NF (Q) ⊆ NF (R) from Theorem 3.36.

Note that Theorem 3.34 and Theorem 3.36 do not subsume each other, as Theorem 3.34
can delete more terms from Q and does not require NF (Q) ⊆ NF (R), but on the other
hand only with Theorem 3.36 it is possible to preserve minimality. We conclude this
section by continuing our running example.

Example 3.38. As illustrated in the introduction of this section, we are now able to sim-
plify the remaining DP problem D6 = ({(23), (25)}, lhs(R),R′,m) into the DP problem
D7 = ({(23), (25)}, lhs(R′),R′,m) where R′ = {(9)− (13)}.

3.5. Reducing Q 35

Note that at this point we have transformed back a DP problem which had a stronger
strategy restriction than innermost into one which has again exactly innermost evaluation
strategy. Thus, we can again apply every technique which is only developed for innermost
rewriting.

Summary of Chapter 3

The processors of this chapter help us to prove termination of different algorithms in-
dependently (Theorems 3.3 and 3.4). Moreover, with Theorem 3.14 we have shown a
processor that can be used to switch from full termination to innermost termination.
And by Theorem 3.25 there is a way to delete rules which are not usable. Finally with
Theorem 3.36 we have a processor which can remove superfluous terms from Q. Since
all of these processors can easily be applied – there is no major search problem involved
– and since these processors never complicate DP problems, one should always simplify
a given DP problem with these processors, before trying more expensive processors of
upcoming chapters.

The techniques behind most of these processors are already known in the literature.
The only completely new techniques of this chapter are the processors to reduce Q, and
the important processor to switch to innermost termination (a simplified version of the
latter processor was published by us in [GTS05a] and extends the result of [Gra95]).
Nevertheless, this chapter contains some more contributions: For the first time, all the
processors are now generalized to Q-restricted rewriting. And even more importantly,
we have unified different syntactic notions by giving them semantics, where we have
developed a semantic concept of usable rules and of Cap instead of using one of at least
three available syntactic variants. Moreover, we have presented syntactic estimations of
usable rules, of Cap, and of the dependency graph, which improve upon nearly all previous
syntactic versions [AG00, HM05, Mid02] (basic version of our improved estimations have
already been published by us in [GTS05b, GTSF06]). Currently, the only estimations
that are not encompassed by our work are the graph estimations of [Mid01] which are
based on tree automata and are incomparable in power.

Nevertheless, we still see at least two possibilities to extend the processors and estima-
tions of this chapter. First, up to now we can only guarantee local confluence of Q→R for
a non-empty Q if all critical pairs are trivial, whereas for Q = ∅ it suffices if all critical
pairs are joinable. Here, it should be possible to develop kind of joinability criterion to
increase the power of the processor to switch to innermost.

And second, we strongly conjecture that it should be possible to only consider the
usable rules of a subterm when computing the star-estimation of the dependency graph.
We illustrate our idea with the pair F(true, x) → F(test(x), id(x)) and the TRS R =
{test(x) → false, id(x) → x}. Even in the innermost case our current estimations cannot
detect that the pair is not connected to itself. The problem in the star-estimation is that
Cap will replace every term by a fresh variable due to the reversed usable id-rule. However,
only the test-rule can be applied on the first argument of F. Therefore, one should only
take the reversed usable rule false → test(x) of the argument test(x) as generalized TRS
when applying Cap on the argument true. In this way one can detect that test(x) cannot
be reduced to true and one can delete the edge.

Although the processors of this chapter simplify DP problems considerably, we still
need more processors. The reason is that all processors of this chapter can only delete
rules that are never used, and they can delete pairs and edges that are used at most once

36 Chapter 3. Processors Without Search

in a chain. However, if we have recursive algorithms like plus and mult, then the number
of recursive calls depends on the starting term and can be arbitrarily high, although not
infinite. To prove this we can use well-founded orders to show that every recursion must
finally end. This is investigated in more detail in the next chapter.

4. Processors Based on Orders

Classical techniques for automated termination proofs try to find a reduction order �,
i.e., an order which is well-founded, monotonic, and stable (closed under contexts and
substitutions), such that ` � r holds for all rules ` → r of the TRS. In practice, most
orders are simplification orders, where a term is always greater than its proper subterms
[Der87, Ste95]. Examples for such orders are the lexicographic or recursive path order
[Der87, KL80], the Knuth-Bendix order [KB70], and many polynomial orders [Lan79].
However, the power of this approach is limited, since termination of many important
TRSs cannot be proved with simplification orders. For instance, simplification orders
fail on the TRS of Example 3.1, since the left-hand side of rule (18) is embedded in its
right-hand side if x is instantiated with s(s(0)).

The dependency pair approach was introduced to overcome the limitations of classical
simplification orders. For any TRS, it generates a set of inequality constraints and if there
exists a well-founded order satisfying the constraints, then termination is proved. Since
the well-founded orders need not be monotonic, one can compose more powerful orders
from so-called argument filters and classical orders. Hence, one can use existing techniques
to search for suitable orders and it turns out that in this way, classical simplification orders
can prove termination of numerous TRSs where they would have failed otherwise.

In this chapter we formalize this idea in the context of the DP framework. To be
more precise, we present, combine, and improve recent techniques of [GTS05a, GTS05b,
GTSF06, HM05, HM07, TGS04, Urb01] to reduce the number of constraints that have to
be satisfied by a well-founded order. Moreover, in all the corresponding proofs we replace
the various syntactic definitions of Cap by our semantic definition.

The structure of this chapter is as follows. In Section 4.1 we show the initial use of
well-founded orders in combination with argument filters as in [AG00]. Then, in Section
4.2 techniques are presented which considerably reduce the set of generated constraints.
Moreover, a processor is developed which can remove unneeded rules from the TRS R of
a DP problem (P ,Q,R, f). A method to remove further rules of R is described in Section
4.3. How to reduce the set of constraints even more by considering argument filters is the
topic of Sections 4.4 and 4.5 which is especially useful for proving termination of TRSs
using an accumulator. Finally, in Section 4.6 we will adapt the subterm criterion such
that it can be applied on arbitrary DP problems. To this end, we will also develop a
new processor to delete edges from the pair-graph which are connected in the dependency
graph of Definition 3.2.

4.1. Reduction Pairs

To remove pairs from P in a DP problem (P ,Q,R, f), one can generate constraints which
should be satisfied by a reduction pair [KNT99] (%,�) where % is reflexive, transitive,
monotonic, and stable and � is a stable well-founded order compatible with %, i.e.,

38 Chapter 4. Processors Based on Orders

% ◦ � ◦ % ⊆ �.15 But � does not have to be monotonic. To simplify a DP problem,
the constraints require that at least one pair in P is strictly decreasing (w.r.t. �) and
all remaining pairs in P and all rules in R are weakly decreasing (w.r.t. %). Requiring
` % r for all rules ` → r ∈ R ensures that in chains s1 → t1, s2 → t2, s3 → t3, . . . with
tiσ

Q→∗R si+1σ, we have tiσ % si+1σ. Hence, the existence of such a reduction pair implies
that there is no chain which contains the strictly decreasing pairs of P infinitely often.
Thus, all of these pairs can be deleted from P .

To generate reduction pairs (%,�) automatically, one often uses classical (monotonic)
simplification orders. However, � does not have to be monotonic. To benefit from this
possibility and to build non-monotonic orders from simplification orders, one may pre-
process the constraints first and delete certain function symbols and arguments by an
argument filter π. We use the notation of [KNT99].

Definition 4.1 (Argument Filter [AG00]). Let F be a signature. An argument filter π
is a mapping that assigns to every function symbol of f ∈ F with arity n either a number
between 1 and n or a list of numbers from 1 to n in ascending order. An argument filter
is lifted to a function from terms of T (F ,V) to terms as follows.

• π(x) = x, if x is a variable

• π(f(t1, . . . , tn)) = π(ti), if π(f) = i

• π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tik)), if π(f) = [i1, . . . , ik]

An argument filter with π(f) = i for some f is called collapsing. We extend π to a
mapping from TRSs to generalized TRSs in the obvious way: π(R) = {π(`)→ π(r) | `→
r ∈ R}.

As an example consider an argument filter π that eliminates the second argument of
a function symbol f with arity 3, i.e., π(f) = [1, 3]. Then for any term t, π(t) results
from replacing all subterms f(t1, t2, t3) by f(π(t1), π(t3)). Moreover, one can also define
an argument filter π′ with π′(f) = 3. Then we replace all subterms of the form f(t1, t2, t3)
by π′(t3).

Now instead of a reduction pair (%,�), one may use the reduction pair (%π,�π) with
s %π t iff π(s) % π(t) and s �π t iff π(s) � π(t).

Now we can define a processor which deletes all pairs from P which are strictly de-
creasing w.r.t. a reduction pair and an argument filter (i.e., all pairs of P that are strictly
decreasing w.r.t. �π). The reason is that they cannot occur infinitely often in a chain.

To ease presentation, throughout this thesis we often interpret sets of rules and pairs as
binary relations on terms. This allows us to write P \�π instead of {s→ t ∈ P | s 6�π t}
and we write R ⊆ %π instead of R ⊆ {`→ r ∈ R | ` %π r}, for example.

Theorem 4.2 (Processors Based on Reduction Pairs). Let (%,�) be a reduction pair and
π be an argument filter. Then the following processor Proc is sound and complete. For a
DP problem (P ,Q,R, f), Proc returns

• {(P \ �π,Q,R, f)}, if

– P ⊆ �π ∪ %π and

– R ⊆ %π.

15Note that this is equivalent to the requirement % ◦ � ⊆ � or � ◦ % ⊆ �.

4.1. Reduction Pairs 39

• {(P ,Q,R, f)}, otherwise

First note that this processor was already presented in [GTS05a, Theorem 19], and
its formulation is inspired by the recursive decomposition algorithm in [HM05, Theorem
22]. Indeed, if one uses this processor in combination with the processors based on the
dependency graph then one can completely mimic the recursive algorithm of [HM05].
However, our approach is more flexible, since we can at every time apply arbitrary other
processors. That this is sometimes necessary, we will have seen when finally solving the
running example of this chapter (Example 4.33). There, a larger part of the proof tree
for a difficult DP problem is shown, and it turns out that after the application of the
processors based on the dependency graph two other (upcoming) processors are applied,
before using a reduction pair processor.

We demonstrate the use of the reduction pair processor of Theorem 4.2 to finally prove
termination of the running example of Section 3. As in this chapter we will only rarely
exploit the graph structure of a DP problem (P ,Q,R, f), we identify the graph P =
(N,E) with its set of nodes N .

Example 4.3. At the end of Example 3.38 we had to solve two remaining DP problems.
The DP problem D7 = ({(23), (25)}, lhs(R′),R′,m) with R′ = {(9), (10), (11), (12), (13)}
can easily be handled by Theorem 4.2. First, we build the constraints of the reduction
pair processor to delete both pairs (23) and (25) of the DP problem.

MUL(x, y, z) �π IF(isZero(x), x, y, z) (23)

IF(false, s(x), y, z) �π MUL(x, y, plus(y, z)) (25)

isZero(0) %π true (9)

isZero(s(x)) %π false (10)

plus(0, y) %π y (11)

plus(s(x), y) %π s(plus(x, y)) (12)

plus(plus(x, y), z) %π plus(x, plus(y, z)) (13)

By choosing π(IF) = 2, π(MUL) = π(s) = [1], π(isZero) = π(true) = π(false) = π(0) = [],
and π(plus) = [1, 2] we obtain the following filtered constraints.

MUL(x) � x (23)

s(x) � MUL(x) (25)

isZero % true (9)

isZero % false (10)

plus(0, y) % y (11)

plus(s(x), y) % s(plus(x, y)) (12)

plus(plus(x, y), z) % plus(x, plus(y, z)) (13)

These constraints are all satisfied if we choose for � an LPO with precedence plus > s >
MUL, isZero > true, and isZero > false. Thus, the result of the reduction pair processor
returns a DP problem where P is the empty set. This new DP problem is then easily
solved by the processor of Theorem 3.4.

For the other DP problem D1 = ({(19), (20), (21)},∅,R,m) containing the dependency
pairs of the plus-rules we get even more constraints. Note that we are not able to simplify
this problem by the usable rules processor of Theorem 3.25 since Q = ∅ and since there

40 Chapter 4. Processors Based on Orders

are variables in right-hand sides of all pairs in D1. Hence, we have to build constraints
for the whole TRS R. It turns out that due to the additional constraints for the rules the
constraints of the reduction pair processor are unsatisfiable for reduction pairs based on
RPO in combination with an argument filter. Nevertheless, using the polynomial order
Pol defined by

Pol(PLUS(x, y)) = x

Pol(plus(x, y)) = x+ y + 1

Pol(s(x)) = x+ 1

Pol(0) = 0

Pol(times(x, y)) = (x+ 1)y

Pol(mul(x, y, z)) = (x+ 1)y + z

Pol(isZero(x)) = 0

Pol(true) = 0

Pol(false) = 0

Pol(f(x, y, z)) = 0

satisfies all constraints and we can delete all pairs in D1.
16 The resulting DP problem

can again be solved by the dependency graph processor. Thus, we have now proven
termination of the running example of Chapter 3.

Note that in the previous example we have provided suitable argument filters and or-
ders. But this search can also be automated. Techniques to search for argument filters and
orders efficiently have been developed in [CLS06, CMTU05, CSL+06, FGM+07, GTSF03,
GTSF06, HM05, STA+07, ZHM07]. Some of these techniques describe stand-alone con-
straint solvers whereas the (currently) more efficient approaches encode the constraints
into SAT and then apply modern SAT solver.

As we have already mentioned in the previous example there is a major difference
between proving termination and proving innermost termination. In the innermost case
we can usually delete many rules of the TRS that are not usable. And having less rules
implies having less constraints for the reduction pair processor. In Example 4.3 even the
constraints for the whole TRS are solvable by standard orders but sometimes it may be
the case that the difference between the whole TRS in the termination case and the set
of usable rules in the innermost case is essential.

This is demonstrates in the following new running example of this chapter to compute
the division function.

Example 4.4. In the following TRS R the function quot computes the division function
on integers. We represent the integers by s, 0, and p where p(x) is the predecessor of a
number x. To avoid duplicate representations of numbers (0 = s(p(0)) = p(s(0)) = . . .),
we use rules (33) and (34) and furthermore, we set Q = {s(p(x)), p(s(x))} to ensure that
numbers are simplified whenever possible. Here we see an example where the flexibility of

16Note that when using a polynomial order we do not preprocess the constraints by an argument filter as
a polynomial order can ignore arguments on its own. However, one can identify the implicit argument
filter of a polynomial order and use it for the improved reduction pair processors which use the
argument filter to reduce the set of constraints, cf. Sections 4.4 and 4.5. For example, the implicit
argument filter for Pol is defined by π(PLUS) = 1, π(isZero) = π(f) = [], and π(f) = [1, . . . , ar(f)]
for all remaining function symbols f .

4.1. Reduction Pairs 41

Q allows a natural modeling of the integers. Setting Q = lhs(R) would be to restrictive
because then the rules (40) and (41) become useless.

The computation of the division is mainly performed using the div-rules which only
work for natural numbers. Therefore, the function quot which is defined also for negative
numbers ensures that div is only called with natural numbers by corresponding negations.

s(p(x))→ x (33)

p(s(x))→ x (34)

minus(x, 0)→ x (35)

minus(s(x), s(y))→ minus(x, y) (36)

negate(0)→ 0 (37)

negate(p(x))→ s(negate(x)) (38)

negate(s(x))→ p(negate(x)) (39)

negate(negate(x))→ x (40)

negate(minus(0, x))→ x (41)

div(0, s(x))→ 0 (42)

div(s(x), s(y))→ s(div(minus(x, y), s(y))) (43)

quot(x, 0)→ error (44)

quot(x, p(y))→ negate(quot(x, negate(p(y)))) (45)

quot(p(x), y)→ negate(quot(negate(p(x)), y)) (46)

quot(0, s(x))→ 0 (47)

quot(s(x), s(y))→ div(s(x), s(y)) (48)

When applying the processors based on the dependency graph on the initial DP prob-
lem, we obtain four DP problems (Pi,Q,R,m) with the following pairs.

MINUS(s(x), s(y))→ MINUS(x, y) (49)

NEGATE(p(x))→ NEGATE(x) (50)

NEGATE(s(x))→ NEGATE(x) (51)

DIV(s(x), s(y))→ DIV(minus(x, y), s(y)) (52)

QUOT(x, p(y))→ QUOT(x, negate(p(y))) (53)

QUOT(p(x), y)→ QUOT(negate(p(x)), y) (54)

Here, P1 = {(49)}, P2 = {(50), (51)}, P3 = {(52)}, and P4 = {(53), (54)}. None of these
four DP problems can be handled by the reduction pair processor of Theorem 4.2 if % is a
quasi-simplification order (i.e., a quasi-order containing the embedding order). We prove
this claim only for the first DP problem (P1,Q,R,m) since the claim can be shown for
the other three DP problems in a similar way.

If we want to apply Theorem 4.2 successfully then we need at least one strict decrease
of a pair in P1. Thus, the constraints ensure both, that the left-hand side of pair (49) is in
relation to the right-hand side w.r.t. �π, and that the rewrite relation of R is contained
in %π. Then due to rules (35) and (41) we must have π(minus) = [1, 2]. From (49) we
obtain MINUS(s(x), s(y)) �π MINUS(x, y) and as �π is stable we instantiate x and y by
t = div(s(z), s(s(z))) to get the inequality MINUS(s(t), s(t)) �π MINUS(t, t). As one can
rewrite t to the term t′ = s(div(minus(z, s(z)), s(s(z)))) by (43), we can use →R ⊆ %π

42 Chapter 4. Processors Based on Orders

to obtain the inequality t %π t′. Moreover, as % is a quasi-simplification order and
as π does not drop the second argument of minus we know minus(z, s(z)) %π s(z). By
monotonicity of %π we conclude t′ %π s(t). Using the compatibility of %π and �π we end
in a contradiction to the well-foundedness of �π.

MINUS(s(t), s(t)) �π MINUS(t, t) %π MINUS(t′, t′) %π MINUS(s(t), s(t))

Note that R does not belong to a class of rewrite systems where innermost termination
implies termination. The first two rules (33) and (34) are overlapping with many other
rules at non-root positions. These two rules are overlapping with the left-hand sides of
each dependency pair of P1 ∪ · · · ∪ P4, too. Thus, these two rules also prohibit the use
of the processor of Theorem 3.14 to switch to innermost termination for the four DP
problems.

And as we are not in the innermost case the usable rules processor of Theorem 3.25
cannot delete any rule of R. The problem with the improved estimation of Definition 3.26
is that due to condition (iv) every rule is usable. It is even more problematic that all
rules are usable w.r.t. the semantic definition of usable rules in Definition 3.24. Hence,
the problem is not that the improved estimation of usable rules in Definition 3.26 is not
good enough in this example.

To conclude, we are currently stuck in the termination proof of this example using the
previous processors.

4.2. Needed Rules

To handle the DP problems of Example 4.4 we will now show how one can drop condition
(iv) of Definition 3.26 even if one is not in the innermost case, i.e., even if NF (Q) 6⊆
NF (R). That this is not possible in general was already shown in Example 3.29. Note
that when dropping condition (iv) one does not estimate the usable rules function U any
more. To distinguish the two versions of usable rules we call the new version needed
rules.17

Definition 4.5 (Needed Rules). Let Q and S be set of terms, let R be a TRS, and let
ECap be an estimated Cap-function. The needed rules of a term t are defined as the
smallest set N SR,Q(t) ⊆ R such that

(i) If t = f(t1, . . . , tn), ` = f(`1, . . . , `n)→ r ∈ R, and if the terms f(ECapSR,Q(t1), . . . ,

ECapSR,Q(tn)) and ` are unifiable with the mgu δ such that all terms in ({`1, . . . , `n}∪
S)δ are in Q-normal form, then `→ r ∈ N SR,Q(t).

(ii) If t = f(t1, . . . , tn) then N SR,Q(ti) ⊆ N SR,Q(t).

(iii) If ` = f(`1, . . . , `n)→ r ∈ N SR,Q(t) then N {`1,...,`n}R,Q (r) ⊆ N SR,Q(t).

As before, N (P ,Q,R) =
⋃
s→t∈P N

{s}
R,Q(t).

17In the literature even the needed rules were called usable rules. This was possible as there was no
semantic notion of usable rules before and one could just limit the use of usable rules in certain
processors. For example, in previous versions of the usable rules processor of Theorem 3.25 and the
star-estimation of the dependency graph of Definition 3.31 it was only allowed to integrate the usable
rules in the innermost case. This is in contrast to this thesis where usable rules can be used without
the restriction to the innermost case.

4.2. Needed Rules 43

As the main result of this section we will now show that in minimal (P ,Q,R)-chains
the TRS R can be replaced by the needed rules together with the TRS Cε = {c(x, y) →
x, c(x, y)→ y}. Here, c is some new function symbol not occurring in the DP problem.

Note that for every DP problem (P ,Q,R, f) with NF (Q) ⊆ NF (R) the improved us-
able rules Definition 3.26 coincide with the needed rules, i.e., IU(P ,Q,R) = N (P ,Q,R).
Hence, with the main result we will be almost as powerful in the termination case as in the
innermost termination case when solving the constraints of the reduction pair processor.

To obtain the main result, we use the following idea to simulate every reduction step
with R with the set of needed rules N together with Cε. In case a term t can be reduced
with an unneeded rule, we store all possible reducts of t in a set of terms. This set will be
finite as the terms are terminating due to minimality. Hence, the set can be encoded in a
single term representing a list where the new binary function c is used as list constructor.
This encoding is performed using the Comp function.

Definition 4.6 (Comp). We assume a fixed total order > on terms. Let c be a new
function symbol and ⊥ be a new variable. We define the function Comp from finite sets
of terms to terms as follows.

• Comp(∅) = ⊥

• Comp({t}]M) = c(t,Comp(M)), where t < s for every s ∈M .

The total order is needed to ensure that Comp is well defined. It enforces that Comp
always visits the terms in M in the same order. The TRS Cε can now be used to extract
every term of M that is encoded in Comp(M).

Lemma 4.7 (Properties of Comp). Comp(M) Q→+
Cε t if t ∈M and Comp(M) ∈ NF (Q).

Now the only missing step is to apply a transformation that replaces those terms t
which can be rewritten by an unneeded rule by the corresponding term that encodes the
set of reducts of t. This is done in one of the cases of the upcoming transformation I.
However, if t can only be rewritten by needed rules then I does not replace anything and
we can simulate the reduction with the corresponding needed rule. Thus, anyR-reduction
of t can be simulated by an N ∪ Cε-reduction of I(t). This behavior is indicated in the
middle rows of Figure 4.8.

However, what we want to do is to transform a minimal chain s1 → t1, s2 → t2, . . .
with σ as substitution into a chain where I(σ) is used as substitution. Therefore, we also
have to take care that I(siσ) can be related to siI(σ) and there should also be a relation
between I(tiσ) and tiI(σ). This is depicted in the last two rows of Figure 4.8. This will
finally allow us to replace R by N ∪ Cε when building chains.

The following definition introduces I formally. Similar versions have been developed
for weaker variants of needed rules [GTSF06, HM07, TGS04, Urb01]. All these previous
approaches define needed rules by just looking at the root symbols instead of unification,
they do not allow an arbitrary estimation of Cap, they do not integrate checks on Q-
normal forms, and they do not handle the strategy given by Q. Moreover, for the first
time we also give sufficient conditions that the resulting chain is also minimal. Hence, our
result extends the previous work substantially. Nevertheless, all these extensions require
a more complex definition of I. After the exact definition we will explain the additional
elements σ and Sall which have not been discussed so far.

44 Chapter 4. Processors Based on Orders

s1σ //

||

t1σ

||

s2σ //

||

t2σ

||

. . . (P ,Q,R)-chain

s1σ

I

��

t1σ
∗
R
//

I

��

I

��

s1σ

I

��

t1σ
∗
R
//

I

��

I

��

. . .

I(s1σ)

∗
Cε
��

I(t1σ) ∗
N∪Cε

//

||

I(s2σ)

∗
Cε
��

I(t2σ) ∗
N∪Cε

//

||

. . .

s1I(σ) // t1I(σ) s2I(σ) // t2I(σ) . . . (P ,Q,N ∪ Cε)-chain

Figure 4.8.: Transformation of chains

Definition 4.9 (I). Let u1 → v1, u2 → v2, . . . be an infinite minimal (P ,Q,R)-chain
and let N = N (P ,Q,R) be the set of needed rules of the given DP problem. W.l.o.g. we
assume that σ is the substitution used for instantiating every ui → vi. Moreover, whenever
in the reduction of viσ a rule `j → rj ∈ R is applied, then by renaming the variables in
the rule we again assume that the rule is instantiated by σ in that rewrite step. Let Sall
contain all ui and all direct subterms of each `j. Let c be the new constant and let ⊥ be
the new variable which are introduced by Comp. We define the mapping I from terms of
T (F ,V) that terminate w.r.t. Q→R to terms of T (F] {c},V] {⊥}) as follows.

• I(x) = x for every variable x

• I(f(t1, . . . , tn)) = f(I(t1), . . . , I(tn)), if there is no rule ` → r ∈ R \ N such
that f(CapSallσR,Q (t1), . . .CapSallσR,Q (tn)) unifies with ` by some mgu µ where (Sallσ ∪
{`|1, . . . , `|n})µ ⊆ NF (Q)

• I(f(t1, . . . , tn)) = c(f(I(t1), . . . , I(tn)),Comp(Red(f(t1, . . . , tn)))), otherwise.

Here, Red(t) = {I(s) | t Q→+
R s, s ∈ NF (Q)}.

We extend I to substitutions by defining the substitution I(σ) as I(σ)(x) = I(xσ).

To prove the main result in Lemma 4.11 that minimal (P ,Q,R)-chains are (P ,Q,N ∪
Cε)-chains with the help of I, we need to establish a connection between I and the
definition of needed rules: whenever the unification with a left-hand side ` succeeds in
the definition of I, then the corresponding unification with ` must also succeed in case
(i) of Definition 4.5.

However, there are three differences in the unifications performed in I and those per-
formed in Definition 4.5. First, the needed rules are computed by looking at rules and
pairs whereas I works on terms that are instances of left- or right-hand sides of rules and
pairs. Second, in Definition 4.5 we apply an estimated Cap-function whereas I uses Cap
itself. And third, the parameter S for ECap is chosen locally for each pair and rule in
Definition 4.5 whereas we need a global set S for I.

To obtain the required connection we first show the following additional property of
Cap. It states that applying Cap on an instantiated term tσ is more precise than if we

4.2. Needed Rules 45

first apply an estimated Cap-function ECap on t and then instantiate the resulting term
by σ. Moreover, the set S that is used for ECap has to be smaller than the corresponding
set that is used for Cap. This is the reason we why defined Sall to contain all direct
subterms of left-hand sides of rules and all left-hand sides of pairs that are used in the
chain.18 Then indeed all three differences are handled and we can state the main lemma
of this section after this auxiliary lemma about Cap.

Lemma 4.10 (Properties of Cap). Let Q, S, and T be sets of terms, let R be a TRS, and
let σ be a substitution. If Sσ ⊆ T then for every term t there is a substitution δ such that
CapTR,Q(tσ) = ECapSR,Q(t)σδ where δ only instantiates the variables that are introduced

by ECapSR,Q(t).

Note that Lemma 4.10 is not valid if one replaces Cap by ECap. This is the reason for
using Cap in the definition of I instead of an estimation.

Lemma 4.11 (Properties of I). Let P ,Q,R,N , u1 → v1, u2,→ v2, . . . ,Sall, σ be as in
Definition 4.9. Let t be terminating w.r.t. Q→R. Let Inv(s) be the property, that all
subterms s′ of s with root(s′) = c are in Q-normal form.

(i) If t ∈ NF (Q) then I(t) ∈ NF (Q).

(ii) If N SR,Q(t) ⊆ N and S ⊆ Sall then I(tσ) = tI(σ).

(iii) If tσ ∈ NF (Q) then I(tσ) Q→∗Cε tI(σ) and tI(σ) ∈ NF (Q).

(iv) If t Q→+
R s, Inv(I(t)), and I(t) is built by the third case then I(t) Q→+

Cε I(s).

(v) If t Q→R s is a reduction at the root position and I(t) is built by the second case then
I(t) Q→∗Cε

Q→N I(s) and Inv(I(s)).

(vi) If t Q→∗R s, s ∈ NF (Q), and Inv(I(t)) then I(t) Q→∗N∪Cε I(s).

(vii) If Q = ∅ and if M⊆ R is left-linear then I(t) is terminating w.r.t. M∪ Cε.

(viii) If N ⊆M ⊆ R then u1 → v1, u2 → v2, . . . is a (P ,Q,M∪ Cε)-chain. Moreover, if
Q = ∅ and if M is left-linear then the chain is minimal.

Using this important lemma we will formulate three different processors. The first pro-
cessor returns quite similar results compared to the usable rules processor of Theorem 3.25
in the innermost case.

Theorem 4.12 (Processors Based on Needed Rules). Let ECap be an estimated Cap-
function that is used to compute the needed rules in Definition 4.5. The following processor
Proc is sound. For a DP problem (P ,Q,R, f) with N (P ,Q,R) ⊆M ⊆ R, Proc returns

18Putting all direct subterms of left-hand sides of R and all left-hand sides of pairs of P into Sall would
be unsound as some pairs and rules may contain subterms which are not in Q-normal form. And
if Sall contains a term which is not in Q-normal form then the third case of I is never used. In
that case we do not obtain a chain if we replace σ by I(σ). As an example consider Q = {a},
P = {F(a, a, a)→ F(b, b, b),F(0, 1, x)→ F(x, x, x)}, and R = {d→ 0, d→ 1}. Then there obviously is
a minimal infinite (P,Q,R)-chain using only the second pair of P if we instantiate x by d. However,
if F(a, a, a) ∈ Sall then I(σ)(x) = d and it is not possible to reduce F(x, x, x)I(σ) = F(d, d, d) to an
instance of F(0, 1, x′) using the Cε-rules.

46 Chapter 4. Processors Based on Orders

• {(P ,Q,M∪ Cε, f ′)}, if f = m.
Here, f ′ = m if Q = ∅ and M is left-linear, and f ′ = a, otherwise.

• {(P ,Q,R, f)}, otherwise.

Note that we introduced the additional set M in the needed rules processor to be
able to apply the result for arbitrary estimations of the needed rules. For example it is
possible to drop the normal form conditions in Definition 4.5 or one can just compare
the outermost symbols instead of performing the unifications in Definition 4.5. Due to
Lemma 2.4 it might seem obvious that one can replace N by a larger set M, however it
is not obvious that then minimality can be obtained.

The needed rules processor has two weaknesses that do not occur in the similar usable
rules processor of Theorem 3.25. Therefore, one should always prefer the usable rules
processor in the innermost case as then there are always less usable rules than needed
rules.

The first weakness of the needed rules processor is its incompleteness. This is a dis-
advantage regardless of whether the original DP problem (P ,Q,R, f) is finite or infinite.
If (P ,Q,R, f) is finite then it may happen that the resulting DP problems are not fi-
nite any more and one fails in proving termination. On the other hand, if (P ,Q,R, f)
is infinite then even if one can prove that one of the resulting DP problems is infinite
one cannot conclude infiniteness of (P ,Q,R, f). Thus, applying incomplete processors is
nearly useless to prove non-termination.

By the TRS of Toyama [Toy87] it can be shown that completeness cannot be achieved
for the needed rules processor. If R = {f(0, 1, x)→ f(x, x, x)} then the initial DP problem
(DP(R),∅,R,m) is not infinite. However, an application of Theorem 4.12 results in the
DP problem (DP(R),∅, Cε,m) which is infinite:

F(0, 1, c(0, 1))→ F(c(0, 1), c(0, 1), c(0, 1))→2
Cε F(0, 1, c(0, 1))→ . . .

Nevertheless, sometimes it is useful to apply incomplete processors as they may be the
missing step to obtain a termination proof. We will see in the following example that
the first three DP problems can be solved with the help of the (incomplete) needed rules
processor.

Example 4.13. We continue to prove termination of Example 4.4 with our new needed
rules processor of Theorem 4.12. First recall the DP problems ({(49)},Q,R,m) and
({(50), (51)},Q,R,m) that correspond to the minus and negate-functions, respectively. As
neither of them does have any needed rules, we get the new problems ({(49)},Q, Cε, a) and
({(50), (51)},Q, Cε, a). Both new problems can be solved by the reduction pair processor
of Theorem 4.2 by the embedding order. Here, it is not even necessary to use an argument
filter, i.e., one can choose the identity argument filter with π(t) = t for every term t. This
is done by defining π(f) = [1, . . . , n] for every symbol f with arity n.

In the DP problem ({(52)},Q,R,m) originating from the div-function both minus-
rules (35) and (36) are needed rules, and the s-rule (33) is needed, too. Therefore, the
new DP problem ({(52)},Q, {(33), (35), (36)} ∪ Cε, a) is obtained by an application of
Theorem 4.12. Again this can be solved by the reduction pair processor of Theorem 4.2
by the embedding order. Here, we need an argument filter with π(minus) = 1. Then the
constraint

DIV(s(x), s(y)) �π DIV(minus(x, y), s(y))

4.2. Needed Rules 47

for the dependency pair (52) can be simplified to

DIV(s(x), s(y)) � DIV(x, s(y))

which is easy to satisfy. Remember that this argument filter would not be possible if we
had to satisfy the constraint negate(minus(0, x)) %π x for the unneeded rule (41).

Finally, for the DP problem ({(53), (54)},Q,R,m) one obtains the needed rules {(33),
(34), (37)− (41)} for s, p, and negate. Unfortunately, the constraints of Theorem 4.2 for
the corresponding new DP problem are not satisfiable if % is a quasi-simplification order.
The reason is that π may not drop the argument of negate due to the collapsing negate-rule
(40). In this case we obtain negate(p(x)) %π p(x) which clearly shows by monotonicity
that none of the constraints for the dependency pairs (53) and (54) can be satisfied for
the strict relation �π.

The second weakness of the needed rules processor is the possible loss of the minimality
flag. The processor requires that for the original DP problem (P ,Q,R, f) the flag f is
set to m, but it sometimes returns a DP problem where the flag is a. Note that if the flag
is a then it is not possible to switch to the innermost case by Theorem 3.14. Thus, for
the resulting DP problem we are neither in the innermost case nor do we have to consider
only minimal chains. DP problems of these kind are often hard to handle. When using
orders one always has to build constraints for at least the set of usable rules which is most
likely the whole TRS R. (One cannot use the needed rules processor any more and also
upcoming powerful processors in this chapter require an enabled minimality flag or the
innermost case. For a complete list of processors that cannot be applied any more, we
refer to the discussion in Section 2.2 on page 13 about why losing minimality is bad.)

The following examples show that Theorem 4.12 cannot be strengthened by changing
the requirements on the minimality flags. One needs minimality of the input DP problem
and minimality of the resulting DP problem cannot be guaranteed if the requirements of
Theorem 4.12 are not satisfied.

Example 4.14. This example shows that the requirement f = m in Theorem 4.12 is
essential. If P = {F(s(x)) → F(x)}, Q = ∅, and R = {a → s(a)} then F(s(x)) →
F(x),F(s(x))→ F(x), . . . is an infinite chain: if we instantiate x by a then we obtain the
infinite reduction F(s(a)) →P F(a) →R F(s(a)) →P However, it is not a minimal
chain.

Note that there are no needed rules. Thus, any processor that transforms the non-finite
DP problem (P ,Q,R, a) into (P ,Q, Cε, a) would be unsound as clearly there is no infinite
(P ,Q, Cε)-chain.

Example 4.15. This example illustrates that for a non-empty set Q, the resulting DP
problem of the needed rules processor must have the minimality flag a, even if R is left-
linear. Let P = {F(x, 0, 1, y) → F(x, x, x, f(g(x)))}, let Q = {g(a)}, and let R consist of
the following four rules.

a→ 0 f(g(x))→ h(x, x)

a→ 1 h(0, 1)→ h(0, 1)

There is an infinite minimal (P ,Q,R)-chain, as can be shown using the substitution σ
with σ(x) = a and σ(y) = f(g(0)). The reason is that the instantiated right-hand side of

48 Chapter 4. Processors Based on Orders

P ’s only pair now reduces to its instantiated left-hand side:

F(x, x, x, f(g(x)))σ
= F(a, a, a, f(g(a)))
Q→3
R F(a, 0, 1, f(g(0)))

= F(x, 0, 1, y)σ

Note that f(g(a)) is terminating w.r.t. Q→R as whenever a subterm of the form h(t1, t2)
is reached then both ti are either 0 or 1.

However, for N = N (P ,Q,R) the DP problem (P ,Q,N∪Cε,m) is finite and therefore,
any processor which transforms (P ,Q,R,m) into (P ,Q,N ∪ Cε,m) is unsound. Here,
the needed rules N = N (P ,Q,R) consists of the f-rule and the h-rule. To prove that
(P ,Q,N ∪Cε,m) is finite we have to show that there is no infinite minimal (P ,Q,N ∪Cε)-
chain.

In any chain of length greater than 1, the right-hand side of P ’s rule has to be instanti-
ated by a substitution σ such that all xσ can be reduced to both 0 and 1 with N ∪Cε. It
is easy to see that then xσ can also be reduced to c(0, 1) or to c(1, 0). Hence, the subterm
f(g(x))σ = f(g(xσ)) of the instantiated right-hand side can be reduced to f(g(c(0, 1)))
or to f(g(c(1, 0))) and further to the non-terminating term h(0, 1). So the instantiated
right-hand side of P ’s pair is not terminating and thus, there is no minimal chain of length
greater than 1.

Example 4.16. This example shows that minimality cannot be preserved by the needed
rules processor in case that R is not left-linear even if Q = ∅. Let P consist of the single
pair

F(0, 1, x1, 0, 1, x2, 0, 1, x3, y)→ F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))

and let R consist of the following ten rules:

a→ 0 g(x, x, y)→ h(x, x)

a→ 1 g(x, y, x)→ h(x, x)

b→ 0 g(y, x, x)→ h(x, x)

b→ 1 h(0, 1)→ h(0, 1)

d→ 0

d→ 1

As in the previous example there is an infinite minimal (P ,Q,R)-chain. We choose
the substitution σ with σ(x1) = a, σ(x2) = b, σ(x3) = d, and σ(y) = g(a, b, d). Then the
instantiated right-hand side of the pair in P can be reduced to its instantiated left-hand
side:

F(x1, x1, x1, x2, x2, x2, x3, x3, x3, g(x1, x2, x3))σ
= F(a, a, a, b, b, b, d, d, d, g(a, b, d))
→6
R F(0, 1, a, 0, 1, b, 0, 1, d, g(a, b, d))

= F(0, 1, x1, 0, 1, x2, 0, 1, x3, y)σ

This chain is minimal since the subterm g(a, b, d) of the instantiated right-hand side is
terminating. The reason is that this subterm can be reduced to h(0, 0) or to h(1, 1) but
not to h(0, 1). Thus, the DP problem (P ,Q,R,m) is not finite.

But for N = N (P ,Q,R) the DP problem (P ,Q,N ∪Cε,m) is finite and therefore, any
processor which transforms (P ,Q,R,m) into (P ,Q,N ∪ Cε,m) is unsound. Here, the

4.2. Needed Rules 49

needed rules N consist of all g-rules and the h-rule, As before, we prove that there is no
infinite minimal (P ,Q,N ∪ Cε)-chain.

In any chain of length greater than 1 we must use a substitution σ such that all xiσ
can be reduced to both 0 and 1 with N ∪ Cε. As in Example 4.15 each xiσ must be
reducible to c(0, 1) or to c(1, 0). So there are at least two xiσ and xjσ with i 6= j which
can be reduced to the same term c(0, 1) or c(1, 0). Hence, the subterm g(x1, x2, x3)σ of
P ’s instantiated right-hand side can be reduced to h(c(0, 1), c(0, 1)) or to h(c(1, 0), c(1, 0))
and further to the non-terminating term h(0, 1).

Example 4.17. One might argue that the previous counterexamples do not show that
really something can go wrong. If one starts with a TRS including the non-terminating
rule h(0, 1) → h(0, 1) then one will always get a dependency pair H(0, 1) → H(0, 1) and
the resulting DP problem cannot be solved by a wrong application of Theorem 4.12.

However, in the following example a wrong application would transform the only non-
finite DP problem into a finite one. To demonstrate this effect the g-rules and h-rules
of Example 4.16 have to be combined. We consider the following TRS R where r =
g(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, x1, x2, x3, y, y).

a → 0 f(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, z) →
a → 1 f(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, r[y/x1])
a → 2
b → 0 g(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, y, y, z, 0, 1) → r
b → 1 g(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, y, z, y, 0, 1) → r
b → 3 g(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, z, y, y, 0, 1) → r
d → 0
d → 1
d → 4

First note that the TRS without the f-rule is terminating. For an infinite reduction with
one of the g-rules we obviously must instantiate x1 by a, x2 by b, and x3 by d. However,
the only possibility to join any two terms of a, b, and d is to rewrite them to either 0 or
1. Hence, y must be instantiated by 0 or 1. In any case the instance of y cannot match
both 0 and 1. Thus, one cannot apply any g-rule more than once.

Now we consider the whole TRS R. As argued before the only possible non-finite
DP problem is the one containing the dependency pair F(. . .) → F(. . .) for the f-rule.
Similarly to Example 4.16 there is an infinite chain when instantiating x1 by a, x2 by b, x3
by d, and z by g(a, a, a, a, b, b, b, b, d, d, d, d, a, b, d, a, a). Note that this is also a minimal
chain as the TRS without the f-rule is terminating.

The needed rules N are just the three g-rules. However, there is no infinite minimal
chain if we consider the TRS N ∪ Cε instead of R. As in Example 4.16 we conclude that
in any chain of length greater than one we must use a substitution σ where each of the
terms xiσ must be reducible to c(0, 1) or c(1, 0). Moreover, x1σ must be reducible to 2,
x2σ to 3, and x3σ to 4. We only consider the case that x2σ and x3σ are both reducible
to c(0, 1) to show that the term r[y/x1]σ is non-terminating. The remaining cases are

50 Chapter 4. Processors Based on Orders

completely analogous.

r[y/x1]σ
= g(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, x1, x2, x3, x1, x1)σ
→∗N∪Cε g(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, x1, x2, x3, 0, 1)σ = t
→∗N∪Cε g(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, x1, x2, x3, 0, 1)σ
→∗N∪Cε g(0, 1, 2, x1, 0, 1, 3, x2, 0, 1, 4, x3, x1, c(0, 1), c(0, 1), 0, 1)σ
→N g(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, x1, x2, x3, c(0, 1), c(0, 1))σ
→2
Cε g(x1, x1, x1, x1, x2, x2, x2, x2, x3, x3, x3, x3, x1, x2, x3, 0, 1)σ = t

Thus, transforming the non-finite DP problem ({F(. . .) → F(. . .)},∅,R,m) into the
problem ({F(. . .) → F(. . .)},∅,N ∪ Cε,m) is unsound. This is especially critical as
F(. . .)→ F(. . .) is the only dependency pair of the non-terminating TRS R that can be
used to build infinite chains.

We shortly recapitulate the situation. An application of the needed rules processor
in Theorem 4.12 can simplify the constraints generated by the reduction pair processor
of Theorem 4.2 considerably. However, it does not preserve the minimality flag and it
is incomplete. It was explained that both of these effects are not desirable at all and
examples were given to show that Theorem 4.12 cannot be improved.

As the main use of the needed rules processor is to reduce the number of the con-
straints for the reduction pair processor we now introduce the second processor based
on Lemma 4.11 (viii) which combines the idea of needed rules into the reduction pair
processor. The idea is to just satisfy the constraints for the needed rules and to delete all
strictly decreasing pairs in the resulting DP problem. However, the TRS in the resulting
TRS problem will still be the whole TRS. It turns out that with this idea we obtain a
complete processor which does not lose minimality.

Theorem 4.18 (Processors Based on Reduction Pairs and Needed Rules). Let (%,�
) be a reduction pair where % is Cε-compatible, and let π be an argument filter. Let
ECap be an arbitrary estimated Cap-function that is used to compute the needed rules
in Definition 4.5. Then the following processor Proc is sound and complete. For a DP
problem (P ,Q,R, f), Proc returns

• {(P \ �π,Q,R, f)}, if

– P ⊆ �π ∪ %π,

– N (P ,Q,R) ⊆ %π, and

– f = m.

• {(P ,Q,R, f)}, otherwise

Note that in contrast to the needed rules processor of Theorem 4.12 we do not use a
superset M of the needed rules. The reason is that whenever we satisfy the constraints
for M⊇ N (P ,Q,R) then the constraints of Theorem 4.18 are also satisfied.

To compare the sequential application of the needed rules processor and the reduction
pair processor of Theorem 4.2 with the new reduction pair processor of Theorem 4.18 we
use the following abstract example.

Example 4.19. Let P = {F(. . .) → F(. . . , g1(. . .), . . .),F(. . .) → F(. . . , g2(. . .), . . .)},
let Q 6= ∅, and let R = {g1(. . .) → . . . , g2(. . .) → . . . , h(. . .) → . . . }. Here, it might be

4.2. Needed Rules 51

the case that it is hard to satisfy the constraint for the h-rule. The needed rules of the
DP problem are N1 = {g1(. . .) → . . . , g2(. . .) → . . . } which do not contain the h-rule.
Thus, the needed rule processor can transforms (P ,Q,R,m) to (P ,Q,N1 ∪ Cε, a). Now
as the h-rule is missing it might be possible to solve the constraints of the reduction pair
processor of Theorem 4.2 and to delete the first pair of P . Then we are left with the
DP problem ({F(. . .) → F(. . . , g2(. . .), . . .)},Q,N1 ∪ Cε, a) which has the needed rules
N2 = {g2(. . .)→ . . . }. At this point we are not able to reapply the needed rules processor
to delete the now unneeded g1-rule. Hence, in another application of the reduction pair
processor of Theorem 4.2 we will have to satisfy the constraint g1(. . .) %π . . . for the
unneeded g1-rule.

This is in contrast to the new reduction pair processor of Theorem 4.18. Here, we have
to satisfy the same constraints as above to delete the first rule of P . But the result is the
DP problem ({F(. . .)→ F(. . . , g2(. . .), . . .)},Q,R,m) which has the needed rules N2 as
above. However, in a second application of Theorem 4.18 there will be no constraint for
the unneeded g1-rule. In this aspect the new reduction pair processor is always better
than the combination of the needed rules processor and the reduction pair processor.

Although the reduction pair processor always seems to be better than the needed rules
processor there are some disadvantages. With Theorem 4.18 one cannot reduce the TRS
R. Removing rules of R might be needed for a successful application of the processor of
Theorem 3.14 to switch to the innermost-case if the unneeded rules are not confluent or
are overlapping with P . And removing rules is also beneficial when using other techniques
like semantic labeling, cf. Chapter 7 and Example 7.32.

For this second application the needed rules processor is sometimes required. However,
after we have applied the needed rules processor minimality can be destroyed and the
non-confluent rules of Cε are added. Thus, the needed rules processor does not help at
all to transform a DP problem into one where the processor of Theorem 3.14 to switch
to innermost is applicable. For that reason, we introduce the following third and last
processor which is based on Lemma 4.11 (viii). It removes unneeded rules, does not add
the additional rules of Cε, and it keeps minimality. The removal of non-usable rules is
often crucial, since these rules often block the application of other important processors,
as will be shown in Example 4.23. The costs for these benefits are constraints that have
to be satisfied by a monotonic reduction pair (%,�) which is a reduction pair where
additionally � is monotonic and Cε-compatible. (This ensures that the Cε-rules are only
applied finitely often.) Thus, we cannot preprocess the constraints with an argument
filter π as �π in general is not monotonic even if � is monotonic.

Theorem 4.20 (Processors Based on Needed Rules and Reduction Pairs). Let (%,�) be
a monotonic reduction pair where � is Cε-compatible. Let ECap be an estimated Cap-
function that parameterizes the needed rules N in Definition 4.5. Then the following
processor Proc is sound and complete. For a DP problem (P ,Q,R, f), Proc returns

• {(P ,Q,N , f)}, if

– N = N (P ,Q,R),

– P ∪N ⊆ %, and

– f = m.

• {(P ,Q,R, f)}, otherwise

52 Chapter 4. Processors Based on Orders

This processor is similar to the usable rules processor of Theorem 3.25 but one addition-
ally has to satisfy a set of constraints and one can only use it if one tries to prove absence
of minimal chains. However, in the case that a DP problem is not in the innermost case,
we usually get far less needed rules than usable rules.

Compared to the needed rules processor of Theorem 4.12 in Theorem 4.20 it is neither
required to add the rules of Cε, nor is minimality lost. However, these benefits are paid
by having to satisfy constraints which are similar to the ones of Theorem 4.18. But
a major difference to Theorem 4.18 is that in Theorem 4.20 the strict order has to be
monotonic which prohibits the use of argument filters. We will investigate the difference
by continuing to prove termination of the running example of Example 4.13.

Example 4.21. We recapitulate some rules and pairs.

s(p(x))→ x (33)

p(s(x))→ x (34)

negate(0)→ 0 (37)

negate(p(x))→ s(negate(x)) (38)

negate(s(x))→ p(negate(x)) (39)

negate(negate(x))→ x (40)

negate(minus(0, x))→ x (41)

DIV(s(x), s(y))→ DIV(minus(x, y), s(y)) (52)

QUOT(x, p(y))→ QUOT(x, negate(p(y))) (53)

QUOT(p(x), y)→ QUOT(negate(p(x)), y) (54)

With the reduction pair processor of Theorem 4.18 we can solve the same three examples
with the same orders as we did in Example 4.13. But as before, it is not possible to simplify
the remaining DP problem ({(53), (54)},Q,R,m) using quasi-simplification orders. The
reason is that the needed rule (40) enforces to use an argument filter which does not drop
the argument of negate.

We obtain another result by the needed rules processor of Theorem 4.20. Here, the
constraint for pair (52) is not satisfiable if � is monotonic and if % is a quasi-simplification
order. The reason is that we must not filter the second argument of minus due to the
required monotonicity. Thus, the reduction pair processor of Theorem 4.18 can be more
powerful than the needed rules processor.

However, we can simplify the remaining DP problem ({(53), (54)},Q,R,m) by the
needed rules processor of Theorem 4.20. As reduction pair we choose a polynomial order
with Pol(c(x, y)) = 1 + x + y and Pol(f(x1, . . . , xn)) = x1 + · · · + xn for all remaining
symbols f . Then the requirements are satisfied and we obtain the simpler DP problem
({(53), (54)},Q, {(33), (34), (37)− (41)},m).

Thus, although the constraints of Theorem 4.18 and Theorem 4.20 look similar they are
incomparable: Theorem 4.18 requires to have at least one strict decrease in the constraints
for P and Theorem 4.20 requires that the strict order in the reduction pair is monotonic.
However, neither of them is able to simplify our new remaining DP problem further. For
this we will need processors of the remainder of this chapter.

An important observation about Theorem 4.20 has already been made in [GTS05a, Page
18]: Theorem 4.20 can always be applied if P and the needed rules are non-duplicating.

4.3. Rule Removal 53

In this case the polynomial order of Example 4.21 always satisfies the constraints. Thus,
for DP problems arising from string rewrite systems one can always replace R by the
needed rules.

Relating Theorem 4.20 to the previous version in the literature [GTS05a, Theorem 28]
we see two differences. First, the new version in this thesis is more powerful, since we use
an improved version of needed rules. But on the other hand, in [GTS05a] it is allowed to
delete all rules and pairs that contain unneeded symbols in their left-hand side.

There are two reasons that we did not combine these two theorems into one large theo-
rem which has the improved version of needed rules and the additional deletion possibility
of [GTS05a, Theorem 28]. First, it suffices to apply both existing theorems separately.
Whenever we can satisfy the constraints of Theorem 4.20 using some reduction pair then
we already can change to the improved version of needed rules. Moreover, the same
reduction pair satisfies the constraints of [GTS05a, Theorem 28] for the resulting DP
problem. Thus, we can use the additional deletion possibility of [GTS05a, Theorem 28].
With this sequential application we have the same effect as if we had applied a combined
theorem. The second reason is that the combination would require an even more complex
and hence, less understandable version of the transformation I.

Nevertheless, for the automation of these processors it is useful to combine both theo-
rems. Once one has found the reduction pair for Theorem 4.20 one should not forget it,
but directly apply [GTS05a, Theorem 28] afterwards.

4.3. Rule Removal

Now we present the processor of [GTS05a] to remove further rules from R. Our work
extends the idea in [Zan05b, Theorems 1 and 4] to simplify string rewrite systems by
repeatedly removing rules by using polynomial orders.

As in Theorem 4.2, for a DP problem (P ,Q,R, f), all rules in P and R are oriented
with a reduction pair (%,�). The processor in Theorem 4.2 was used to remove pairs
from P which could be oriented with �. In contrast, the present processor removes rules
from both P and R if they can be oriented with �. The disadvantage is that here we are
again restricted to monotonic reduction pairs where � is monotonic and where we may
not use argument filters.

Theorem 4.22 (Processors Based on Rule Removal). Let (%,�) be a reduction pair
where � is monotonic. The following processor Proc is sound and complete. For a DP
problem (P ,Q,R, f), Proc returns

• {(P \ �,Q,R \ �, f)}, if

– P ⊆ � ∪% and

– R ⊆ � ∪%

• {(P ,Q,R, f)}, otherwise

Note that in case of Cε-compatible reduction pairs, the constraints of Theorem 4.22 are
harder to satisfy than those of Theorem 4.20. Therefore, it is always a good idea to apply
the needed rules processor of Theorem 4.20 first. However, the needed rules processor is
applicable once only. After it has deleted all unneeded rules, all rules in the resulting
TRS are needed. Therefore, a second application of the needed rules processor will not

54 Chapter 4. Processors Based on Orders

simplify the DP problem any further. In contrast, the rule removal processor can delete
any remaining rule provided that the constraints are satisfied.

We continue to prove termination of Example 4.21.

Example 4.23. As discussed at the end of Section 4.2, the remaining DP problem
({(53), (54)},Q, {(33), (34), (37) − (41)},m) cannot be simplified by the processors that
are known at that point. However, the new rule removal processor of Theorem 4.22
is applicable. We choose the linear polynomial order with Pol(s(x)) = Pol(p(x)) =
1 + x and Pol(f(x1, . . . , xn)) = x1 + · · · + xn for the remaining symbols f , i.e., Pol
counts the number of s- and p-symbols. Then the constraints of rules (33) and (34) are
strictly decreasing and we can delete these rules. We obtain the remaining DP problem
({(53), (54)},Q, {(37) − (41)},m) which cannot be simplified further by our current set
of processors if we only use reduction pairs based on quasi-simplification orders.

As a final remark, note that the rule removal processor cannot handle the DP problem
({(53), (54)},Q,R,m) using a quasi-simplification order due to the division rule (43).
Hence, the previous application of the needed rules processor of Theorem 4.20 was ur-
gently required.

4.4. Usable Rules w.r.t. an Argument Filter

In the following two sections we will show how one can reduce the set of constraints of the
reduction pair processors even further. For the main idea, we recapitulate the situation
in Example 4.3. We had to solve the constraints

MUL(x, y, z) �π IF(isZero(x), x, y, z) (23)

IF(false, s(x), y, z) �π MUL(x, y, plus(y, z)) (25)

together with the constraints for the remaining usable rules for computing isZero and plus.
Note that both the test isZero and the accumulator plus do not contribute to the termi-
nation argument: we used an argument filter which only considered the first argument
of MUL and the second argument of IF. Hence, if we apply the filter we do not see the
function symbols isZero and plus any more. So the question is why we should have to
consider the isZero- and plus-rules as usable rules for this specific argument filter.

Thus, the idea is to make usable rules dependent on the argument filter to obtain less
usable rules. To this end, we introduce the notion of regarded positions and make minor
adjustments to Definition 3.24. After an example we also refine the improved estimation
of usable rules in Definition 3.26 in order to respect the argument filter.

Definition 4.24 (Regarded Positions). Let π be an argument filter. Then for every term
we define its regarded positions w.r.t. π as the smallest set RegPosπ(t) such that

• ε ∈ RegPosπ(t) and

• if t = f(t1, . . . , tn), p ∈ RegPosπ(ti), and π(f) = i or π(f) = [. . . , i, . . .] then
ip ∈ RegPosπ(t).

So in essence, the regarded positions of a term t are all those positions of t that are not
dropped by the filter π. Now we can define the usable rules w.r.t. an argument filter.

4.4. Usable Rules w.r.t. an Argument Filter 55

Definition 4.25 (Usable Rules w.r.t. an Argument Filter). Let Q and S be sets of terms,
let R be a TRS, and let π be an argument filter. We define the usable rules w.r.t. π of
a term t as the smallest subset US,πR,Q(t) of R such that whenever there is a substitution
σ such that Sσ ⊆ NF (Q) and tσ Q→∗R v Q→`→r,p u for some rule ` → r ∈ R and position

p ∈ RegPosπ(v) then `→ r ∈ US,πR,Q(t).

A function EU estimates the usable rules w.r.t. π iff US,πR,Q(t) ⊆ EUS,πR,Q(t) for all possible
inputs R, Q, S, t, and π. For a DP problem (P ,Q,R, f) the estimated usable rules w.r.t.

π are defined as EU(P ,Q,R, π) =
⋃
s→t∈P EU

{s},π
R,Q (t).

Using this definition one immediately obtains the following lemma.

Lemma 4.26 (Properties of Usable Rules w.r.t. to an Argument Filter). Let π be an
argument filter and let EU be an estimation of the usable rules w.r.t. π. If s1 → t1, s2 →
t2, . . . is an infinite (P ,Q,R)-chain then π(s1) → π(t1), π(s2) → π(t2), . . . is an infinite
(π(P),∅, π(EU(P ,Q,R, π)))-chain.19

Now we can improve the reduction pair processor of Theorem 4.2 considerably by inte-
grating the argument filter.

Theorem 4.27 (Processors Based on Reduction Pairs and Usable Rules w.r.t. an Argu-
ment Filter). Let (%,�) be a reduction pair and π be an argument filter. Let EU estimate
the usable rules w.r.t. π. Then the following processor Proc is sound and complete. For
a DP problem (P ,Q,R, f), Proc returns

• {(P \ �π,Q,R, f)}, if

– P ⊆ �π ∪%π and

– EU(P ,Q,R, π) ⊆ %π.

• {(P ,Q,R, f)}, otherwise

Example 4.28. We now show that the DP problem D6 with pairs (23) and (25) of
Example 4.3 can even be solved by the embedding order.

MUL(x, y, z) % IF(isZero(x), x, y, z) (23)

IF(false, s(x), y, z) � MUL(x, y, plus(y, z)) (25)

We choose π(MUL) = 1, π(IF) = 2, and π(s) = [1]. Then there are no usable rules w.r.t.
π since π drops both subterms isZero(x) and plus(y, z) which contain defined symbols.
Thus, the constraints for the DP problem are simplified to x % x and s(x) � x. These
are obviously satisfied by the embedding order. Hence, by Theorem 4.27 we can delete
(23) from P . The remaining DP problem can then by solved by the processors based on
the dependency graph.

Note that Theorem 4.27 does neither help in solving the other DP problem D1 of
Example 4.3 nor does it help for the remaining DP problem Example 4.23. As both
DP problems are not in the innermost case, all rules are usable w.r.t. π for any filter
with π(PLUS) 6= [] or π(QUOT) 6= [], respectively. Thus, it is strongly required to

19Note that we introduced chains only for DP problems where P is a set of pairs (or a graph over pairs)
and where R is a TRS. However, in general π(P) and π(EU(P,Q,R, π)) are only generalized TRSs.
But this is no problem as one can easily extend the definition of a chain to generalized TRSs.

56 Chapter 4. Processors Based on Orders

carry over the idea of usable rules w.r.t. an argument filter to define the needed rules
w.r.t. an argument filter. However, the needed rules in Definition 4.5 are based on the
approximation of usable rules where one only dropped the variable case. So, before we
define the needed rules w.r.t. an argument filter in the next section, let us adapt the
improved estimation of usable rules of Definition 3.26 to regard a given argument filter.
This is also required to mechanize Theorem 4.27 as the usable rules w.r.t. an argument
filter are – like the usable rules – not computable. To obtain the following definition one
just has to replace condition (ii) in Definition 3.26 accordingly.

Definition 4.29 (Improved Estimated Usable Rules w.r.t. an Argument Filter). Let Q
and S be set of terms, let R be a TRS, and let π be an argument filter. Let ECap be an
estimated Cap-function. The improved estimated usable rules of a term t w.r.t. π are
defined as the smallest set IUS,πR,Q(t) ⊆ R such that

(i) If t = f(t1, . . . , tn), ` = f(`1, . . . , `n)→ r ∈ R, and if the terms f(ECapSR,Q(t1), . . . ,

ECapSR,Q(tn)) and ` are unifiable with the mgu δ such that all terms in ({`1, . . . , `n}∪
S)δ are in Q-normal form, then `→ r ∈ IUS,πR,Q(t).

(ii) If t = f(t1, . . . , tn) and i ∈ RegPosπ(t) then IUS,πR,Q(ti) ⊆ IUS,πR,Q(t).

(iii) If ` = f(`1, . . . , `n)→ r ∈ IUS,πR,Q(t) then IU{`1,...,`n},πR,Q (r) ⊆ IUS,πR,Q(t).

(iv) If t = x and x is not a subterm of any term in S or NF (Q) 6⊆ NF (R) then
IUS,πR,Q(t) = R.

The following theorem states the desired result that indeed the improved estimated
usable rules w.r.t. π estimate the usable rules w.r.t. π.

Theorem 4.30 (Soundness of the Improved Usable Rules w.r.t. an Argument Filter).
The function IU to compute the improved estimated usable rules w.r.t. an argument filter
estimates U .

Comparing the usable rules w.r.t. an argument filter with previous approaches in the
literature [AG00, GTS05b, GTSF06, TGS04], we see that only our approach uses uni-
fication, an arbitrary Cap-function, the argument filter, and checks on Q-normal forms
to estimate the usable rules w.r.t. an argument filter. Even a combination of unification
and argument filters has not been done before. All previous approaches essentially only
compare the root symbols [AG00, GTSF06, TGS04] or do not integrate the argument
filter [AG00, GTS05b]. That sometimes both is required is shown in our running example
(Example 4.33) where we use the combination of unification and argument filters for the
needed rules.

4.5. Needed Rules w.r.t. an Argument Filter

In Section 3.3 we have seen that if DP problems are not in the innermost case then the
set of usable rules often contains all rules. This remains valid for the usable rules w.r.t.
an argument filter, but not for the needed rules, cf. Section 4.2. Now we further reduce
the set of needed rules by regarding an argument filter. As in Section 4.2 one can show
that only these rules have to be considered when adding the rules of the TRS Cε. As this
result is obtained in a completely similar way as in Section 4.2, we will first present the

4.5. Needed Rules w.r.t. an Argument Filter 57

main theorem and illustrate it before we present the necessary transformation Iπ at the
end of this section.

We obtain the needed rules w.r.t. an argument filter from the improved estimation of
usable rules w.r.t. an argument filter in the way that we obtained the needed rules from the
improved estimated rules: We drop condition (iv) for the variable case of Definition 4.29.

Definition 4.31 (Needed Rules w.r.t. an Argument Filter). Let Q and S be set of terms,
let R be a TRS, let π be an argument filter, and let ECap be an estimated Cap-function.
The needed rules of a term t w.r.t. π are defined as the smallest set N S,πR,Q(t) ⊆ R such
that

(i) If t = f(t1, . . . , tn), ` = f(`1, . . . , `n)→ r ∈ R, and if the terms f(ECapSR,Q(t1), . . . ,

ECapSR,Q(tn)) and ` are unifiable with the mgu δ such that all terms in ({`1, . . . , `n}∪
S)δ are in Q-normal form, then `→ r ∈ N S,πR,Q(t).

(ii) If t = f(t1, . . . , tn) and i ∈ RegPosπ(t) then N S,πR,Q(ti) ⊆ N S,πR,Q(t).

(iii) If ` = f(`1, . . . , `n)→ r ∈ N S,πR,Q(t) then N {`1,...,`n},πR,Q (r) ⊆ N SR,Q(t).

As usual, N (P ,Q,R, π) =
⋃
s→t∈P N

{s},π
R,Q (t).

Theorem 4.32 (Processors Based on Reduction Pairs and Needed Rules w.r.t. an Ar-
gument Filter). Let (%,�) be a reduction pair where % is Cε-compatible and let π be an
argument filter. Let ECap be an estimated Cap-function that parameterizes the needed
rules N in Definition 4.31. Then the following processor Proc is sound and complete.
For a DP problem (P ,Q,R, f), Proc returns

• {(P \ �π,Q,R, f)}, if

– P ⊆ �π ∪%π,

– N (P ,Q,R, π) ⊆ %π, and

– f = m.

• {(P ,Q,R, f)}, otherwise

Note that Theorem 4.18 is subsumed by Theorem 4.32: disregarding the argument filter
in the computation of needed rules will only produce more needed rules and therefore more
constraints, but the other conditions to apply the reduction pair processor are identical
in Theorem 4.32 and Theorem 4.18. That the processor of Theorem 4.32 is strictly more
powerful is shown in the running example of this chapter.

Example 4.33. We recapitulate some rules and pairs of the remaining DP problem
({(53), (54)},Q, {(37)− (41)},m) of Example 4.23.

negate(0)→ 0 (37)

negate(p(x))→ s(negate(x)) (38)

negate(s(x))→ p(negate(x)) (39)

negate(negate(x))→ x (40)

negate(minus(0, x))→ x (41)

QUOT(x, p(y))→ QUOT(x, negate(p(y))) (53)

QUOT(p(x), y)→ QUOT(negate(p(x)), y) (54)

58 Chapter 4. Processors Based on Orders

Consider the argument filter π with π(QUOT) = [1, 2], π(p) = [1], and π(s) = π(negate) =
[]. For this argument filter only rule (38) is needed: since we have deleted the p-rule,

ICap
{QUOT(p(x),y)}
R,Q (p(x)) = p(z). Therefore, from the pair (54) we directly see that (38) is

needed, but none of the left-hand sides of the other rules is unifiable with negate(p(z)).
Note that at this point previous definitions of needed rules [GTSF06, TGS04, Urb01] mark
all rules as needed as they just look at the root symbols. Moreover, as the right-hand side
of (38) contains the subterm negate(x) all rules are needed if we disregard the argument
filter. But as π drops the argument of s this subterm does not have to be considered when
computing the needed rules w.r.t. π. And as there is no s-rule any more, (38) remains the
only needed rule w.r.t. π.

Now, the resulting constraints

QUOT(x, p(y)) � QUOT(x, negate) (53)

QUOT(p(x), y) � QUOT(negate, y) (54)

negate % s (38)

are easily satisfied by an LPO with precedence p > negate > s. Thus, all pairs of the
DP problem can be removed by the processor of Theorem 4.32 and we have finished the
termination proof of our running example to compute division on integers.

To perform this proof with quasi-simplification orders for the most difficult DP problem
containing the dependency pairs for the quot-rules, we required three processors that have
been presented in this chapter:

(i) The needed rules processor of Theorem 4.20 deleted all unneeded rules.

(ii) Then the rule removal processor of Theorem 4.22 was able to delete the s- and
p-rules.

(iii) Finally the reduction pair processor of Theorem 4.32 removed all pairs.

It can be shown that in this proof none of these three processors can be replaced by
any other processor of this chapter, even if one uses larger classes of orders. For example
even with negative polynomial interpretations of [HM07] one needs all three processors.
In this example one can also see why losing minimality is bad. If one had started with
the needed rules processor of Theorem 4.12 then it would not be possible to apply the
reduction pair processor of Theorem 4.32 in the third step any more.

Note that by Theorem 4.32 it is possible to solve the DP problem D1 of Example 4.3 us-
ing only the embedding order. This is in contrast to the previous reduction pair processors
where we had to use non-linear polynomial orders as in Example 4.3.

Now we adapt the proof of Theorem 4.18 to prove Theorem 4.32. To this end we define
a transformation Iπ in a similar way to I. But Iπ differs from I as it returns terms that
are filtered with π.

Definition 4.34 (Iπ). Let N = N (P ,Q,R, π) be the set of needed rules of the given DP
problem, and let u1 → v1, u2 → v2, . . . be an infinite minimal (P ,Q,R)-chain. W.l.o.g.
we assume that σ is the substitution used for instantiating every ui → vi. Moreover,
whenever in the reduction of viσ a rule `j → rj ∈ R is applied, then by renaming the
variables in the rule we again assume that the rule is instantiated by σ in that rewrite
step. Let Sall contain all ui and all direct subterms of each `j. Let c be the new constant

4.5. Needed Rules w.r.t. an Argument Filter 59

and let ⊥ be the new variable which are introduced by Comp. We define the mapping
Iπ from terms of T (F ,V) that terminate w.r.t. Q→R to terms of T (F] {c},V] {⊥}) as
follows.

• Iπ(x) = x for every variable x

• Iπ(f(t1, . . . , tn)) = f(t1, . . . , tn), if there is no rule ` → r ∈ R \ N such that
f(CapSallσR,Q (t1), . . .CapSallσR,Q (tn)) unifies with ` by some mgu µ where ({`|1, . . . , `|n}∪
Sallσ)µ ⊆ NF (Q).

• Iπ(f(t1, . . . , tn)) = c(f(t1, . . . , tn),Comp(Red(f(t1, . . . , tn)))), otherwise.

Here, Redπ(t) = {Iπ(s) | t Q→R s} and f(t1, . . . , tn) = Iπ(ti), if π(f) = i, and
f(t1, . . . , tn) = f(Iπ(ti1), . . . , Iπ(tik)), if π(f) = [i1, . . . , ik].

We extend Iπ to substitutions by defining Iπ(σ) as the substitution with xIπ(σ) =
Iπ(xσ).

The transformation Iπ has similar properties compared to I. In correspondence to
Lemma 4.11 we will show in Lemma 4.35 how to transform a minimal (P ,Q,R)-chain
into a (π(P),∅, π(N) ∪ Cε)-chain. One difference is that due to the argument filter
the evaluation strategy given by Q cannot be preserved. This is not a severe problem for
proving Theorem 4.32. since it suffices to use the filtered chain in order to show properties
of the original chain.

To be more precise, if s1 → t1, s2 → t2, . . . is an infinite minimal (P ,Q,R)-chain
then this chain will be transformed into the infinite filtered chain π(s1)→ π(t1), π(s2)→
π(t2), . . . where only rules of π(N)∪Cε are needed. Then the constraints of Theorem 4.32
ensure that certain pairs π(s) → π(t) in the filtered chain can only occur finitely often.
But then even in the original chain the corresponding pairs s→ t can occur only finitely
often, and hence they can be removed from P .

Dropping the strategy will make the proof simpler as we do not require the invariant
Inv that every term below a c is in Q-normal form. Moreover, as we drop the evaluation
strategy we can simulate the reduction step by step and we do not have to combine mul-
tiple reduction steps which lead to a Q-normal form. (This was required in Lemma 4.11
(vi).) On the other hand integrating the argument filter will complicate the proof a little
bit.

Lemma 4.35 (Properties of Iπ). Let P ,Q,R,N , u1 → v1, u2,→ v2, . . . ,Sall, σ be as in
Definition 4.34. Let t be terminating w.r.t. Q→R.

(i) If N SR,Q(t) ⊆ N and S ⊆ Sall then Iπ(tσ) = π(t)Iπ(σ).

(ii) Iπ(tσ)→∗Cε π(t)Iπ(σ).

(iii) If t Q→R s, and Iπ(t) is built by the third case then Iπ(t)→+
Cε Iπ(s).

(iv) If t Q→R s is a reduction at the root position and Iπ(t) is built by the second case
then Iπ(t)→∗Cε→π(N) Iπ(s).

(v) If t Q→R s then Iπ(t)→∗π(N)∪Cε Iπ(s).

(vi) π(u1 → v1), π(u2 → v2), . . . is a (π(P),∅, π(N) ∪ Cε)-chain.

60 Chapter 4. Processors Based on Orders

With the help of Lemma 4.35(vi) it is now possible to prove Theorem 4.32 in the illus-
trated way.

Remember that we introduced three different processors based on the transformation I.
It turned out that the reduction pair processor of Theorem 4.18 is completely subsumed
by the new reduction pair processor of Theorem 4.32 which is based on Iπ. Hence, the
obvious question is whether we can improve the other two processors which are based on
I. We answer this question in the remainder of this section.

We first consider the needed rules processor of Theorem 4.20. As this processor requires
to solve constraints for P ∪N (P ,Q,R) it might be tempting to allow an argument filter
π and just require constraints for P ∪ N (P ,Q,R, π). Unfortunately, this is unsound.
Consider the following counter-example with P = {F(a) → F(b)}, R = {b → a}, and
Q = ∅. If we choose the argument filter π with π(F) = [] then there are no needed
rules w.r.t. π. Hence, the resulting constraint of the only pair in P can be satisfied by
a monotonic Cε-compatible order regardless of whether we require π(F(a)) % π(F(b)) or
F(a) % F(b). The resulting DP problem where we have replaced R by ∅ is obviously
finite. However, as (P ,Q,R) is not finite, any processor which deletes the rule of R is
unsound.

Finally, we consider a processor similar to the needed rules processor of Theorem 4.12
which directly applies Lemma 4.35 (vi) and replaces a DP problem (P ,Q,R,m) by
(π(P),∅, π(N (P ,Q,R, π)) ∪ Cε, a), provided that the filtered pairs and rules form two
TRSs. Obviously, this processor is sound, but it does not subsume Theorem 4.12. There
are two reasons for this. First, the strategy Q is not carried over and second minimality
is always lost, even if the requirements of Theorem 4.12 to carry over minimality (Q = ∅
and left-linearity of N) are satisfied. With the following two examples we show that
both of the weaknesses are not due to a weakness of the transformation Iπ, but that any
processor without these disadvantages is unsound.

To show that minimality cannot be preserved, even if Q = ∅ and if P∪R is ground, we
consider the non-finite DP problem P = {F(g(b)) → F(g(a))} and R = {g(a) → g(b)}.
If we choose the argument filter π with π(F) = [1] and π(g) = [] then the resulting DP
problem is ({F(g)→ F(g)},∅, {g → g} ∪ Cε, f). Now, if f = m then this DP problem is
finite since the right-hand side F(g) of the only pair is obviously not terminating w.r.t.
the filtered rule g→ g.

The second example shows that it is not possible to carry over the reduction strategy
given by Q. We consider the non-finite DP problem (P ,Q,R,m) with P = {F(x) →
F(g(a, s(a)))}, Q = {g(x, x)}, and R = ∅. If we choose π(s) = 1, π(F) = [1], and π(g) =
[1, 2] then we obtain the new DP problem ({F(x) → F(g(a, a))},Q′, Cε, a). Regardless
of whether we choose Q′ = Q or Q′ = π(Q) there is no infinite chain for this new DP
problem as the right-hand side of the filtered pair cannot be reduced to a Q-normal form.

Although minimality and strategy are lost, it can sometimes be useful to apply the
processor which replaces (P ,Q,R) by (π(P),∅, π(N)∪Cε, a) where N = N (P ,Q,R, π).
In this way one can apply techniques on arbitrary DP problems which are only available
for string rewriting. If one chooses π in such a way that for every function symbol at
most one argument is kept, then (π(P),∅, π(N) ∪ Cε, a) is a DP problem where every
function symbol except c has at most arity 1. Since c does not occur in π(P)∪ π(N) and
since this TRS is non-duplicating we can apply Theorem 4.22 to remove the Cε-rules. The
polynomial order with Pol(c(x, y)) = 1 + x + y and Pol(f(x1, . . . , xn)) = x1 + · · · + xn
can always be used. Hence, for the resulting DP problem (π(P),∅, π(N), a) all symbols
have at most arity 1. And to remove all constants one can use the technique of [TZGS07]

4.6. Subterm Criterion 61

such that one obtains DP problems with only unary symbols. Hence, the resulting DP
problem consists of string rewrite systems.

The only problem is the automation of this approach. Since one has to perform a
complete termination proof of the resulting “string DP problem”, and since argument
filtering is inherently incomplete, it might be a problem to detect a suitable argument
filter from the exponentially large set of all possible argument filters.

4.6. Subterm Criterion

With the techniques of usable and needed rules w.r.t. an argument filter in the previous
two sections it is possible to reduce the number of constraints for the rewrite system R in
a reduction pair processor considerably. However, sometimes even these sets can get large
and make the search for a suitable reduction pair in Theorem 4.27 and Theorem 4.32 hard.
In [HM07] Hirokawa and Middeldorp have shown that by using a special class of orders,
one does not need to consider R at all. Using their subterm criterion no constraints are
generated for R but the relations � and % are fixed to the proper and the non-proper
subterm relations, respectively. Moreover, the argument filter is also restricted. For tuple
symbols – the symbols that have been introduced when computing the DPs of a TRS
– one may use collapsing argument filters and for every other symbol f of arity n the
argument filter of f is fixed to [1, . . . , n].

Here we encounter a problem in the DP framework. In a DP problem all pairs in P
are arbitrary rules which are possibly collapsing and there is no notion of tuple symbols.
The following list contains some of the characteristics of tuple symbols in the initial DP
problem DP(R).

• Every pair in DP(R) is of the form f(. . .)→ g(. . .) where f and g are tuple symbols.

• Tuple symbols do not occur in R.

• Tuple symbols only occur at the roots of pairs in P .

In order to obtain a subterm criterion for the DP framework we introduce a new notion
of head symbols to describe which symbols may be filtered in a DP problem (P ,Q,R) if
P is a set of arbitrary rules. Particularly, if P = DP(R) for a TRS R, then the head
symbols are exactly the tuple symbols.

Definition 4.36 (Head Symbol). For any DP problem (P ,Q,R), we define its head
symbols H(P ,R) as the set of all those function symbols on root positions in P which do
not occur below the root in P and which do not occur in R at all.

H(P ,R) = F(P) \ (F(R) ∪ F>ε(P))

Here, F(P) and F(R) denote all function symbols occurring in P and R, respectively,
and F>ε(P) denotes all function symbols occurring in P below the root position.

What makes head symbols interesting is that in every infinite chain, eventually for all
connections between s → t and the following pair u → v either both t and u have head
symbols as root, or both do not. This property is formulated in the following lemma
and is needed to prove the subterm criterion that works with head symbols instead of
tuple symbols. Moreover, the lemma can be used for a processor that deletes all edges

62 Chapter 4. Processors Based on Orders

between s→ t and u→ v if exactly one of the terms t and u has a head symbol as root.
Finally, it is used to prove that an argument filter processor preserves both minimality
and strategy if only head symbols are filtered. This is contrast to the argument filter
processor of [GTS05a, Theorem 37]. There it was necessary to drop both minimality and
strategy, since arbitrary filters where allowed in the argument filter processor. However,
it was already indicated that one can define an argument filter processor as we do in the
upcoming Theorem 4.38, but the details were omitted.

Lemma 4.37 (Properties of Head Symbols). Let (P ,Q,R, f) be a DP problem and let
H = H(P ,R) be its head symbols. Then in every infinite (P ,Q,R)-chain s1 → t1, s2 →
t2, . . . there is an n ∈ IN such that for every i ≥ n the equivalence root(ti) ∈ H ⇔
root(si+1) ∈ H is satisfied.20

Theorem 4.38 (Processors Based on Argument Filters). Let π be an argument filter. The
following processor Proc is sound. For a DP problem (P ,Q,R, f) with H = H(P ,R),
Proc returns

• {(π(P),Q,R, f)}, if π(P) is a TRS and π(f) = [1, . . . , ar(f)] for all f /∈ H
• {(P ,Q,R, f)}, otherwise

Theorem 4.39 (Edge Deletion by Head Symbols Processor). The following processor
Proc is sound and complete. For a DP problem (P ,Q,R, f) with P = (N,E) and H =
H(P ,R), Proc returns {((N,E ′),Q,R, f)} where E ′ = {(s → t, u → v) ∈ E | root(t) ∈
H ⇔ root(u) ∈ H}.

Note that Theorem 4.39 is not subsumed by the edge deletion processor of Theorem 3.3
which is based on the dependency graph. The reason is that this processor can delete
edges that are connected in the dependency graph. We use a small example to illustrate
the previous two processors.

Example 4.40. Let (P ,Q,R,m) be given with Q = ∅, R = {g(x)→ . . . } where h does
not occur in R, and where P is the following pair-graph.

F(h(g(g(x)), y), z)→ F(h(g(x), g(y)), b)
OO

��

ll

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XYY

F(h(x, y), b)→ F(h(x, y), a)

F(h(x, y), z)→ F(y, b)
rr

22ffffffffffffffffffffffff��

Since F is a head symbol, the argument filter processor of Theorem 4.38 is applicable with
π(F) = 1. The resulting DP problem has the following pair-graph.

h(g(g(x)), y)→ h(g(x), g(y))
OO

��

jj

**VVVV
VVVV

VVVV
VVVV

VVYY

h(x, y)→ h(x, y)

h(x, y)→ y
tt

44hhhhhhhhhhhhhhhhhh��

20Note that the root of a variable is not defined. Nevertheless, we say that root(ti) is not contained in
H whenever ti is a variable.

4.6. Subterm Criterion 63

Note that only due to carrying over the graph structure we have not introduced an infinite
chain, as otherwise there clearly would be an infinite chain using only the pair h(x, y)→
h(x, y).

For this new DP problem the only head symbol is h. Hence, we can now apply
Theorem 4.39 to delete all outgoing edges of the pair h(x, y) → y and then afterwards
delete that pair itself by Theorem 3.4. Note that we cannot exchange Theorem 4.39 by
Theorem 3.3, since the dependency graph still contains all outgoing edges of that pair.
We show how to finish the termination proof later in this section in Example 4.42.

Further uses of the argument filter processor are demonstrated in Example 6.25, in
Example 7.32, and in [GTS05a, Example 41]. Moreover, [GTS05a, Examples 38–40] il-
lustrate why it is only allowed to filter the head symbols of a DP problem, and why the
argument filter processor is incomplete.

Coming back to the main aim of this section we can now formulate and prove the
following generalized theorem about the subterm criterion of [HM07]. It can be applied
for arbitrary DP problems and it does not necessarily require minimality as in [HM07].

Theorem 4.41 (Processors Based on the Subterm Criterion). Let π be an argument filter.
Then the following processor Proc is sound and complete. For a DP problem (P ,Q,R, f),
Proc returns

• {(P \�π,Q,R, f)}, if

– P ⊆ �π,

– π(g) ∈ {1, . . . , ar(g)} for all g ∈ H(P ,R),

– π(g) = [1, . . . , ar(g)] for all g /∈ H(P ,R), and

– f = m or NF (Q) ⊆ NF (R).

• {(P ,Q,R, f)}, otherwise

Note that the subterm criterion is easy to automate and it is able to prove termination
of every TRS in primitive recursive form. However, for more complex DP problems like
the DP problems containing dependency pairs of the div- and quot-rules in Example 4.4,
often more powerful methods like the reduction pair processors of Theorems 4.27 and 4.32
are needed. Note that the proof of the subterm processor reveals that in the innermost
case, Theorem 4.27 completely subsumes the subterm criterion even if one does not use
the precise usable rules but if one estimates the usable rules by Definitions 3.11 and 3.26.
As the needed rules are identical to the improved estimated usable rules in the innermost
case we also know that the reduction pair processor of Theorem 4.32 encompasses the
subterm processor.

Even if one is not in the innermost case, Theorem 4.32 is more powerful than the
subterm processor for a large class of DP problems, namely those DP problems where
no left-hand sides of P contains a defined symbols of R. This includes all DP problems
that arise from functional programs. As in the proof of Theorem 4.41 one can show
that for these DP problems there are no needed rules w.r.t. the argument filter whenever
the constraints of the subterm processor are satisfied. However, continuing the proof
of Example 4.40 in Example 4.42 demonstrates that there are DP problems where the
subterm processor is applicable but the reduction pair processor of Theorem 4.32 is not.

64 Chapter 4. Processors Based on Orders

Example 4.42. For the remaining pairs in Example 4.40, the g-rule and possibly other
rules that depend on g are needed. The corresponding constraints may prohibit a suc-
cessful application of Theorem 4.32. However, we can choose π(h) = 1 and delete the pair
h(g(g(x)), y)→ h(g(x), g(y)) by the subterm processor. A final application of Theorem 3.4
finishes the proof.

Here, the preprocessing with the argument filter processor was required for the success
of the subterm processor, since none of arguments h(g(x), g(y)) and b of the right-hand
side F(h(g(x), g(y)), b) is a subterm of the corresponding left-hand side.

Additionally, the preprocessing with Theorem 4.39 was important. Without the dele-
tion of the third pair h(x, y)→ y, the resulting constraints would be unsatisfiable.

The following example illustrates that the subterm processor cannot be extended in a
way that we replace the subterm relation by the embedding order.

Example 4.43. Let P = {F(g(h(g(x)))) → F(g(g(x)))}, let Q = ∅, and let R =
{g(g(x)) → g(h(g(x)))}. There obviously is an infinite chain and since R is terminat-
ing, this chain is also minimal. Thus, no sound processor may remove the pair of P .
However, if we choose π(F) = 1 then the filtered right-hand side g(g(x)) of the pair in
P is embedded in the filtered left-hand side g(h(g(x))). Therefore, it is not allowed to
change the subterm relation in Theorem 4.41 to the embedding order.

Summary of Chapter 4

In this chapter we have seen how one can use reduction pairs to delete pairs and rules
which can occur only finitely often in chains. The five most important processors – starting
with the most efficient one, and ending with the most powerful one – are the processor
of Theorem 4.41 based on the subterm criterion (restricted power since the order is fixed
to the subterm relation), the two processors of Theorems 4.20 and 4.22 to remove rules
(medium power since the order is not fixed but argument filters are not allowed), and the
two reduction pair processors of Theorems 4.27 and 4.32 to delete pairs (most powerful
since the order is not fixed, argument filters are allowed, and less constraints need to be
considered due to the argument filter). Like the processors of the previous chapter, these
five processors should be applied as often as possible, since they always simplify a given
DP problem. However, the automation of these processors is more difficult, since finding
a suitable reduction pair imposes a major search problem.

Nevertheless, efficient techniques to search for reduction pairs are available in our work
[CSL+06, FGM+07, GTSF03, GTSF06, STA+07] and in the work of [CLS06, CMTU05,
HM05, ZHM07]. Whereas the older techniques of [CMTU05, GTSF03, GTSF06, HM05]
describe stand-alone approaches, the current techniques encode the search as a SAT prob-
lem and benefit from modern SAT solvers which turns out to be a more efficient approach.

The other two reduction pair processors of Theorems 4.2 and 4.18 are not that impor-
tant since they are subsumed by Theorems 4.27 and 4.32, respectively. They have only
been introduced in this thesis in order to illustrate the basic ideas of the reduction pair
processor, before integrating the more complex concepts of usable (resp. needed) rules
w.r.t. an argument filter.

Both the needed rules processor of Theorem 4.12 and the argument filter processor of
Theorem 4.38 are also useful, but there is one severe problem when integrating them in
an automated tool. As they easily introduce non-termination, one usually has to perform
a complete termination proof to detect whether the application was helpful. Especially

4.6. Subterm Criterion 65

for the argument filter processor this is critical, since there are potentially exponentially
many resulting DP problems that have to be investigated. Nevertheless, in combination
with other techniques – as illustrated in the upcoming Example 6.25 – the automation
becomes feasible.

Basic versions of the techniques of Theorems 4.20, 4.22, 4.27, and 4.32 have already
been published by us in [GTS05a, GTS05b, GTSF03, GTSF06, TGS04] and in [Urb01,
HM07, Zan05b]. However, in all these papers only certain aspects to reduce the set of
constraints have been considered. For example, in these papers there is no variant of
needed rules which is based on unification, and there is no variant of usable rules which
is based on unification that also integrates argument filters. In contrast, here we have
combined needed and usable rules with argument filters, we have estimated them by using
unification, we have integrated normal-form checks, we have allowed arbitrary estimations
of Cap, and we have considered Q-restricted rewriting.

Moreover, we have solved the question under which conditions minimality can be pre-
served by the needed rules processor. Here, only the negative result was already published
by us in [GTSF06].

The last contribution of this chapter is the formulation of the subterm criterion of
Hirokawa and Middeldorp [HM07] as a processor, where we replace tuple symbols by
the new notion of head symbols. This is required, as in a DP problem there are no
tuple-symbols any more, since the pairs and rules are two arbitrary TRSs.

With our current set of processors we can already prove termination of many TRSs.
Nevertheless, there are classes of TRSs where our techniques are not yet sufficient (if one
is limited to standard orders). In the following two chapters we will see two of these
classes and, of course, powerful processors are presented to tackle these problems.

We end this chapter with a discussion on future work in the area of constraint solving.
We see two possible directions. Although the generated constraints can often be satisfied
by the embedding due to our contributions, one sometimes needs powerful orders beyond
the class of the well-known simplification orders. That progress can be made in this direc-
tion has been impressively demonstrated in the recent work of [EWZ06, HM07, HW06].
The two new classes of orders which are based on negative polynomial interpretations
and matrix interpretations turn out to be very useful. Both approaches can be efficiently
mechanized and help to solve previously unsolvable termination problems.

The other direction is to develop new techniques that generate constraints which are
simpler to satisfy than those that are generated with the current processors. That progress
can be achieved has been illustrated by us in [GTSS07]. There we have shown how
to generate conditional constraints which can prove termination of algorithms that are
terminating by increasing an argument until a bound is reached – a previously hard
problem. Moreover, in that work there are less restrictions on the orders, e.g., the order
% does not have to be monotonic any more. It would be useful to extend these ideas
further. Moreover, we think that it is even possible to improve the processors that have
been presented in this chapter. For example under certain conditions it should be possible
to remove rules (and not only pairs) although one uses argument filters.

It remains to state that for both directions one also needs to design efficient algorithms
for the automation.

5. Processors Based on Pair
Transformations

As shown in [AG00, GA01], to increase the power of the DP approach, a dependency pair
may be transformed by rewriting, narrowing, or instantiation. These transformations are
useful if one has to prove termination of TRSs which do not use pattern matching, but
use tests and selectors instead. We illustrate the difference with the following TRS.

p(s(x))→ x (55)

isNonZero(s(x))→ true (56)

isNonZero(0)→ false (57)

f(s(x))→ C[f(x)] (58)

f(x)→ if(isNonZero(x), x) (59)

if(true, x)→ C[f(p(x))] (60)

Essentially, rule (58) does the same as rules (59) and (60). But while rule (58) is defined
via pattern matching, one uses the test isNonZero and the selector p in the rules (59) and
(60). As a consequence, it is easy to find a reduction pair (%,�) which satisfies s(x) � x,
but it is impossible to find a reduction pair which solves x � p(x). The reason for the
latter is that one also has to take care of the possibility that x is instantiated by 0, since
there is no information available in the constraint of rule (60) that one tested x 6= 0 with
rule (59). However, using the transformations will essentially pass this information to rule
(60). Then if one replaces (60) by the resulting new rule

if(true, s(x))→ C[f(x)]

it is again easy to solve the constraints of the reduction pair processor.
As in [GTS05a, GTSF06] we adapt these transformations from the DP approach to the

DP framework. Given a DP problem (P ,Q,R, f), they replace one of the pairs s→ t in
P by several new ones which result from rewriting, narrowing, or instantiating s→ t.

Compared to the original versions of these transformations in the DP approach, they are
now improved and modularized considerably. One reason is that now these transforma-
tions can be applied at any time during the proof, and moreover, the conditions for their
applicability only have to take the pairs and rules in the current DP problem into account.
In this way, these conditions are satisfied much more often than in the original DP ap-
proach, where such transformations were only permitted in the very beginning. But even
compared to the newer versions of these transformation in the DP framework (including
the forward instantiation processor of [GTSF06]) they are improved considerably.

The first improvement is that our transformation processors contain more checks on
normal forms than previous versions. The benefits are weaker application conditions,
and less new pairs will be generated.

A second reason for the improvement is that for the first time a pair-graph P instead of a
set of pairs P is used. This always improves the efficiency of the transformations and some-
times the power of the transformations is increased, cf. Example 5.4 and Example 5.12.

68 Chapter 5. Processors Based on Pair Transformations

A third improvement is the integration of Q. In [GTSF06] only full- or innermost
rewriting is considered. And even in [GTS05a] where Q-restricted rewriting is considered,
only the cases Q = ∅ and Q ⊇ lhs(R) are investigated. However, here there is no
restriction on Q and if a processor requires a specific property of Q then we provide
counterexamples to show the necessity of that property.

The fourth improvement is due to our semantic versions of the Cap-function and of the
usable rules. Whereas previous transformations are formulated for specific versions of Cap
and of usable rules, we now present the transformations for arbitrary estimations. Hence,
future improvements of usable rules (i.e., better estimations of the semantic usable rules of
Definition 3.24) can be integrated into the transformation processors without rechecking
the proofs. That this is not completely trivial can be seen in Example 5.14. There it is
demonstrated that the rewriting processor as formulated in [GTS05a] and [GTSF06] is
unsound for certain estimations of usable rules.

The last and most powerful improvement is the development of a completely new idea.
In the narrowing processor one can choose a position and then only those narrowings
have to be considered that correspond to rewrite steps below that position. This will be
essential to handle problems where tests and selectors are used in combination with an
accumulator, see Section 5.4 for more details and examples.

We will demonstrate all transformations with the following running example where
some of our new improvements are crucial, e.g. the forward instantiation processor in
the generalized case of Q-restricted rewriting, and the integration of the position in the
narrowing processor.

Example 5.1. Consider the TRS R to compute division on natural numbers:

p(s(x))→ x (61)

p(0)→ s(0) (62)

plus(s(x), y)→ plus1(s(x), s(y)) (63)

plus1(x, y)→ plus2(p(x), y) (64)

plus2(x, y)→ plus(x, y) (65)

plus(0, y)→ y (66)

minus(s(x), s(y))→ minus(x, y) (67)

minus(0, x)→ 0 (68)

minus(x, 0)→ x (69)

minus(x, x)→ 0 (70)

ge(s(x), s(y))→ ge(x, y) (71)

ge(0, s(x))→ ff (72)

ge(x, 0)→ tt (73)

div(x, y)→ quot(x, y, 0) (74)

quot(x, y, z)→ if(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(0))) (75)

if(tt, b, x, y, z)→ divByZeroError (76)

if(ff, b, x, y, z)→ if2(b, x, y, z) (77)

if2(tt, x, y, z)→ quot(x, y, z) (78)

if2(ff, x, y, z)→ p(z) (79)

As this TRS belongs to a class where innermost termination is equivalent to ter-

69

mination we set Q = lhs(R). We simplify the initial DP problem with the proces-
sors of Section 3 and Section 4 using the embedding order. This yields two remaining
DP problems which cannot be simplified further. The first one for the plus-function is
D8 = ({(80), (81), (82)},Q, {(61), (62)},m) and the second DP problem originates from
the quot-function: D9 = ({(83), (84), (85)},Q, {(61)− (73)},m).

PLUS(s(x), y)→ PLUS1(s(x), s(y)) (80)

PLUS1(x, y)→ PLUS2(p(x), y) (81)

PLUS2(x, y)→ PLUS(x, y) (82)

QUOT(x, y, z)→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(0))) (83)

IF(ff, b, x, y, z)→ IF2(b, x, y, z) (84)

IF2(tt, x, y, z)→ QUOT(x, y, z) (85)

Note that D8 cannot be simplified any further using the processors of Section 4 if one
is restricted to quasi-simplification orders. Even reduction pair processors using negative
polynomial orders of [HM07] are not applicable on this DP problem. For example a
polynomial interpretation which maps p(x) to x− 1 is prohibited by rule (62).

The situation for D9 is even worse. The constraints of any reduction pair processor
cannot be satisfied by any Cε-compatible reduction pair. The reason is that R∪Cε is not
terminating and ({(83), (84), (85)},Q, {(61)− (73)} ∪ Cε,m) is not finite which is shown
by the following infinite reduction.

QUOT(0, c(0, s(0)), 0)
→ IF(ge(0, c(0, s(0))), ge(0, c(0, s(0))),minus(0, c(0, s(0))), c(0, s(0)), plus(0, s(0)))
→+
Cε IF(ge(0, s(0)), ge(0, 0),minus(0, 0), c(0, s(0)), plus(0, s(0)))

→∗R IF(ff, tt, 0, c(0, s(0)), s(0))
→ IF2(tt, 0, c(0, s(0)), s(0))
→ QUOT(0, c(0, s(0)), s(0))
→+ QUOT(0, c(0, s(0)), s(s(0)))
→+ . . .

The class of Cε-compatible reduction pairs includes negative polynomial orders with
negative constants [HM07], polynomial orders over the non-negative reals [Luc05], and
the orders that are based on matrix interpretations [EWZ06, HW06]. And even negative
polynomial orders with negative coefficients [HM07] fail on this example. Hence, it is
unlikely that an automated termination proof of D9 can be performed using only the
processors of the previous chapters. However, with the help of the processors of this
chapter, in the end we can solve all problems using simple orders like polynomial orders
where every function is interpreted by a linear polynomial with 0 and 1 as only coefficients.

Before we present all four transformations instantiation, forward instantiation, rewrit-
ing, and narrowing in the corresponding four Sections 5.1–5.4, we will need a new graph
operation. For P = (N] {m}, E) we define P [m/N ′] as the graph where we replace the
node m by the set of nodes N ′. More precisely, P [m/N ′] = (N ∪N ′, E ′) where the set E ′

of new edges is defined as follows:

E ′ = (E ∩ (N ×N))

∪ {(n, n′) | n ∈ N, n′ ∈ N ′, (n,m) ∈ E}
∪ {(n′, n) | n ∈ N, n′ ∈ N ′, (m,n) ∈ E}
∪ {(n′, n′′) | n′, n′′ ∈ N ′, (m,m) ∈ E}

70 Chapter 5. Processors Based on Pair Transformations

Note that it is assumed that N is disjoint from N ′, because otherwise we would have the
problem that one can introduce new edges between nodes of N . However, this requirement
is not satisfied by the upcoming processors. Therefore, we allow multiple nodes for the
same pair, i.e., P is not a graph with a set of pairs any more, but it is a graph where the
nodes are labeled with pairs. As this new layer would make the presentation unnecessary
complicated we still use a pair-graph, where the nodes are the pairs, and we omit the
details on how to handle different occurrences of the same pair in a pair-graph. We just
illustrate the difference in the following example.

Example 5.2. Let the following pairs be given.

F(s(x))→ F(s(x)) (86)

F(s(x))→ F(x) (87)

F(x)→ F(g(x)) (88)

F(0)→ F(0) (89)

If R = {g(s(x)) → s(x), g(0) → 0} and P has the following graph structure which uses
the first three pairs,21

(86) oo //

''NN
NNN

NNN
NNN

NN
(87)

(88)

77ppppppppppppp

then there is no infinite chain. Now consider the replacement of (88) by the pairs (86) and
(89). Notice that this will be possible by the narrowing processor, and in the corresponding
Theorem 5.19 it is stated that this application of the narrowing processor is complete. But
if one identifies the old and the new pair (86), the graph P [(88)/{(86), (89)}] has a graph
structure which allows an infinite chain with pair (86).

(86) oo //

''NN
NNN

NNN
NNN

NNJJ
(87)

(89)

77ppppppppppppp

However, we distinguish the old and the new pair (86). Then there is still no infinite chain
possible.

(86)

""E
EE

EE
EE

E
oo //

**UUU
UUUU

UUUU
UUUU

UUUU
UUU (87)

(86)

44iiiiiiiiiiiiiiiiiiiiii
(89)

<<yyyyyyyy

Nevertheless, if some nodes are in the graph are labeled with the same pair and if they
have the same incoming and outgoing edges, then one can safely merge these nodes.

21A graph structure like this can arise after applying the argument filter processor of Theorem 4.38,
cf. Example 4.40.

5.1. Instantiation 71

5.1. Instantiation

As first transformation we present the instantiation processor. The idea is to consider
the predecessors u → v of a pair s → t. If certain parts of v remain unchanged when
rewriting vσ to sσ then one can instantiate the pair s → t by those parts that remain
unchanged. (One can use (an estimation of) the Cap-function to detect the unchanged
parts.) For example if we look at the pairs (80) and (81) in the running example then we
see that the s’s of the right-hand side of (80) will remain unchanged. Hence, one should
be able to instantiate the variables x and y in (81) by s(x) and s(y).

The difference of our instantiation processor to previous versions is the use of the
graph structure and the use of arbitrary estimations of Cap. Moreover, we do not need
two different versions for termination and innermost-termination any more, but we can
formulate one generalized version.

Theorem 5.3 (Instantiation Processors). Let ECap be an estimated Cap-function. Let
Proc be an instantiation processor which transforms a DP problem (P ,Q,R, f) with P =
(N]{s→ t}, E) into {(P [s→ t/N ′],Q,R, f)} where N ′ is the following set of new pairs.

{sδ → tδ | (u→ v, s→ t) ∈ E, δ = mgu(ECap
{u,s}
R,Q (v), s), {uδ, sδ} ⊆ NF (Q)}

Then the processor Proc is sound and complete.

Note that there is a strong correspondence between the instantiation processor and the
dependency graph estimation of Definition 3.9 as we perform the same unification and
the same checks on Q-normal forms. Therefore, to improve efficiency in the automation
one can memorize the unifiers δ when estimating the dependency graph in Definition 3.9
and can reuse them for the instantiation processor.

Example 5.4. We continue the termination proof of the running example.

PLUS(s(x), y)→ PLUS1(s(x), s(y)) (80)

PLUS1(x, y)→ PLUS2(p(x), y) (81)

PLUS2(x, y)→ PLUS(x, y) (82)

To this end we apply the instantiation processor on the DP problem D8 where the pair-
graph has the following structure.

(80) // (81) // (82)
ff

To instantiate the pair (81) we only have to look at the only predecessor (80). As
ECapSR,Q(PLUS(s(x), s(y))) = PLUS(s(x), s(y)) we can instantiate the variables in (81)
by s(x) and s(y). Thus, the instantiation processor replaces (81) by (90).

PLUS1(s(x), s(y))→ PLUS2(p(s(x)), s(y)) (90)

Note that if the DP problems only contained a set of pairs without the graph structure then
we would have to examine all three pairs as predecessors which is clearly less efficient.
In the same way, in the resulting DP problem we only obtain the edges (80) → (90),
(90) → (82), and (82) → (80). Hence, by applying the dependency graph processor of
Theorem 3.3 it suffices to check whether the two new edges (80)→ (90) and (90)→ (82)

72 Chapter 5. Processors Based on Pair Transformations

can be deleted, but one does not have to check whether one can delete the remaining three
possible edges (90) → (80), (90) → (90), and (82) → (90). Thus, the graph structure of
DP problems again helps to obtain efficiency but sometimes even power is affected. This
is demonstrated in more detail with an example application of the rewriting processor in
Example 5.12.

After the instantiation, the usable rules processor of Theorem 3.25 is applicable and
deletes the unused rule (62). And afterwards, every reduction pair processor of Chapter 4
can delete pair (90) in the resulting DP problem D10 = ({(80), (90), (82)},Q, {(61)},m)
with the negative polynomial order with Pol(s(x)) = x + 1, Pol(p(x)) = max{x − 1, 0},
and Pol(PLUS(x, y)) = Pol(PLUS1(x, y)) = Pol(PLUS2(x, y)) = x. Then the remaining
problem is solved by the processors based on the dependency graph.

However, if one uses reduction pairs based on quasi-simplification orders it is still not
possible to simplify D10. To this end, we will need the rewriting processor of Section 5.3.

Note that to simplify the other DP problem D9 we cannot use the instantiation proces-
sor, but a similar technique which is presented in the next section.

5.2. Forward Instantiation

We now present the technique of forward instantiation [GTSF06]. While the instantiation
processor was based on the dependency graph estimation given in Definition 3.9 where
one examines for two pairs s → t and u → v whether it is possible to rewrite tσ Q→∗R
uσ, the forward instantiation processor takes an approach similar to the dependency
graph estimation of Definition 3.31 where one examines whether it is possible to rewrite
uσ →∗R−1 tσ with the reversed TRS R−1. Moreover, we will also integrate the results on

usable rules, i.e., it suffices to consider uσ →∗R′ tσ where R′ = (U{s,u}R,Q (t))−1. Then we use
the same idea as in the instantiation processor, i.e., we detect the unchanged parts by
applying (an estimation of) the Cap-function and then instantiate s→ t accordingly.

Theorem 5.5 (Forward Instantiation Processors). Let ECap be an estimated Cap-func-
tion and let EU estimate the usable rules. Let Proc be a forward instantiation processor
which transforms a DP problem (P ,Q,R, f) with P = (N] {s → t}, E) into {(P [s →
t/N ′],Q,R, f)} where N ′ is the following set of new pairs.{

sδ → tδ

∣∣∣∣ (s→ t, u→ v) ∈ E, R′ = (EU{s,u}R,Q (t))−1,
δ = mgu(ECap∅

R′,∅(u), t), and {sδ, uδ} ⊆ NF (Q)

}
Then the processor Proc is sound and complete.

As for the instantiation processor, to improve efficiency one can memorize each unifier
δ in the computation of the star-estimation of the dependency graph in Definition 3.9 to
reuse it now for the forward instantiation processor.

Example 5.6.

QUOT(x, y, z)→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(0))) (83)

IF(ff, b, x, y, z)→ IF2(b, x, y, z) (84)

IF2(tt, x, y, z)→ QUOT(x, y, z) (85)

We continue in the termination proof of Example 5.11 where we still have to solve the DP
problem ({(83), (84), (85)},Q, {(61)−(73)},m). Here we can use the forward instantiation

5.3. Rewriting 73

processor to instantiate the pair (84). The only succeeding pair u → v in the graph is
(85). Now we have to build the reversed usable rules R′. As (84) does not possess
usable rules we obtain R′ = ∅. Then we have to unify ECap∅

R′,∅(IF2(tt, x′, y′, z′)) =
IF2(tt, x′, y′, z′) with the right-hand side IF2(b, x, y, z) of (84). Instantiating (84) with the
mgu δ = {x′/x, y′/y, z′/z, b/tt} yields the new pair

IF(ff, tt, x, y, z)→ IF2(tt, x, y, z) (91)

The resulting DP problem D11 = ({(83), (91), (85)},Q, {(61) − (73)},m) can then be
simplified further by the narrowing processor which is demonstrated in Example 5.22.
There it is also explained why this application of the forward instantiation processor is
strongly required for a successful termination proof.

5.3. Rewriting

While adapting instantiation to the DP framework is straightforward, the adaption of the
rewriting transformation is more problematic. In the classical dependency pair approach,
rewriting is only applicable for innermost termination proofs (i.e., if NF (Q) = NF (R)).
The problem is that the original proofs for its soundness and completeness [GA01, Theo-
rems 14, 15, 18, and 19] do not extend to the case where NF (Q) ⊂ NF (R). The soundness
proof relies on the result that weak innermost termination and non-overlappingness im-
ply confluence and termination [Gra95], and the completeness proof relies on the result
that innermost termination implies normalization. Obviously, these results do not ex-
tend to NF (Q) ⊆ NF (R), i.e., in general Q-termination and non-overlappingness do
not imply confluence, termination, or normalization. As a counterexample, consider
R = {f(a) → s(f(a)), g(x, x) → c, g(x, s(x)) → d} and Q = lhs(R) ∪ {a}. Now R is
Q-terminating and non-overlapping, but neither terminating nor confluent nor normaliz-
ing. For example, the term f(a) does not have anR-normal form, and the term g(f(a), f(a))
can be reduced by R to the normal forms c and d.

However, such an extension is urgently required as with the previous processors we will
have to handle DP problems where NF (Q) ⊂ NF (R) even if in the beginning NF (Q) =
NF (R). Now it would be desirable if one could still apply the rewriting transformation
(this will be demonstrated when handling the DP problem D10 of our running example
in Example 5.11). For the soundness of the rewriting transformation we need at least
confluence of the Q-restricted rewrite relation. However, our previous confluence criterion
of Lemma 3.19 could only be used for NF (R) ⊆ NF (Q) but now we are in the case
NF (Q) ⊆ NF (R). The following lemma states that if all critical pairs at the root level
are trivial, then we even have the diamond property (i.e., if t Q→R t1 and t Q→R t2, then
t1 = t2 or there exists a t′ such that t1

Q→R t′ and t2
Q→R t′).

Lemma 5.7 (Confluence of Q→R). Let NF (Q) ⊆ NF (R). Let all critical pairs of R at the
root level be trivial. (For all rules `1 → r1 and `2 → r2 ∈ R where `1 and `2 are unifiable,
the mgu δ of `1 and `2 instantiates the right-hand sides of the rules to the same term, i.e.,
r1δ = r2δ.) Then Q→R has the diamond property and hence, is confluent.

We now give a new proof to show that the rewriting transformation is sound whenever
NF (Q) ⊆ NF (R) is satisfied. A similar proof was already presented in [GTS05a], however
there are three differences.

First, in [GTS05a] certain properties of (syntactically defined) usable rules are used
in the proof which are not satisfied for every estimation of the (semantically defined)

74 Chapter 5. Processors Based on Pair Transformations

usable rules of Definition 3.24. In Example 5.14 it is shown that the rewriting processor
of [GTS05a] even is unsound if one allows arbitrary estimations of usable rules. To this
end, we added a new requirement in the rewriting processor.

The second difference is that we allow rewriting more often. In [GTS05a] the usable
rules had to be non-overlapping whereas here we only require trivial critical pairs.

And the third difference is in the completeness condition. In [GTS05a] one demands
for all proper subterms t of the redex that U∅

Q,∅(t) ⊆ R. The problem is that Q is a
rewrite system in [GTS05a] whereas here Q is a set of terms. So, it is unclear what the
usable rules should be, if Q only contains terms. Moreover, again certain properties of
the syntactic usable rules of [GTS05a] are used in the proof. So, we have to replace the
property U∅

Q,∅(t) ⊆ R by something different.
In essence, the property U∅

Q,∅(t) ⊆ R is demanded to ensure that whenever tσ can be
reduced to a normal form u w.r.t. Q→R, then u is in Q-normal form, too. This is important
whenever we want to normalize the subterm tσ w.r.t. Q→R in order to perform a reduction
above tσ afterwards. Only if tσ can be rewritten to a normal form w.r.t. Q then the
reduction above tσ respects the evaluation strategy. This condition on the normal forms
can be used to obtain completeness of both the rewriting and the narrowing processors.

Definition 5.8 (Q−R Normal Form Condition). Let R be a TRS and Q and S be sets
of terms. A term t satisfies the Q − R normal form condition w.r.t. S, nfcSR,Q(t) for
short, iff for every substitution σ with Sσ ⊆ NF (Q) each Q→R-normal form of tσ is in
Q-normal form.

Example 5.9. We shortly illustrate the Q−R normal form condition with the following
TRS R where Q = lhs(R) ∪ {h(a)}.

f(x)→ g(x)

g(h(x))→ h(x)

g(x)→ h(x)

Then nfc
{x}
R,Q(f(x)) is not satisfied. The reason is that one can instantiate x by a and

obtains f(a) Q→∗R h(a) where the latter term is in normal form w.r.t. Q→R, but not w.r.t. Q.
However, if one removes the third rule from R then f(x) satisfies the normal form

condition. One reason is that a reduction to the critical term h(a) is not possible since
then the subterm h(x) of the left-hand side of the second rule would be instantiated to a
term which is not in Q-normal form.

Unfortunately, it is undecidable whether a term satisfies the Q−R normal form con-
dition. We will present estimations of nfcSR,Q(t) later in this section. One obvious result

is that if NF (Q) = NF (R) then every term satisfies nfcSR,Q(t), since then every term is in
R-normal form iff it is in normal form w.r.t. i→R. As one can see in the upcoming defini-
tion of the rewriting processor, this will show that our results encompass the completeness
results for innermost termination from [GA01, Theorem 19].

Now we introduce the rewriting processor. It states that in a DP problem (P ,Q,R, f)
with NF (Q) ⊆ NF (R), any s→ t ∈ P can be replaced by s→ t′ if t rewrites to t′ at some
position p. The only applicability conditions are that the Q-restricted rewrite relation
of the usable rules must be confluent and that there must only be trivial critical pairs
between the rule used for rewriting t and the usable rules. In contrast to the (forward)
instantiation transformations, which perform all possible instantiations, here one may
replace s→ t by any pair resulting from rewriting t.

5.3. Rewriting 75

Theorem 5.10 (Rewriting Processors). Let Proc be a processor which transforms a DP
problem (P ,Q,R, f) into {(P [s → t/{s → t′}],Q,R, f)} or into {(P ,Q,R, f)}. In the
former case, all following conditions must be satisfied:

• s→ t ∈ P

• t →R,p t′ by a rule ` → r where for U = EU{s}R,Q(t|p) the rewrite relation Q→U is
confluent and where there are only trivial critical pairs between `→ r and U .22

• NF (Q) ⊆ NF (R)

Proc is sound, and it is complete if every proper subterm of t|p satisfies the Q−R normal
form condition w.r.t. {s}.

Note that using Lemma 5.7 the application conditions of the rewriting processor can
easily be checked. Moreover, after the following examples we will also see a possibility to
estimate the Q−R normal form condition, hence we can detect if an application of the
rewriting processor is complete.

First, we show the benefit of the rewriting processor in the running example of this
chapter.

Example 5.11. We recapitulate the situation at the end of Example 5.4.

PLUS(s(x), y)→ PLUS1(s(x), s(y)) (80)

PLUS1(s(x), s(y))→ PLUS2(p(s(x)), s(y)) (90)

PLUS2(x, y)→ PLUS(x, y) (82)

If we do not use negative polynomial orders we still have to solve the DP problem D10 =
({(80), (90), (82)},Q, {(61)},m). Now, we can use the rewriting processor to replace pair
(90) by the following new pair.

PLUS1(s(x), s(y))→ PLUS2(x, s(y)) (92)

Now every reduction pair processor of Section 4 can delete (92) with the embedding
order and the remaining problem is solved by the processors based on the dependency
graph.

For the other remaining DP problem D11 it turns out that neither the (forward-) in-
stantiation processors nor the rewriting processors are applicable on this DP problem. To
solve this problem we will need the narrowing processor of the next section.

The following examples show why possible extensions of the rewriting processor would
destroy soundness or completeness, respectively. To be more precise, we show that each
of the three application conditions is needed for the soundness of the rewriting processor,
and the criterion to detect whether an application of the rewriting processor is complete
cannot be weakened, too. Moreover, in Example 5.12 we show that the graph structure
of DP problems not only increases efficiency but also power.

22Note that the critical pairs of `→ r and U are only those when overlapping subterms of ` with left-hand
sides of U , but it is not required to consider overlaps of subterms of left-hand sides of U with `.

76 Chapter 5. Processors Based on Pair Transformations

Example 5.12. Consider the TRS R = {g(h(x), y)→ y} and the following pairs.

F(x, x)→ F(a, g(h(x), x)) (93)

F(a, g(x, y))→ F(a, y) (94)

For Q = lhs(R) ∪ {h(a)} the dependency graph for (93) and (94) has the edges E =
{(93)→ (94), (94)→ (93), (94)→ (94)}. That there is no edge from (93) to itself can be
argued as follows. If there were an edge then x would have to be instantiated by a. But
then the term g(h(a), a) could not be rewritten to a as h(a) is not in Q-normal form. So,
let P = ({(93), (94)}, E)

No previous processor is able to simplify the DP problem (P ,Q,R,m) even if one
allows arbitrary reduction pairs. The reason is that ignoring Q allows infinite chains
which contain both pairs infinitely often:

F(a, a)
→(93) F(a, g(h(a), a))
→(94) F(a, a)
→(93) . . .

However using the rewriting processor we can replace (93) by the new pair (95).

F(x, x)→ F(a, x) (95)

In this way we obtain the new DP problem (({(95), (94)}, E ′),Q,R,m) where E ′ =
{(95) → (94), (94) → (95), (94) → (94)}. Now every reduction pair processor can delete
(94) with the embedding order and the argument filter π with π(F) = 2 and π(g) =
[2]. The resulting DP problem (({(95)},∅),Q,R,m) is now solved by the processor of
Theorem 3.4 as there are no edges left.

But if DP problems did not have a graph structure then we would obtain the new DP
problem ({(95), (94)},Q,R,m). This DP problem is clearly not finite as (95), (95), . . .
is an infinite chain. Hence, our rewriting processor which works on DP problems with a
graph-component is more powerful than previous rewriting processors [GA01, GTS05a,
GTSF06] which work on sets of pairs.

The example also illustrates why theQ−R normal form condition for all direct subterms
of t|p is required to obtain completeness. If we changed P to P ′ = ({(93), (94)}, E ∪
{(93) → (93)}) then there would not be an infinite (P ′,Q,R)-chain. The reason is that
the DP problem (P ′,Q,R,m) could be transformed to (P ,Q,R,m) by the dependency
graph processor and then be solved as before. However, the rewriting processor would
replace P ′ by P ′′ = ({(95), (94)}, E ′′) where E ′′ would contain the edge from (95) to itself
and we would obtain the minimal infinite (P ′′,Q,R)-chain. Note however that the redex
g(h(x), x) of the reduction has the direct subterm h(x) which does not satisfy the Q−R
normal form condition: if we instantiate x by a then we obtain h(a), which is in normal
form w.r.t. Q→R but not w.r.t. Q. So the condition for completeness in Theorem 5.10 is
violated.

Example 5.13. Since we only have to look at the critical pairs on root level for confluence
of the Q-restricted rewrite relation by Lemma 5.7, a natural question is whether the
rewrite processor in Theorem 5.10 would already be sound if we only considered the critical
pairs at the root level between `→ r and the usable rules. This is refuted by the following

5.3. Rewriting 77

counterexample. Let R = {f(c) → d, f(h(x)) → a, h(b) → c, g(d, x) → g(f(h(x)), x)} and
Q = lhs(R). Then R is not innermost terminating (i.e., not Q-terminating):

g(d, b) Q→R g(f(h(b)), b) Q→R g(f(c), b) Q→R g(d, b) Q→R . . .

The dependency graph has only one SCC {G(d, x)→ G(f(h(x)), x)}. Since R has no criti-
cal pairs on root level, we know by Lemma 5.7 that Q→R is confluent. As G(f(h(x)), x)→R
G(a, x), rewriting would transform this pair into the new pair G(d, x)→ G(a, x). Now the
dependency graph processor would delete this pair, since it is obviously not connected to
itself in the dependency graph. Thus, we could falsely “prove” innermost termination.

The problem is that although the dependency pair was rewritten by a Q-restricted step,
it is no longer Q-restricted if one instantiates x with b. So to guarantee that any reduction
from G(f(h(x)), x)σ to an instantiated left-hand side of a dependency pair is also possible
from G(a, x)σ, one needs to consider all critical pairs between `→ r and the usable rules,
and not just the critical pairs at the root level.

Example 5.14. In previous formulations of the rewriting processor instead of confluence
and the condition that there are only trivial critical pairs between ` → r and the usable
rules, one required that the usable rules (as defined in the corresponding papers) of t|p
are non-overlapping. Clearly, the requirement of non-overlapping usable rules guarantees
confluence but it does not suffice to ensure the latter condition. The problem is that `→ r
is not necessarily usable w.r.t. Definition 3.24.23 And indeed, these rewriting processors
can become unsound if one uses arbitrary estimations of the semantic usable rules.

Let P = {F(g(b))→ F(g(h(a)))}, letR = {g(h(x))→ c, h(a)→ b}, and letQ = lhs(R).
Then we have an infinite minimal chain, as F(g(b)) →P F(g(h(a))) Q→R F(g(b)) →P
However, the first rule of R is not usable, i.e., not contained in U{F(g(b))}R,Q (F(g(h(a)))).
Thus, the second rule of R is the only usable rule which is not overlapping with itself.
Using the rewrite processor with the first rule would result in a new DP problem with a
new component P ′ = {F(g(b))→ F(c)} instead of P and this new DP problem is clearly
finite.

One can argue that in this example the real problem is that the rewrite transformation
from P to P ′ does not respect the evaluation strategy. And indeed, if one requires t Q→R,p
t′ instead of t →R,p t′ then non-overlappingness of the usable rules suffices. However,
this alternative formulation of the processor is more restrictive than the current version:
whenever t Q→R,p t′ then `→ r is already usable,24 and non-overlappingness is a stronger
requirement than confluence and absence of non-trivial critical pairs between ` → r and
the usable rules due to Lemma 5.7.

Example 5.15. This example shows why we defined a DP problem (P ,Q,R, f) to be
“infinite” if it is not finite or if R is not Q-terminating, cf. Definition 2.13. The reason
is that if “infinite” were defined as “not finite”, then the rewriting processor would be
incomplete, i.e., it could transform DP problems that are not infinite into problems with
infinite chains, even if NF (Q) = NF (R). Let P = {F(x, x) → F(a, g(h(x), x))}, let R =
{g(x, y)→ y, h(a)→ h(a)}, and let Q = lhs(R). Obviously, R is not Q-terminating. But
there is no infinite (P ,Q,R)-chain as F(a, g(h(x1), x1))σ

Q→∗R F(x2, x2)σ implies σ(x2) = a.

23Note that `→ r is usable for all previous definitions of usable rules. Hence our processor is not weaker
than previous formulations of the rewriting processor.

24To be more precise, `→ r is usable only if s ∈ NF (Q). But if s /∈ NF (Q) then one can delete the pair
by the dependency graph processors.

78 Chapter 5. Processors Based on Pair Transformations

Thus F(a, g(h(x2), x2))σ = F(a, g(h(a), a)) can only be reduced by Q→R to itself, but it does
not unify with F(x3, x3).

However, the rewriting processor replaces the right-hand side F(a, g(h(x), x)) of the
pair by F(a, x). This results in P ′ = {F(x, x)→ F(a, x)}. Now there is clearly an infinite
(minimal) (P ′,Q,R)-chain.

What is missing up to now is a criterion to estimate the Q−R normal condition. We
currently only know that the condition is always satisfied if Q→R is exactly the innermost
rewrite relation, i.e., if NF (Q) = NF (R). As argued above even when starting with the
innermost relation we will encounter DP problems where NF (Q) ⊂ NF (R). For these
problems we present the following estimation which has a quite similar structure to the
improved estimation of usable rules in Definition 3.26. The first two cases are closures
under subterms and closures under usable rules. The third case is the one where we detect
that the Q−R normal form condition is violated. If there is a redex qµ with q ∈ Q but
where qµ is in normal form w.r.t. R then qµ is also in normal form w.r.t. Q→R but not
in normal form w.r.t. Q. Note that this cannot happen if NF (Q) = NF (R) and hence,
even with our estimation we can detect that the Q−R normal form condition is always
satisfied if we are in the innermost case.

Definition 5.16 (Estimation of the Q − R Normal Form Condition). We define the
estimatedQ−R normal form condition enfc as follows. The value of enfcSR,Q(f(t1, . . . , tn))
is false if one of the following conditions is valid.

• enfcSR,Q(ti) = false for some 1 ≤ i ≤ n

• there is a rule f(`1, . . . , `n) = `→ r ∈ R and for S ′ = {`1, . . . , `n} the terms ` and
f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) are unifiable by some mgu µ such that Sµ∪S ′µ ⊆
NF (Q) and enfcS

′

R,Q(r) = false

• there is a term q ∈ Q, the terms q and f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) are unifi-
able with mgu µ, and both Sµ ⊆ NF (Q) and qµ ∈ NF (R)

If enfcSR,Q(t) is not forced to evaluate to false by one of the previous conditions then

enfcSR,Q(t) = true.

The following theorem states that Definition 5.16 really estimates the Q − R normal
condition. Whenever the estimation says that a term satisfies the Q−R normal condition
then this really is the case.

Theorem 5.17 (Soundness of the Estimated Q − R Normal Form Condition). Let R
be a TRS and Q be a set of terms with NF (Q) ⊆ NF (R). For all terms t and sets
of terms S with V(t) ⊆ V(S) the Q − R normal form condition nfcSR,Q(t) is satisfied if

enfcSR,Q(t) = true.

We illustrate the estimatedQ−R normal form condition using the TRS of Example 5.9.

Example 5.18. The TRS R in Example 5.9 consists of the following three rules and
Q = lhs(R) ∪ {h(a)}.

f(x)→ g(x)

g(h(x))→ h(x)

g(x)→ h(x)

5.4. Narrowing 79

We already detected that nfc
{x}
R,Q(f(x)) is not satisfied. This will also be the result of our

estimation. To compute enfc
{x}
R,Q(f(x)) we first check the third case which would directly

lead to the result false. However, since f(x) /∈ NF (R) the third case cannot apply. But
we also have to consider enfc

{x}
R,Q(g(x)) due to the second case. Again, the third case

cannot be applied since g(x) /∈ NF (R). However, we can once again apply the second
case with the second and the third rule, such that we also have to consider enfc

{h(x)}
R,Q (h(x))

and enfc
{x}
R,Q(h(x)), respectively. Now latter normal form condition must be evaluated to

false since for µ = {x/a} and q = h(a) we have h(x)µ = qµ, Sµ = {a} ⊆ NF (Q), and
qµ = h(a) ∈ NF (R). Hence, we see that our initial normal form condition is not satisfied.

However, if one removes the third rule from R then enfc
{x}
R,Q(f(x)) = true. The reason is

that we have to consider exactly the same conditions as before except for enfc
{x}
R,Q(h(x)),

the condition which forced us to evaluate to false. Moreover, the only remaining check
with the third case on condition enfc

{h(x)}
R,Q (h(x)) will also not enforce the result false since

for µ = {x/a} we will instantiate S = {h(x)} to {h(a)} which is not a subset of NF (Q).

5.4. Narrowing

The basic idea of the narrowing processor is as follows. If for a pair s → t and all its
succeeding pairs u → v the terms t and u are not unifiable, then there must be at least
one reduction step from tσ to uσ. Then one can already perform this first reduction step
in tσ and create corresponding new pairs, one for each possible reduction. As parts of the
first redex may be in σ we must not only look at all reductions of t, but at all narrowings
of t. If NF (Q) 6⊆ NF (R) then it can also occur that the first reduction step is completely
inside σ. To this end, a linearity restriction is integrated in the narrowing processor.

More formally, a term t narrows to a term t′ at a position p via the substitution µ
(denoted by t Q R t

′), if p is a non-variable position of t, µ is the most general unifier of
t|p and ` for some rewrite rule `→ r of R, all proper subterms of `µ are in Q-normal form
and t′ = tµ[rµ]p. Narrowing is extended to pairs as follows: if t Q R t

′ via the substitution
µ and sµ is a Q-normal form, then the pair s→ t narrows to the pair sµ→ t′.

Before we present the narrowing processor, we discuss the idea of the integration of
a position into the narrowing, so called positional narrowing. A main disadvantage of
the previous narrowing processors of [AG00, GTS05a, GTSF06] is that they sometimes
produce lots of new pairs. Remember the basic idea of the narrowing processor: whenever
t and u are not unifiable then there must be at least one reduction step. But one can
also look at subterms: whenever t|p and u|p are not unifiable then there also has to be a
reduction. If moreover tσ cannot be reduced strictly above p – to detect this one can use
an estimated Cap-function – then the subterm t|pσ has to be reduced at least one step.
Alternatively, if the subterm t|p is not in Q-normal form then t|pσ has to be reduced, too.
Thus, only the narrowings below p have to be considered which can be far less then all
narrowings. This clearly increases efficiency, but when continuing our running example
in Example 5.22 we will also demonstrate that less new pairs are sometimes crucial for a
successful termination proof.

Theorem 5.19 (Positional Narrowing Processors). Let Proc be a processor which trans-
forms a DP problem (P ,Q,R, f) with P = (N] {s → t}, E) into {(P ,Q,R, f)} or
into {(P [s→ t/N ′},Q,R, f)}. In the latter case, all of the following conditions must be
satisfied.

80 Chapter 5. Processors Based on Pair Transformations

• t|p is not in Q-normal form or

both p ∈ Pos(ECap
{s}
R,Q(t)) and for all (s→ t, u→ v) ∈ E the following two criteria

are satisfied

– p ∈ Pos(u) and

– if t|p and u|p are unifiable with an mgu µ, then sµ or uµ are not in Q-normal
form

• N ′ = {s′ → t′ | s→ t narrows to s′ → t′ at a position below p}

• Q = ∅ or NF (Q) ⊆ NF (R)

• if NF (Q) 6⊆ NF (R), then t is linear

Then the processor Proc is sound. And it is complete if Q = ∅ or if the following two
criteria are satisfied for every pair s′ → t′ in N ′ that has been built from narrowing s→ t
at position p′ with rule `→ r and unifier µ.

• for U = EU{s′}R,Q(tµ|p′) the relation Q→U is confluent and there are only trivial critical
pairs between `→ r and U

• every proper subterm of tµ|p′ satisfies the Q−R normal form condition w.r.t. {s′}
Note that in the innermost case the Q−R normal form condition is always satisfied.

Hence, the completeness of the narrowing processor encompasses the completeness result
of [GA01, Theorem 17] for innermost termination.

Compared to the rewriting processor, the narrowing processor has two advantages and
one disadvantage. The disadvantage is that one has to build all narrowings whereas in
the rewriting processor only one new pair is created. This was allowed in the rewriting
processor due to the additional requirement of unique normal forms (which is ensured
by confluent usable rules). A corresponding requirement for the narrowing processor is
only needed to ensure completeness in the innermost case, which is the first advantage.
The second advantage of the narrowing processor is that it can already be applied if only
parts of the redex are available in a pair, whereas in the rewriting processor we need a
complete redex. Both advantages will be needed to proceed in our running example. To
summarize, the rewriting processor produces less pairs, but the narrowing processor is
strictly more often applicable: whenever the rewriting processor is applicable then for
some pair s → t the term t contains a redex at position p. But then one can apply the
narrowing processor, too, since in that case t|p cannot be in Q-normal form and the other
requirements are trivially satisfied.

In the following examples we investigate possible improvements of the narrowing pro-
cessor which turn out to be unsound. Then in the last example of this chapter, finally
termination of our running example is proven. Thereby the power of our new narrow-
ing processor is demonstrated and it is explained why previous versions of the narrowing
processor [AG00, GTS05a, GTSF06] fail on this TRS.

Example 5.20. The narrowing processor has the restriction that either Q = ∅ or
NF (Q) ⊆ NF (R). This example illustrates that the processor is unsound without this
restriction. Let P = {F(g(x), a) → F(g(b), h(x))}, let R = {b → a, h(a) → a}, and let
Q = {g(a)}. We obtain an infinite chain for x = b as

F(g(b), a)→P F(g(b), h(b)) Q→R F(g(b), h(a)) Q→R F(g(b), a)→P . . .

5.4. Narrowing 81

However, when applying the narrowing processor at the root position we obtain the new
pairs F(g(x), a)→ F(g(a), h(x)) and F(g(a), a)→ F(g(b), a). Then the second pair cannot
occur in any chain as its left-hand side is not in Q-normal form. And from the first pair
one cannot build chains with more than one element: the right-hand side contains the
subterm g(a), which cannot be reduced by R and which is not in Q-normal form. Thus,
the right-hand side can never be reduced to a Q-normal form.

This shows that even in the case where all rules and pairs are linear and where we do
not make use of the new feature to choose a position p we cannot allow arbitrary sets Q.

Example 5.21. A severe restriction in the narrowing processor is the linearity of t in
the case NF (Q) 6⊆ NF (R). One obvious question is whether it is possible to just require
linearity of the subterm t|p. Unfortunately, the following example demonstrates that this
relaxation of the requirements is unsound. Let P = {F(a, b, x) → F(g(x), x, x) = t}, let
R = {b→ a, g(a)→ a}, and let Q = ∅. We obtain an infinite chain for x = b as

F(a, b, b)→P F(g(b), b, b) Q→R F(g(a), b, b) Q→R F(a, b, b)→P . . .
When choosing p = 1 then all requirements but the linearity of t are satisfied. However,
the subterm t|1 = g(x) is linear. By narrowing the only pair in P we only obtain one new
pair F(a, b, a)→ F(a, a, a) and the resulting DP problem is clearly finite. Hence, linearity
must be required for the whole right-hand side t.

Example 5.22. We recapitulate some pairs and rules

QUOT(x, y, z)→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(0))) (83)

IF(ff, tt, x, y, z)→ IF2(tt, x, y, z) (91)

IF2(tt, x, y, z)→ QUOT(x, y, z) (85)

p(s(x))→ x (61)

p(0)→ s(0) (62)

minus(s(x), s(y))→ minus(x, y) (67)

minus(0, x)→ 0 (68)

minus(x, 0)→ x (69)

minus(x, x)→ 0 (70)

ge(s(x), s(y))→ ge(x, y) (71)

ge(0, s(x))→ ff (72)

ge(x, 0)→ tt (73)

and continue to prove termination of Example 5.11, where we still have to solve the DP
problem D11 = ({(83), (91), (85)},Q, {(61)− (73)},m). Note that without the conditions
y > 0 and x ≥ y the DP problem would not be finite. The reason is that then x−y is not
necessarily smaller than x: if y = 0 then x− y = x− 0 = x and if x < y is allowed then
for x = 0 we obtain x− y = 0− y = 0 = x. This is the reason why negative polynomial
orders fail on this DP problem. They must prove x > minus(x, y) for all natural numbers
x and y, and they cannot integrate the conditions on x and y.

We transform the pair (83) by the narrowing processor at position 1. Hence, we first
use the fact that y > 0 must hold, and obtain the following new pairs.

QUOT(x, s(y), z)→ IF(ff, ge(x, s(y)),minus(x, s(y)), s(y), plus(z, s(0))) (96)

QUOT(x, 0, z)→ IF(tt, ge(x, 0),minus(x, 0), 0, plus(z, s(0))) (97)

82 Chapter 5. Processors Based on Pair Transformations

By the processors based on the dependency graph the second new pair can be deleted
and the DP problem ({(96), (91), (85)},Q, {(61)−(73)},m) remains to be solved. Now we
have integrated the knowledge that the second argument of QUOT is larger than 0. Note
that here we needed the new improvement of positional narrowing. With the narrowing
processor of [AG00, GTS05a, GTSF06] we would have to build all narrowings of (83)
which results in the following additional pairs.

QUOT(s(x), s(y), z)→ IF(ge(0, s(y)), ge(x, y),minus(s(x), s(y)), s(y), plus(z, s(0)))

QUOT(0, s(y), z)→ IF(ge(0, s(y)),ff,minus(0, s(y)), s(y), plus(z, s(0)))

QUOT(x, 0, z)→ IF(ge(0, 0), tt,minus(x, 0), 0, plus(z, s(0)))

QUOT(s(x), s(y), z)→ IF(ge(0, y), ge(s(x), s(y)),minus(x, y), s(y), plus(z, s(0)))

QUOT(0, y, z)→ IF(ge(0, y), ge(0, y), 0, y, plus(z, s(0)))

QUOT(x, 0, z)→ IF(ge(0, 0), ge(x, 0), x, 0, plus(z, s(0)))

QUOT(x, x, z)→ IF(ge(0, x), ge(x, x), 0, x, plus(z, s(0)))

QUOT(x, y, s(z))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus1(s(z), s(0)))

Thus, we see that positional narrowing produces far less new pairs than non-positional
narrowing. That this is sometimes crucial can be demonstrated with the last pair. It
does not reveal any information about x and y which is required to finally solve the DP
problem. And this information cannot be gained by a repeated application of the (non-
positional) narrowing processor. The reason is that essentially, by narrowing we evaluate
the accumulator more and more, which is not connected to the variables x and y that are
used in the test.

QUOT(x, y, s(z))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus1(s(z), s(0)))
Q R QUOT(x, y, s(z))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus2(p(s(z)), s(s(0))))
Q R QUOT(x, y, s(z))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus2(z, s(s(0))))
Q R QUOT(x, y, s(z))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(s(0))))
Q ∗R QUOT(x, y, s(s(z)))→ IF(ge(0, y), ge(x, y),minus(x, y), y, plus(z, s(s(s(0)))))
Q ∗R . . .

We continue to prove termination with positional narrowing. As stated above, we must
also use the condition x ≥ s(y) to prohibit situations where x may be instantiated by 0.
Therefore, we narrow the new pair (96), but this time at position 2. Note that without
the application of the forward instantiation processor in Example 5.6 the narrowing pro-
cessor would not be applicable, as the subterm ge(x, s(y)) of (96) unifies with the variable
argument b of the left-hand side of (84) and the mgu instantiates both left-hand sides of
(96) and (84) to Q-normal forms. But by the forward instantiation processor the variable
b was instantiated by tt, which does not unify with ge(x, s(y)) any more.

We obtain the following new pairs.

QUOT(s(x), s(y), z)→ IF(ff, ge(x, y),minus(s(x), s(y)), s(y), plus(z, s(0))) (98)

QUOT(0, s(y), z)→ IF(ff,ff,minus(0, s(y)), s(y), plus(z, s(0))) (99)

As before by the dependency graph processors one can delete the second new pair and sim-
plify the resulting DP problem to ({(98), (91), (85)},Q, {(61)− (73)},m). This remaining

5.4. Narrowing 83

DP problem can now be solved by the reduction pair processor of Theorem 4.2725 using
the negative polynomial order Pol with Pol(QUOT(x, y, z)) = Pol(IF(b1, b2, x, y, z)) =
Pol(IF2(b, x, y, z)) = x, Pol(0) = 0, Pol(s(x)) = x+1, and Pol(minus(x, y)) = max(0, x−
y). For this polynomial order – which corresponds to an argument filter π with π(IF) = 3
and π(QUOT) = 1 – only the four minus-rules are usable. Note however that the automa-
tion of negative polynomial orders in [HM07] is not able to handle this DP problem due
to the constraint of rule (68). But even the embedding order would satisfy all constraints
if one would rewrite the subterm minus(s(x), s(y)) to minus(x, y) in pair (98). Unfortu-
nately, the rewriting processor of Theorem 5.10 is not applicable if one uses Lemma 5.7
as confluence criterion: the usable rules (67) and (70) have the non-trivial critical pair
(0,minus(x, x)).

This is in contrast to the narrowing processor, which can narrow (98) at position 3
since the corresponding subterm minus(s(x), s(y)) is not in Q-normal form. We obtain the
following two new pairs.

QUOT(s(x), s(y), z)→ IF(ff, ge(x, y),minus(x, y), s(y), plus(z, s(0))) (100)

QUOT(s(x), s(x), z)→ IF(ff, ge(x, x), 0, s(x), plus(z, s(0))) (101)

This time one cannot delete any new pair by the dependency graph processors. Hence, the
resulting DP problem is ({(100), (101), (91), (85)},Q, {(61)−(73)},m). But one can delete
(100) and (101) by the reduction pair processor of Theorem 4.27. To this end we use the
polynomial order with Pol(minus(x, y)) = Pol(QUOT(x, y, z)) = Pol(IF(b1, b2, x, y, z)) =
Pol(IF2(b, x, y, z)) = x, Pol(0) = 0, and Pol(s(x)) = x + 1. The remaining DP problem
can then be solved by the processors based on the dependency graph. Thus, to prove
termination of the TRS in Example 5.1 (which is not Cε-terminating) we only needed the
transformations of this chapter and some simple linear polynomial orders for the reduction
pair processors of the previous chapter.

Summary of Chapter 5

In this chapter we have seen four processors which can transform the pairs of DP problems.
These are often crucial for a successful termination proof, especially if tests and selectors
are used in a DP problem instead of pattern matching.

Note that there is a problem when automating these processors. Although each trans-
formation can easily be automated, it is unclear how often one should apply these pro-
cessors, as each one can be applied infinitely many times. To solve this problem, we have
published a successful heuristic in [GTSF06, Definition 33].

One of our contributions in this chapter is the development of the new forward instan-
tiation processor which is published in [GTSF06]. But even for the narrowing, rewriting,
and instantiation transformations – which have been presented in [AG00, GA01] – we have
provided substantial improvements. All of them are now applicable at any time during a
termination proof, we have generalized them to Q-restricted rewriting, one can use them
with arbitrary estimations of usable rules and of Cap, the requirements to apply the pro-
cessors have been relaxed, and for narrowing we get less new pairs due to our integration

25The other reduction pair processors of Section 4 are not applicable. Theorem 4.32 is not applicable as
the given polynomial order is not Cε-compatible and Theorem 4.2 cannot handle the constraints of
the rules (61) and (62).

84 Chapter 5. Processors Based on Pair Transformations

of a position. Note that some of these contributions have already been published by us
in [GTS05a, GTSF06].

Related work can also be found in [Zan05a]. There it is allowed to rewrite right-hand
sides on the level of TRSs in a similar way to our rewriting processor. Both techniques
require that there is no critical pair between the rule ` → r that is used for rewriting
and the other rules. However, there are some important differences. Our requirement of
confluence of the usable rules is replaced by confluence of the TRS that consists only of
the rule ` → r. And even more important, the rewriting technique in [Zan05a] can be
applied for full rewriting. But in [Zan05a] there are the additional requirements of left-
linearity and non-erasingness, i.e., V(`) = V(r). Whereas left-linearity is often satisfied,
non-erasingness is a real restriction, e.g., one cannot rewrite with selectors of the form
head(cons(x, xs)) → x. We strongly conjecture that one can allow erasing rules when
lifting the technique of [Zan05a] to the DP framework, making it an interesting future
work.

6. Processors for Applicative Rewriting

In this chapter we will present a method for termination analysis of untyped higher-order
functions which do not use λ-abstraction.26 Due to the absence of λ, such functions can
be represented in curried form as applicative first-order TRSs (cf. e.g., [KKSV96]). A
signature F is applicative if it only contains constants and a binary symbol ′ for function
application. Moreover, any TRS or DP problem over F is called applicative. So instead
of the higher-order rule

map(α, cons(x, xs))→ cons(α(x),map(α, xs))

we use the first-order rule

′(′(map, α), ′(′(cons, x), xs))→ ′(′(cons, ′(α, x)), ′(′(map, α), xs))

where there is no variable-application α(x) any more. To ease readability, we use ′ as an
infix-symbol and we let ′ associate to the left. Then this rule can be written as

map ′α ′(cons ′x ′xs)→ cons ′(α ′x) ′(map ′α ′xs)

This is very similar to the usual notation of higher-order functions where application is
just denoted by juxtaposition, i.e., here one would write

map α (cons x xs)→ cons (α x) (map α xs)

Example 6.1. As running example of this chapter we take the following TRS which
computes the well-known map-function that takes a function and a list as input and applies
the function on each element of the list. Moreover, we also add first-order functions for
subtraction and division in applicative form. Note that a direct termination proof with
simplification orders is impossible.

map ′α ′nil→ nil (102)

map ′α ′(cons ′x ′xs)→ cons ′(α ′x) ′(map ′α ′xs) (103)

minus ′x ′0→ x (104)

minus ′(s ′x) ′(s ′y)→ minus ′x ′y (105)

div ′0 ′(s ′y)→ 0 (106)

div ′(s ′x) ′(s ′y)→ s ′(div ′(minus ′x ′y) ′(s ′y)) (107)

26If λ does not occur in left-hand sides then one can always eliminate λ by introducing corresponding
named functions. For example, instead of using the rule

f x xs→ map (λy.y + x ∗ y) xs

one can add an additional function g and then use the following two rules.

f x xs→ map (g x) xs

g x y → y + x ∗ y

86 Chapter 6. Processors for Applicative Rewriting

In this TRS the only defined function symbol is ′ while all remaining function symbols
are constructors. Therefore, we obtain the following set of dependency pairs. Here,] is
the tuple-symbol of ′ and we use] as an infix-symbol, too.

map ′α] (cons ′x ′xs)→ cons ′(α ′x)] (map ′α ′xs) (108)

map ′α] (cons ′x ′xs)→ cons] (α ′x) (109)

map ′α] (cons ′x ′xs)→ α] x (110)

map ′α] (cons ′x ′xs)→ map ′α] xs (111)

minus ′(s ′x)] (s ′y)→ minus ′x] y (112)

minus ′(s ′x)] (s ′y)→ minus] x (113)

div ′(s ′x)] (s ′y)→ s] (div ′(minus ′x ′y) ′(s ′y)) (114)

div ′(s ′x)] (s ′y)→ div ′(minus ′x ′y)] (s ′y) (115)

div ′(s ′x)] (s ′y)→ div] (minus ′x ′y) (116)

div ′(s ′x)] (s ′y)→ minus ′x] y (117)

div ′(s ′x)] (s ′y)→ minus] x (118)

Since R falls in a class of TRSs where innermost termination is equivalent to ter-
mination we choose Q = lhs(R). As usual we first transform the initial DP problem
(DP(R),Q,R,m) by the dependency graph processors of Theorems 3.3 and 3.4. We use
the graph estimation of Definition 3.9 together with the estimated Cap-function ICap.
This results in three new DP problems corresponding to the three different functions map,
minus, and div: ({(110), (111)},Q,R,m), ({(112)},Q,R,m), and ({(115)},Q,R,m).
This corresponds to the real dependency graph.

Note that here we really need the estimated Cap-function ICap which is based on
unification. With previous dependency graph estimations which are based on the Cap-
function of [AG00] that just looks at the root symbols we obtain a different result.
In that case the estimation cannot delete any edge between two dependency pairs of
{(108), (110), (111), (112), (115), (117)}. Thus, instead of a clear separation one would
have to prove termination of all functions together. Note that this is not possible using
all processors of Chapters 3 and 4 if one uses quasi-simplification orders. (Of course, we
exclude the processor to estimate the dependency graph with ICap.) Moreover, even the
processors of this chapters will not be successful.

The problem is that if an estimated Cap-function ECap only looks at the root symbols
then it must replace every term t1

′t2 by a fresh variable. But as nearly every term is built
by ′ this obviously is a coarse estimation. Consider the right-hand side of (108). Then

ECap
{map ′α] (cons ′x ′xs)}
R,Q (cons ′(α ′x)] (map ′α ′xs)) = y] z since the subterms cons ′(α ′x)

and map ′α ′xs have the defined symbol ′ as root. And as the term y] z unifies with the
left-hand sides of every dependency pair, there are connections from (108) to every other
dependency pair if one uses ECap.

In contrast, ICap
{map ′α] (cons ′x ′xs)}
R,Q (cons ′(α ′x)] (map ′α ′xs)) = cons ′y] z. The reason

is that both the terms α ′x and map ′α ′xs unify with left-hand sides ofR and therefore are
replaced by fresh variables. However, the term cons ′y does not unify with any left-hand
side of R and thus, is not replaced by a fresh variable. And since cons ′y] z does not unify
with any left-hand side of DP(R), the dependency pair (108) has no outgoing edge to
another dependency pair.

6.1. From Applicative to Functional Form 87

As we are in the innermost case we can often simplify the remaining DP problems by
the usable rules processor of Theorem 3.25. Here, we obtain a similar result as for the
dependency graph estimation. For each of the three DP problems all rules of R are usable
if one uses the estimation of [AG00]. Again the reason is that in [AG00] only the root
symbols were analyzed. In that case if a right-hand side contains the application symbol
′ then all ′-rules are usable. As every rule of R has as root the application symbol these
are all rules.

But if we use the improved usable rules estimation IU of Definition 3.26 with ICap then
we obtain the real usable rules for all three DP problems: IU(({(110), (111)},Q,R)) =
IU(({(112)},Q,R)) = ∅ and IU(({(115)},Q,R)) = {(104), (105)}.

Two of the resulting DP problems can be solved by any reduction pair processor of Sec-
tion 4. For D12 = ({(110), (111)},Q,∅,m) and ({(112)},Q,∅,m) it suffices to use the
embedding order and no argument filter to delete all pairs (110), (111), and (112). How-
ever, the remaining DP problem D13 = ({(115)},Q, {(104), (105)},m) cannot be solved
by any reduction pair processor when using a quasi-simplification order. Since it does not
contain a map-rule any more, one would like to change it back to conventional functional
form. Then it could be replaced by the DP problem D14 = (P ′,Q′,R′,m) with P ′ =
{DIV(s(x), s(y))→ DIV(minus(x, y), s(y))}, the set Q′ = {map(α, nil), map(α, cons(x, xs)),
minus(x, 0), minus(s(x), s(y)), div(0, s(y)), div(s(x), s(y))}, and the TRS R′ = {minus(x, 0)
→ x,minus(s(x), s(y)) → minus(x, y)}. This DP problem is then easy to solve: for ex-
ample, the constraints of any reduction pair processor of Section 4 are satisfied by the
polynomial order which maps s(x) to x + 1, minus(x, y) to x, and every other symbol to
the sum of its arguments. Thus, termination could immediately be proved automatically.

This chapter is organized as follows. In Section 6.1 it is shown how to transform DP
problems like D13 into D14. Thereby, we extend the work of [KKSV96] in two ways.
Whereas in [KKSV96] it is shown that one can do this transformation on the level of
TRSs, we perform it on DP problems. And moreover, in [KKSV96] only full rewriting
is considered whereas we consider Q-restricted rewriting. Our results also extends the
work of [GTS05b], since there, only full- and innermost rewriting are considered, and
moreover, minimality is not investigated. Here, we will provide a new example to prove
that even for full termination minimality cannot be preserved. To overcome this problem,
in Section 6.2 we combine the transformation from applicative to functional form with
the reduction pair processors which are based on needed rules. In that way, minimality
can be preserved. Finally, needed rules w.r.t. argument filters are integrated in Section
6.3.

6.1. From Applicative to Functional Form

Some applicative DP problems can be transformed (back) to ordinary functional form.
In particular, this holds for problems resulting from first-order functions (encoded by
currying). This transformation is advantageous: e.g., the reduction pair processors in
Chapter 4 are significantly more powerful for DP problems in functional form, since
standard reduction orders focus on the root symbol when comparing terms.

Now we characterize those applicative TRSs which correspond to first-order functions
and can be translated into functional form. In these TRSs, for any function symbol f
there is a number n (called its applicative arity or just a-arity) such that f only occurs
in terms of the form f ′t1

′ . . . ′tn. So there are no applications with too few or too many

88 Chapter 6. Processors for Applicative Rewriting

arguments. Moreover, there are no terms x ′t where the first argument of ′ is a variable.
Definition 6.2 extends this idea from TRSs to DP problems.

As we have seen in Example 6.1, in DP problems there is not just one application
symbol, but usually there are two application symbols ′ and], and the remaining symbols
are constants. We generalize from two application symbols to a set of function symbols.

For the remainder of this chapter we fix the applicative signature to F ∪ F ′ where
F only contains constants and F ′ consists of binary function symbols. Elements of F
are usually denoted with f, g, . . . and elements of F ′ are ?1 , ?2 , . . . and are always used
in infix-notation. We also fix a function a-ar : F → IN which specifies the applicative
arities for the symbols in F . Additionally we introduce the functional signature Ffunc =
{f?1 ...?n | f ∈ F , a-ar(f) = n} where each f?1 ...?n has arity n. To increase readability in
examples we often identify f ′ ··· ′ with f and f ′ ··· ′] with F .

Definition 6.2 (Proper). Let (P ,Q,R, f) be an applicative DP problem. A term t is
proper iff t ∈ V or t = f ?1t1

?2 . . . ?ntn where in the latter case, a-ar(f) = n and all ti are
proper. Moreover, a DP problem (P ,Q,R, f) is proper iff all terms in P, Q, and R are
proper.

The remaining DP problem D13 of Example 6.1 for div is proper. Here, minus, div, cons,
and map have a-arity 2, s has a-arity 1, and 0 and nil have a-arity 0. But the problem
D12 for map is not proper as (110) contains the subterm α] x with α ∈ V . Note that
D13 would not be proper if Q were a set of rules, since then Q would still contain the
recursive, non-proper map-rule. Hence, here we benefit from Q being a set of terms.

The following transformation translates proper terms from applicative to functional
form. To this end, f ?1t1

?2 . . . ?ntn is replaced by f?1 ...?n (. . .), where a-ar(f) = n and f?1 ...?n

is a function symbol of the functional signature Ffunc. In this way, D13 is transformed
into D14 in Example 6.1.

Definition 6.3 (A-Transformation). A maps every proper term of T (F ∪ F ′,V) to a
term of T (Ffunc, V):

• A(x) = x for all x ∈ V

• A(f ?1t1
?2 . . . ?ntn) = f?1 ...?n (A(t1), . . . ,A(tn)) for all f ∈ F

A is lifted to sets of terms, rules, TRSs, pair-graphs, and substitutions by applying A
component-wise.

In the following, we say that a substitution σ is proper if σ(x) is proper for all x ∈ V .
Moreover, let Tproper be the set of proper terms from T (F ∪ F ′,V) and let Tfunc =
T (Ffunc,V).

Lemma 6.4 (Properties of A). Let (P ,Q,R, f) be a proper DP problem and let A−1 be
the inverse mapping to A. For all t of Tproper, all u, v of Tfunc, all proper substitutions
σ : V → Tproper, and all substitutions δ : V → Tfunc, the following properties are valid.

(i) A(tσ) = A(t)A(σ) and A−1(uδ) = A−1(u)A−1(δ)

(ii) If t→R s then s ∈ Tproper
(iii) t ∈ NF (Q) iff A(t) ∈ NF (A(Q))

(iv) t Q→m
R s implies A(t)

A(Q)→ m
A(R) A(s), and u

A(Q)→ m
A(R) v implies A−1(u) Q→m

R A−1(v)

6.1. From Applicative to Functional Form 89

Our aim is to prove soundness of the processor which replaces proper DP problems
(P ,Q,R, f) by (A(P),A(Q),A(R), f). To this end, one can show that every (P ,Q,R, f)-
chain results in an (A(P),A(Q),A(R), f)-chain, i.e., that tiσ

Q→∗R si+1σ implies that
there is a reduction A(ti)σ

′ A(Q)→ ∗
A(R) A(si+1)σ

′ for some substitution σ′. The problem is
that although all terms in P , Q, and R are proper, the substitution σ may introduce
non-proper terms. For that reason we cannot directly use Lemma 6.4.

However, we now show that if NF (Q) ⊆ NF (R) then every (P ,Q,R)-chain which uses
a substitution σ can also be obtained by using a substitution with proper terms. To this
end, we introduce another transformation Y from arbitrary to proper terms which simply
replaces non-proper subterms t by a fresh variable ⊥t, and then we replace σ by Y(σ).

Unfortunately t Q→R s does not imply Y(t) Q→R Y(s) in general. The problem is that
improper terms can be rewritten to proper ones. Consider t = minus ′s ′0 ′x. While
t Q→R s ′x using the rule (104), the term Y(t) = ⊥minus ′ s ′0 ′x is a normal form and cannot
be reduced to Y(s) = s ′x. Hence, if the substitution can contain R-redexes, i.e., if
NF (Q) 6⊆ NF (R) then Y cannot be successfully used. However, in the other case t Q→R s
indeed implies Y(t) Q→R Y(s), provided that t has the form qσ for a proper term q and a
Q-normal substitution σ.

Later in Definition 6.10, we will also see another transformation Z which can be used
for arbitrary sets Q but which has other drawbacks compared to Y .

Definition 6.5 (Y-Transformation). Y is the transformation from T (F∪F ′,V) to T (F∪
F ′,V] V ′), where V ′ = {⊥t | t ∈ T (F ∪ F ′,V)} are fresh variables.

• Y(x) = x, for all x ∈ V

• Y(f ?1t1
?2 . . . ?ntn) = f ?1Y(t1)

?2 . . . ?nY(tn), for all f ∈ F with a-ar(f) = n

• Y(t) = ⊥t, for all other t ∈ T (F ∪ F ′,V)

Moreover, for any substitution σ, Y(σ) is the substitution with Y(σ)(x) = Y(σ(x)).

Lemma 6.6 (Properties of Y). Let (P ,Q,R, f) be a proper DP problem, let t and s be
from T (F ∪ F ′,V), let σ : V → T (F ∪ F ′,V), and let µ : V → T (F ∪ F ′,V] V ′).

(i) Y(t) is proper

(ii) If t is proper then Y(tσ) = tY(σ).

(iii) If t is in Q-normal form then Y(t) is in Q-normal form.

(iv) If σ is Q-normal, t is proper, and NF (Q) ⊆ NF (R) then tσ Q→m
R s implies Y(tσ) Q→m

R
Y(s).

(v) If σ is Q-normal and Y(tσ) is in Q-normal form then tσ is in Q-normal form.

(vi) If σ is Q-normal and t is proper then termination of tσ w.r.t. Q→R implies termina-
tion of Y(tσ) w.r.t. Q→R.27

27Note that Y does not preserve termination w.r.t. Q→R for arbitrary terms t. Consider the TRS R =
{f ′(g ′x ′y) → f ′(g ′x ′y), g ′x ′x → a, b → a, c → a} and Q = lhs(R). Then t = f ′(g ′(x ′b) ′(x ′c))
is terminating w.r.t. Q→R: the only possible reduction is t Q→2

R f ′(g ′(x ′a) ′(x ′a)) Q→R f ′a which is a
normal form w.r.t. Q→R. On the other hand Y(t) = f ′(g ′⊥x ′a

′⊥x ′b)
Q→R Y(t) Q→R

90 Chapter 6. Processors for Applicative Rewriting

t1σ
Q→∗R s2σ , t2σ

Q→∗R s3σ , . . .

Y(t1σ) Q→∗R Y(s2σ) , Y(t2σ) Q→∗R Y(s3σ) , . . .

t1Y(σ) Q→∗R s2Y(σ) , t2Y(σ) Q→∗R s3Y(σ) , . . .

A(t1Y(σ))
A(Q)→ ∗
A(R) A(s2Y(σ)) , A(t2Y(σ))

A(Q)→ ∗
A(R) A(s3Y(σ)), . . .

A(t1)A(Y(σ))
A(Q)→ ∗
A(R) A(s2)A(Y(σ)),

Figure 6.7.: Transformation of chains

Combining Lemmas 6.4 and 6.6 allows us to transform each (P ,Q,R)-chain into an
(A(P),A(Q),A(R))-chain as depicted in Figure 6.7: The first row is the original chain
where σ may contain improper terms. Then applying Y yields the second row, where still
all reductions are possible due to Lemma 6.6 (iv). Afterwards we can extract the terms si
and ti by Lemma 6.6 (ii) which results in the third row. Hence, we have now obtained a
chain where the substitution contains only proper terms due to Lemma 6.6 (i). Therefore,
it is now possible to apply the A-transformation where by Lemma 6.4 (iv) the reductions
can by done by

A(Q)→ ∗
A(R). By Lemma 6.4 (i) we finally get our desired chain in the fifth row:

By using the remaining properties of Lemmas 6.4 and 6.6, one can show the two desired
properties that minimality is preserved and that each term A(si)A(Y(σ)) is in normal
form w.r.t. A(Q).

Hence, we can formulate the desired processor which transforms proper applicative DP
problems into functional form whenever NF (Q) ⊆ NF (R).

Theorem 6.8 (A-Transformation Processor). The following processor Proc is sound and
complete. For any DP problem (P ,Q,R, f), let Proc return

• {(A(P),A(Q),A(R), f)} if (P ,Q,R, f) is proper and NF (Q) ⊆ NF (R)

• {(P ,Q,R, f)} otherwise.

We demonstrate the use of the new theorem in the running example of this chapter.

Example 6.9. We continue in the termination proof of Example 6.1 with its remaining
DP problem D13 = ({(115)},Q, {(104), (105)},m).

div ′(s ′x)] (s ′y)→ div ′(minus ′x ′y)] (s ′y) (115)

minus ′x ′0→ x (104)

minus ′(s ′x) ′(s ′y)→ minus ′x ′y (105)

The result of the A-transformation processor of Theorem 6.8 is the DP problem D14 =
({(119)},A(Q), {(120), (121)},m).

DIV(s(x), s(y))→ DIV(minus(x, y), s(y)) (119)

minus(x, 0)→ x (120)

minus(s(x), s(y))→ minus(x, y) (121)

Now, D14 can be solved using a reduction pair processor with the embedding order and a
suitable argument filter.

6.1. From Applicative to Functional Form 91

The problem of Theorem 6.8 is its restricted applicability. We would also like to have a
corresponding theorem without the restriction NF (Q) ⊆ NF (R). As argued before, the
transformation Y cannot be used in the general case.

However, we now present a transformation Z such that instead of σ one can use the
proper substitution Z(σ) to build a chain. Here, Z transforms arbitrary terms t and s
into proper ones such that t Q→∗R s implies Z(t) →∗R Z(s). Z replaces terms where a
variable is on the first argument of a binary symbol ?i or where a function symbol f has
too few arguments by a fresh variable ⊥. If f is applied to more arguments than its a-arity
n, the first n arguments are modified by applying them to the arguments on positions
n+ 1, n+ 2, Afterwards, the arguments on the positions n+ 1, n+ 2, . . . are deleted.

As an example, regard the non-proper term t = minus ′s ′0 ′x where the symbol minus
with a-arity 2 is applied to 3 arguments. Z removes the argument x and modifies the
arguments s and 0 by applying them to x. So t is replaced by minus ′(s ′x) ′(0 ′x). Now Z
is called recursively on the subterms and therefore, the argument x of the symbol 0 with
a-arity 0 is removed. Hence, Z(t) = minus ′(s ′x) ′0. Note that for the original non-proper
term t, we have t→R s ′x by the collapsing minus-rule (104). Similarly, we now also have
Z(t)→R Z(s ′x) = s ′x.

Definition 6.10 (Z-Transformation). Z is the following transformation from terms of
T (F ∪F ′,V) to T (F ∪F ′,V]{⊥}), where ⊥ is a fresh variable. Here, x ∈ V and f ∈ F
with a-ar(f) = n.

• Z(x) = x

• Z(f ?1t1
?2 . . . ?ktk) =

f ?1Z(t1
?n+1tn+1

?n+2 . . . ?ktk)
?2 . . . ?nZ(tn

?n+1tn+1
?n+2 . . . ?ktk), if k ≥ n

• Z(t) = ⊥, for all other t ∈ T (F ∪ F ′,V)

Moreover, for any substitution σ, Z(σ) is the substitution with Z(σ)(x) = Z(σ(x)).

That Y cannot be used in the general case was already illustrated in the paragraph
before Definition 6.5. However, we cannot use Z to get the results of Theorem 6.8 either,
as Z preserves neither the strategy nor the termination behavior as Y does. Consider
for example Q = lhs(R) together with the TRS R with the rules f ′(g ′x ′y ′z) → z and
g ′x ′x ′y → 0. We obtain t Q→R 0 for the non-proper term t = f ′(g ′(0 ′x) ′(0 ′y) ′0),
whereas Z(t) = f ′(g ′0 ′0 ′0) only reduces to f ′0. So the problem is that Z can make
different subterms equal by eliminating “superfluous” arguments. A similar example can
be given to show that termination is not preserved. So we really need both transformations
Y and Z.

The following lemma states the desired properties of Z formally.

Lemma 6.11 (Properties of Z). Let (P ,Q,R, f) be a proper DP problem, let t and s be
from T (F ∪ F ′,V), and let σ : V → T (F ∪ F ′,V).

(i) Z(t) is proper

(ii) If t is proper then Z(tσ?n+1tn+1
?n+2 . . . ?ktk) = tZ(σ). Here, σ is substitution defined

by σ(x) = σ(x)?n+1tn+1
?n+2 . . . ?ktk.

(iii) t→∗R s implies Z(t)→∗R Z(s)

92 Chapter 6. Processors for Applicative Rewriting

Now we can formulate a second processor to transform applicative DP problems using
the A-transformation where the idea is to transform chains in the same way as before.
One just has to exchange Y by Z in Figure 6.7, and additionally one has to drop Q from
the second row onwards.

Theorem 6.12 (A-Transformation Processor). The following processor Proc is sound.
For a DP problem (P ,Q,R, f), Proc returns

• {(A(P),∅,A(R), a)}, if (P ,Q,R, f) is applicative and P ∪R is proper

• {(P ,Q,R, f)}, otherwise.

If Q = ∅ then Proc is even complete.

With the new processors of Theorems 6.8 and 6.12 and our new improved estimation
of dependency graphs (Definition 3.9 using Definition 3.11 as estimated Cap-function),
it does not matter any more for an (innermost) termination proof whether first-order
functions are represented in applicative or in ordinary functional form. The reason is
that if they are represented by applicative rules, then all dependency pairs with non-
proper right-hand sides are not in SCCs of the estimated dependency graph. Hence, after
applying the dependency graph processors, all remaining DP problems are proper and
can be transformed into functional form by Theorems 6.8 or 6.12.

Moreover, in this way one can also prove that R is (innermost) terminating iff A(R)
is (innermost) terminating, provided that R is proper. For termination this was already
shown in [KKSV96], but it is a new result for innermost termination.

Nevertheless, there are some problems with Theorem 6.12, since the processor preserves
neither the strategy nor minimality. That this cannot be achieved without requiring
NF (Q) ⊆ NF (R) as in Theorem 6.8, is illustrated in the following examples.

Example 6.13. We first show that the strategy cannot be preserved if we are not in the
innermost case. Let P consist of the pair

f ′(g ′x) ′(h ′y)] z → f ′z ′z] z (122)

let R consist of the two rules

c ′x ′y → x (123)

c ′x ′y → y (124)

and let Q = {c ′(g ′x) ′y, c ′x ′(g ′y)}. Then one can build the following infinite minimal
(P ,Q,R)-chain.

f ′(c ′g ′h ′x) ′(c ′g ′h ′x)] (c ′g ′h ′x)
Q→R f ′(g ′x) ′(c ′g ′h ′x)] (c ′g ′h ′x)
Q→R f ′(g ′x) ′(h ′x)] (c ′g ′h ′x)
Q→P,ε f ′(c ′g ′h ′x) ′(c ′g ′h ′x)] (c ′g ′h ′x)
Q→R . . .

Note that to build this chain we used the non-proper subterm c ′g ′h ′x which can be
reduced to the two proper terms g ′x and h ′x.

6.2. Needed Rules for Applicative DP Problems 93

However, for the A-transformed problem with the following pairs and rules

F(g(x), h(y), z)→ F(z, z, z) (125)

c(x, y)→ x (126)

c(x, y)→ y (127)

and the set A(Q) = {c(g(x), y), c(x, g(y))} there is no infinite chain any more. This can be
seen as follows: obviously the variable z of pair (125) must be instantiated by σ such that
zσ is reducible to both g(x)σ and h(x)σ. But then zσ must contain a subterm c(g(t1), t2)
or c(t3, g(t4)). In both cases zσ is not in A(Q)-normal form. Hence, the instantiated
left-hand side of (125) is not in A(Q)-normal form which proves that there is no infinite
chain.

In Example 6.13 we have seen that the strategy cannot be preserved in the processor of
Theorem 6.12. The next example demonstrates that this applies for minimality as well,
even if Q is the empty set.

Example 6.14. We extend the TRS R of Example 6.13 by the following rules.

c ′(g ′x) ′y → c ′(g ′x) ′y (128)

c ′x ′(g ′y)→ c ′x ′(g ′y) (129)

Now consider the DP problem ({(122)},∅, {(126), (127), (128), (129)}, f). We obtain
exactly the same infinite chain as in Example 6.13 which is again minimal. However, with
the same argument as before any infinite chain in the A-transformed DP problem must
instantiate z by a term that contains c(g(t1), t2) or c(t3, g(t4)) as a subterm. But then
the resulting chain cannot be minimal due to the A-transformed rules (128) and (129).

Notice that the two A-transformation processors of Theorems 6.8 and 6.12 do not sub-
sume each other, even in the case that NF (Q) ⊆ NF (R). The reason is that Theorem 6.12
does not require that Q is proper. Nevertheless, losing minimality is a severe problem as
many of the powerful processors of Chapter 4 require minimality. However, the situation
is quite similar to the one where one applies the needed rules processor of Theorem 4.12:
using Theorem 6.12 directly destroys strategy and minimality. A better way would be to
combine it with the reduction pair processor in a similar way to that of Theorem 4.18.
Then one preserves minimality but only has to search for orders that orient the constraints
arising of the A-transformed rules and pairs. This approach and the adaptation of other
processors of Sections 4.2 and 4.3 are investigated in the following section.

6.2. Needed Rules for Applicative DP Problems

The main problem of the processors of the previous section is that they do not work well
if we are not in the innermost case. First, as the usable rules are often the whole TRS one
cannot easily delete the improper rules and thus, the A-transformation cannot be applied
as all rules must be proper. And second, even if A is applicable then we lose minimality
which is required for most of the powerful processors of Chapter 4.

94 Chapter 6. Processors for Applicative Rewriting

To solve the first problem one can apply the needed rules processor of Theorem 4.12
to delete improper unneeded rules, but with the disadvantage that minimality is lost.28

Alternatively, one can try to use the needed rules processor of Theorem 4.20, but this
processor often is not applicable as one has to find reduction pairs over the applicative
signature. And even after its successful application one still would lose minimality by the
A-transformation of Theorem 6.12.

To this end, we will adapt the transformation I to a similar transformation I ′ which
combines I with A. For this transformation it is only required that P and the needed
rules are proper, and the unneeded rules may contain arbitrary improper terms. Then
we can formulate new processors which can delete all strictly decreasing pairs, strictly
decreasing rules, and unneeded rules, if the A-transformed constraints can be solved.
Moreover, we present a new processor which can apply the A-transformation and loses
neither minimality nor the strategy.

The main idea of the transformation I ′ is similar to the idea of I. If we are not sure
that only needed rules can be applied on a term t then we use a fresh binary symbol c
to store all possible results of reducing t into a set which is encoded by c. Then using Cε
we can access each of this reducts of t. However, the main difference to I is that we are
only interested in reductions leading to proper terms and that then we directly store the
A-transformed terms in the set.

In the details of I ′ we see two more differences to I. First there is an additional forth
case. This case is needed to handle improper terms. And second, one has to deal with
possible reductions of a term f ?1t1

?2 . . . ?ntn where f has a-arity n and where the redex is
f ?1t1

?2 . . . ?iti for i < n.

Definition 6.15 (I ′). Let N = N (P ,Q,R) be the set of needed rules of the given DP
problem, and let u1 → v1, u2 → v2, . . . be an infinite minimal (P ,Q,R)-chain. Let ECap
be the estimated Cap-function that is used to define the needed rules. Let P ∪ N be
proper. W.l.o.g. we assume that σ is the substitution used for instantiating every ui → vi.
Moreover, whenever in the reduction of viσ a rule `j → rj ∈ R is applied, then by renaming
the variables in the rule we again assume that the rule is instantiated by σ in that rewrite
step. Let Sall contain all ui and all direct subterms of each `j. Let c be the new constant
and let ⊥ be the new variable which are introduced by Comp. We define the mapping I ′
from terms that terminate w.r.t. Q→R to functional terms of T (Ffunc] {c},V] {⊥}) as
follows.

• I ′(x) = x for every variable x

• I ′(f ?1t1
?2 . . . ?ntn) = f?1 ...?n (I ′(t1), . . . , I ′(tn)), if a-ar(f) = n and if there is no rule

`→ r ∈ R \N and no 0 ≤ i ≤ n such that CapSallσR,Q (f ?1t1
?2 . . . ?i−1ti−1)

?iCapSallσR,Q (ti)
unifies with ` by some mgu µ where (Sallσ∪{`1, . . . , `k})µ ⊆ NF (Q). Here, `1, . . . , `k
are the direct subterms of `.

• I ′(f ?1t1
?2 . . . ?ntn) = c(f?1 ...?n (I ′(t1), . . . , I ′(tn)),Comp(Red ′(t))), if the former case

is not applicable, and if a-ar(f) = n.

• I ′(t) = c(⊥,Comp(Red ′(t))), otherwise.

28 If we naively use the needed rules processor of Theorem 4.12 then afterwards the A-transformation
is still not applicable as the resulting DP problem is never proper. The reason is that Cε consists of
improper rules. However, one can easily adapt Theorem 4.12 where one replaces Cε byA−1(Cε). And if
improper terms only occurred in the unneeded rules then one could indeed apply the A-transformation
afterwards. Nevertheless, minimality is lost which is not the case in the upcoming results.

6.2. Needed Rules for Applicative DP Problems 95

As usual, Red ′(t) = {I ′(s) | t Q→R s}, and I ′ is extended to substitutions.

We obtain similar properties as in Lemma 4.11. The only main difference is that one has
to demand that certain terms are proper and the resulting reductions are not w.r.t.→N∪Cε ,
but w.r.t. →A(N)∪Cε .

Lemma 6.16 (Properties of I ′). Let P ,Q,R,N , u1 → v1, u2,→ v2, . . . ,Sall, σ be as in
Definition 6.15. Let t be terminating w.r.t. Q→R.

(i) If N SR,Q(t) ⊆ N , S ⊆ Sall, and t is proper then I ′(tσ) = A(t)I ′(σ).

(ii) If t is proper then I ′(tσ)→∗Cε A(t)I ′(σ).

(iii) If t Q→R s, and I ′(t) is built by the third or forth case then I ′(t)→+
Cε I ′(s).

(iv) If t Q→R s is a reduction at the root position and I ′(t) is built by the second case
then I ′(t)→∗Cε→A(N) I ′(s).

(v) If t Q→ s then I ′(t)→+
A(N)∪Cε I ′(s).

(vi) A(u1 → v1),A(u2 → v2), . . . is an (A(P),∅,A(N) ∪ Cε)-chain.

Now we can formulate the processor based on I ′. It encapsulates many processors of
Chapter 4 based on needed rules in one definition, and it combines them all with the A-
transformation. In all cases we only have to solve constraints over the functional signature
and it is only required that the needed rules are proper. We will discuss the relations
between these processors and the corresponding processors of Chapter 4 directly after the
theorem.

Theorem 6.17 (Processors Based on Needed Rules for Applicative DP Problems). Let
(%,�) be a reduction pair where % is Cε-compatible. Let ECap be the estimated Cap-
function for the needed rules, let N = N (P ,Q,R). Then the following processor Proc
is sound. For a DP problem (P ,Q,R, f), Proc can return {(P ,Q,R, f)} or one of the
following sets of DP problems.

(A) {(A(P),∅,A(N) ∪ Cε, a)},
if P ∪N is proper and if f = m

(B) {(P ,Q,N ′, f)},
if P ∪N is proper, f = m, A(P ∪N) ⊆ %, N ′ = N \ {`→ r ∈ N | A(`) � A(r)},
and if � is monotonic and Cε-compatible

(C) {(A(P),A(Q),A(N ′), f)},
if P∪N∪Q is proper, f = m, A(P∪N) ⊆ %, N ′ = N\{`→ r ∈ N | A(`) � A(r)},
and if � is monotonic and Cε-compatible

(D) {(P \ {s→ t ∈ P | A(s) � A(t)},Q,R, f)},
if P ∪N is proper, f = m, A(P ∪N) ⊆ %, and if A(P) ∩ � 6= ∅

The processor is complete in all cases but (A).

96 Chapter 6. Processors for Applicative Rewriting

Alternative (A) clearly corresponds to the combination of applying first the needed rules
processor of Theorem 4.12 followed by an application of the A-transformation processor of
Theorem 6.12, cf. Footnote 28. This processor loses minimality and is incomplete, but on
the other hand it has very few requirements: it is not required to find a suitable reduction
pair directly. Hence, this processor should be used if one wants to apply other processors
that benefit from different root symbols afterwards. Examples include processors that are
based on semantic labeling, cf. Chapter 7.

However, if one can find a reduction pair satisfying the constraints then one should
not use alternative (A). If one uses monotonic reduction pairs that are Cε-compatible
then with alternative (B) we get a similar processor to the needed rules processor of
Theorem 4.20. However, here we also integrated the effect of the rule removal processor
of Theorem 4.22. The reason is that in Chapter 4 both theorems for the needed rules
processor and the rule removal processor can be applied in sequence without problems.
This is not the case in the applicative case. Even after one has removed all unneeded rules
(R \ N), one still remains with an applicative problem. Hence, one again wants to look
at the A-transformed constraints to remove rules, and this is what is done in alternative
(B).

Note that in alternatives (A) and (B) there is no requirement that Q is proper. This
is different in alternative (C). If additionally Q is proper then one can return the A-
transformed DP problem of the result of alternative (B).29 The requirement that Q must
be proper is essential, because otherwise it would be impossible to apply A on Q.

Finally, alternatives (B) and (C) require that the strict order is monotonic which for-
bids the use of argument filters. This is not the case in alternative (D) which directly
corresponds to the reduction pair processor of Theorem 4.18.

We illustrate the use of Theorem 6.17 in the following variant of our running example.

Example 6.18. Let R be the TRS of Example 6.1 where we added rules to get a random
number and where we modified the recursive minus-rule.

map ′α ′nil→ nil (102)

map ′α ′(cons ′x ′xs)→ cons ′(α ′x) ′(map ′α ′xs) (103)

random→ 0 (130)

random→ s ′0 (131)

p ′(s ′x)→ x (132)

minus ′x ′0→ x (104)

minus ′x ′(s ′y)→ p ′(minus ′x ′(p ′(s ′y))) (133)

div ′0 ′(s ′y)→ 0 (106)

div ′(s ′x) ′(s ′y)→ s ′(div ′(minus ′x ′y) ′(s ′y)) (107)

Note that this TRS does not belong to a class where innermost termination implies ter-
mination due to the random-rules. Hence, using the processors of Chapters 3 and 4 in com-
bination with standard orders, we remain with the two DP problems ({(134)},∅,R,m)

29For alternative (C) it is not really required to integrate the effect of the rule removal processor as this
processor would be applicable afterwards. However, then (B) would have less requirements than (C)
but it would be able to delete more rules which looks counterintuitive. Therefore, also in (C) it is
allowed to delete rules which are strictly decreasing.

6.3. Argument Filters for Applicative DP Problems 97

and ({(115)},∅,R,m) where both DP problems still contain the whole TRS R.

minus ′x] (s ′y)→ minus ′x] (p ′(s ′y)) (134)

div ′(s ′x)] (s ′y)→ div ′(minus ′x ′y)] (s ′y) (115)

Since R is not proper we cannot apply the A-transformation with the processors of
the previous section. However, the only needed rule of the further DP problem is (132).
Hence, by using alternative (C) of Theorem 6.17 one can simplify this DP problem to
({MINUS(x, s(y))→ MINUS(x, p(s(y)))},∅,∅,m) by a polynomial order which maps s(x)
to x+ 1 and every other symbol to the sum of its arguments. This problem is then easy
to solve by the processors based on the dependency graph.

For the other remaining DP problem we can neither apply alternative (C) nor alternative
(B) if we use a quasi-simplification order due to the monotonicity requirements. But the
other two alternatives succeed. The set of needed rules is {(132), (104), (133)} and for
example, we can choose the embedding order and the argument filter which only replaces
minus by its first argument to solve the constraints of alternative (D).

6.3. Argument Filters for Applicative DP Problems

What is missing in the previous section is a processor that corresponds to the reduction
pair processor based on argument filters and needed rules of Theorem 4.32 where one only
has to build constraints for the needed rules w.r.t. a given argument filter. It may be the
case that the needed rules still contain improper terms, but if one regards the argument
filter then all these improper rules are not needed any more, or the improper parts of the
rules are dropped by the filter. This is illustrated further in the upcoming example.

Of course, one wants to obtain needed rules w.r.t. an argument filter over the func-
tional signature with n-ary symbols and not with an argument filter over the applicative
signature where we can specify a filter only for the binary application symbols.

Example 6.19. We consider the following TRS implementing the sieve of Eratosthenes.

divides ′(s ′x) ′0→ true (135)

divides ′(s ′x) ′(s ′y)→ div ′(s, x) ′y ′x (136)

div ′x ′y ′0→ divides ′x ′y (137)

div ′x ′0 ′(s ′z)→ false (138)

div ′x ′(s ′y) ′(s ′z)→ div ′x ′y ′z (139)

generate ′x ′0→ nil (140)

generate ′x ′(s ′y)→ cons ′x ′(generate ′(s ′x) ′y) (141)

filter ′α ′nil→ nil (142)

filter ′α ′(cons ′x ′xs)→ if ′(α ′x) ′x ′(filter ′α ′xs) (143)

if ′true ′x ′xs→ xs (144)

if ′ false ′x ′xs→ cons ′x ′xs (145)

if ′true ′x ′xs→ xs (146)

sieve ′nil→ nil (147)

sieve ′(cons ′x ′xs)→ cons ′x ′(sieve ′(filter ′(divides ′x) ′xs)) (148)

98 Chapter 6. Processors for Applicative Rewriting

Here, divides computes whether the second argument is divisible by its first argument.
The term generate ′x ′y evaluates to the list [x, x + 1, . . . , x + y − 1]. The higher-order
function filter takes a function α and a list as input and drops all elements x from the list
where α(x) is true. Finally, sieve ′ [2, 3, . . . , x] computes the list of prime numbers between
2 and x by filtering recursively all numbers that are divisible by a detected prime number.
Hence, the term sieve ′(generate ′2 ′(x− 1)) computes all primes up to x.

Here, we see a new challenge for proving termination. In the recursive call of the
function sieve we have a call to the higher-order function filter and moreover, we see a
partial application of the divides-function. Hence, the resulting DP problem will not be
proper. However, if we partially apply the A-transformation and directly use an argument
filter π over the functional signature which drops the first argument of filter and if, then
the higher-order parts are deleted and we get no problems in the A-transformation. This
idea leads to the new notion of π-proper which essentially is the requirement that in
this combined process of argument filtering and A-transforming – which is called Aπ-
transformation – one will never encounter subterms that cannot be Aπ-transformed.

Moreover, if we already know that certain parts are deleted then we can also exploit this
fact to get less needed rules w.r.t. π. For example, then the divides-rules are not needed
any more. These considerations result in Definition 6.21 about needed rules w.r.t. π and
in the corresponding processor in Theorem 6.22, which is strictly more powerful than the
processor of Theorem 6.17 (D).

Definition 6.20 (π-Proper and Aπ). Let F ∪ F ′ be an applicative signature, let a-ar :
F → IN determine the arities of the applicative signature, let π be an argument filter over
the functional signature Ffunc. Then a term t ∈ T (F ∪ F ′,V) is π-proper iff

• t is a variable or

• t = f ?1t1
?2 . . . ?ntn, a-ar(f) = n, and for every i ∈ RegPosπ(f?1 ...?n) the term ti is

π-proper.

We define the Aπ-transformation from π-proper terms to filtered functional terms as

• Aπ(x) = x for every variable x,

• Aπ(f ?1t1
?2 . . . ?ntn) = Aπ(ti), if π(f?1 ...?n) = i, and

• Aπ(f ?1t1
?2 . . . ?ntn) = f?1 ...?n (Aπ(ti1), . . . ,Aπ(tik)), if π(f?1 ...?n) =

[i1, . . . , ik].

We extend π-proper to rules, substitutions, and sets of rules where we require that all
occurring terms are π-proper. We also extend Aπ to π-proper rules, substitutions, and
sets of rules where we apply Aπ component-wise.

To define a version of needed rules w.r.t. an argument filter for applicative DP problems
we essentially first apply the A-transformation and then look at the needed rules w.r.t. an
argument filter as in Definition 4.31. However, we also have to take into account that
a term f ?1t1

?2 . . . ?ntn with a-ar(f) = n can have a redex f ?1t1
?2 . . . ?iti for every i ≤ n.

(Note that this problem was already addressed in the definition of I ′.) All this is captured
formally in the upcoming definition.

6.3. Argument Filters for Applicative DP Problems 99

Definition 6.21 (Applicative Needed Rules w.r.t. an Argument Filter). Let Q and S be
sets of terms, let P and R be TRSs, let t be a term, where all terms in Q ∪ S ∪R ∪ {t}
are over the applicative signature F ∪ F ′. Let a-ar : F → IN determine the arities of the
applicative signature, let π be an argument filter over the functional signature Ffunc, and
let ECap be an estimated Cap-function. The applicative needed rules of a term t w.r.t. π
are defined as the smallest set N ′S,πR,Q(t) ⊆ R such that

(i) If t = f ?1t1
?2 . . . ?ntn, a-ar(f) = n, ` → r ∈ R, and if there is an i with 0 ≤ i ≤ n

such that ECapSR,Q(f ?1t1
?2 . . . ?i−1ti−1)

?iECapSR,Q(ti) unifies with ` by some mgu µ

where (S ∪ {`1, . . . , `k})µ ⊆ NF (Q) then `→ r ∈ N ′S,πR,Q(t). Here, `1, . . . , `k are the
direct subterms of `.

(ii) If t = f ?1t1
?2 . . . ?ntn and i ∈ RegPosπ(f?1 ...?n) then N ′S,πR,Q(ti) ⊆

N ′S,πR,Q(t).

(iii) If `→ r ∈ N ′S,πR,Q(t) then N ′{`1,...,`k},πR,Q (r) ⊆ N ′S,πR,Q(t). Again, `1, . . . , `k are the direct
subterms of `.

As usual, N ′(P ,Q,R, π) =
⋃
s→t∈P N ′

{s},π
R,Q (t).

Now we can present the main result of this section, an improved version of the processor
(D) in Theorem 6.17. Instead of a proper DP problem here we only require a π-proper
DP problem and we get less needed rules and hence, less constraints which have to be
satisfied.

Theorem 6.22 (Processors Based on Reduction Pairs and Needed Rules w.r.t. an Ar-
gument Filter for Applicative DP Problems). Let (%,�) be a reduction pair where % is
Cε-compatible. Let a-ar determine the arities and let π be an argument filter over the func-
tional signature. Let ECap be an estimated Cap-function that parameterizes the needed
rules N ′ in Definition 6.21. Then the following processor Proc is sound and complete.
For a DP problem (P ,Q,R, f), Proc returns

• {(P \ {s→ t ∈ P | Aπ(s) � Aπ(t)},Q,R, f)},
if f = m, N = N ′(P ,Q,R, π), P ∪N is π-proper, and Aπ(P ∪N) ⊆ %.

• {(P ,Q,R, f)}, otherwise

To prove Theorem 6.22 we essentially have to integrate the argument filter π into I ′
which results in the following definition.

Definition 6.23 (I ′π). Let a-ar determines the arities, let u1 → v1, u2 → v2, . . . be an
infinite minimal (P ,Q,R)-chain, let π be an argument filter over the functional signature,
and let N = N ′(P ,Q,R, π) be set of needed rules of the given DP problem. Let ECap
be the estimated Cap-function that is used to define the needed rules and let P ∪ N
be π-proper. W.l.o.g. we assume that σ is the substitution used for instantiating every
ui → vi. Moreover, whenever in the reduction of viσ a rule `j → rj ∈ R is applied,
then by renaming the variables in the rule we again assume that the rule is instantiated
by σ in that rewrite step. Let Sall contain all ui and all direct subterms of each `j. Let
c be the new constant and let ⊥ be the new variable which are introduced by Comp. We
define the mapping I ′π from terms that terminate w.r.t. Q→R to filtered functional terms
of Tfunc = T (Ffunc] {c},V] {⊥}) as follows.

100 Chapter 6. Processors for Applicative Rewriting

• I ′π(x) = x for every variable x

• I ′π(f ?1t1
?2 . . . ?ntn) = f?1 ...?n (I ′π(t1), . . . , I ′π(tn)), if a-ar(f) = n, and if there is no

rule ` → r ∈ R \ N and no 0 ≤ i ≤ n such that CapSallσR,Q (f ?1t1
?2 . . . ?i−1ti−1)

?i

CapSallσR,Q (ti) unifies with ` by some mgu µ where (Sallσ ∪ {`1, . . . , `k})µ ⊆ NF (Q).
Here, `1, . . . , `k are the direct subterms of `.

• I ′π(f ?1t1
?2 . . . ?ntn) = c(f?1 ...?n (I ′π(t1), . . . , I ′π(tn)),Comp(Red ′π(t))), if a-ar(f) = n

and if the former case is not applicable.

• I ′π(t) = Comp(Red ′π(t)), otherwise.

Here, t is the term where π is applied on t only at the root level, i.e., if π(f?1 ...?n) = i
then f?1 ...?n (s1, . . . , sn) = si, and if π(f?1 ...?n) = [i1, . . . , ik] then f?1 ...?n (s1, . . . , sn) =
f?1 ...?n (si1 , . . . , sik). As usual, Red ′π(t) = {I ′π(s) | t Q→R s} and I ′π is extended to sub-
stitutions.

We obtain similar properties as in Lemma 6.16. Essentially we only have to replace
proper by π-proper, I ′ by I ′π, N by N ′, A by Aπ, and in (v) we have to replace →+ by
→∗. The only new case is in the proof of (v) where we have to consider reductions on
positions that are dropped by the argument filter π.

Lemma 6.24 (Properties of I ′π). Let P ,Q,R,N , u1 → v1, u2,→ v2, . . . ,Sall, σ be as in
Definition 6.23. Let t be terminating w.r.t. Q→R.

(i) If N ′S,πR,Q(t) ⊆ N , S ⊆ Sall, and t is π-proper then I ′π(tσ) = Aπ(t)I ′π(σ).

(ii) If t is π-proper then I ′π(tσ)→∗Cε Aπ(t)I ′π(σ).

(iii) If t Q→R s, and I ′π(t) is built by the third or forth case then I ′π(t)→+
Cε I ′π(s).

(iv) If t Q→R s is a reduction at the root position and I ′π(t) is built by the second case
then I ′π(t)→∗Cε→Aπ(N) I ′π(s).

(v) If t Q→ s then I ′π(t)→∗Aπ(N)∪Cε I ′π(s).

(vi) Aπ(u1 → v1),Aπ(u2 → v2), . . . is a (Aπ(P),∅,Aπ(N) ∪ Cε)-chain.

At the end of this chapter we finally show how to prove termination of the TRS of
Example 6.19.

Example 6.25. Using previous techniques we can transform the initial DP problem of
Example 6.19 into the DP problem ({(149)− (152)},∅,R,m) with the following pairs.30

sieve] (cons ′x ′xs)→ sieve] (filter ′(divides ′x) ′xs) (149)

sieve] (cons ′x ′xs)→ filter ′(divides ′x)] xs (150)

filter ′α] (cons ′x ′xs)→ α] x (151)

filter ′α] (cons ′x ′xs)→ filter ′α] xs (152)

30It is also possible to switch to the innermost case with Q = lhs(R) but this does not help in the
termination proof.

6.3. Argument Filters for Applicative DP Problems 101

Note that we still cannot apply Theorem 6.22 as (151) is never π-proper regardless of π.
To this end we first apply the argument filter processor of Theorem 4.38 which replaces
each]-term by its second argument. In this way one obtains the new DP problem ({(153)−
(156)},∅,R,m) with the following pairs.

cons ′x ′xs→ filter ′(divides ′x) ′xs (153)

cons ′x ′xs→ xs (154)

cons ′x ′xs→ x (155)

cons ′x ′xs→ xs (156)

Here, the improper pair (151) is transformed into the proper pair (155). Note, that even
for this reduced DP problem all rules are needed. Thus, the needed rules are not proper
as rule (143) contains the application of α on x. Hence, the processors of Theorem 6.17
are still not applicable.

In contrast we can now apply Theorem 6.22 using the applicative arities a-ar(if) =
3, a-ar(filter) = a-ar(cons) = 2, a-ar(divides) = 1, and a-ar(nil) = 0 together with
the argument filter π which only removes the first argument of if ′′′ . Then only rules
(142)− (145) are needed w.r.t. π. Note that there is no conflict with the applicative arity
of divides since the rules (135) − (137) are not needed w.r.t. π. We obtain the following
constraints by applying Aπ.

cons′′(x, xs)
(
%

)
filter′′(divides′(x), xs)

cons′′(x, xs)
(
%

)
xs

cons′′(x, xs)
(
%

)
x

cons′′(x, xs)
(
%

)
xs

filter′′(α, nil) % nil

filter′′(α, cons′′(x, xs)) % if ′′′(x, filter′′(α, xs))

if ′′′(x, xs) % cons′′(x, xs)

if ′′′(x, xs) % xs

These constraints are satisfied by the following polynomial order:

Pol(nil) = 0

Pol(divides′(x)) = 0

Pol(cons′′(x, y)) = 1 + x+ y

Pol(filter′′(x, y)) = y

Pol(if ′′′(x, y)) = 1 + x+ y

For this order, the first four constraints are strictly decreasing and can be removed by
Theorem 6.22. As no pairs remain we have proven termination of R.

Note that it is also possible to combine the argument filter processor of Theorem 4.38
with Theorem 6.22 to overcome the incompleteness of the argument filter processor.
Given a DP problem (P ,Q,R,m) one first applies the argument filter processor with
some filter π. On the resulting DP problem (π(P),Q,R,m) one applies the processor of
Theorem 6.22 to obtain the DP problem (P ′,Q,R,m) with P ′ ⊆ π(P). Then one can
return the DP problem ({s → t ∈ P | π(s → t) ∈ P ′},Q,R,m) as the result of the
combined approach. Since this resulting DP problem is a subproblem of (P ,Q,R,m),
the combined approach is complete due to Lemma 2.17.

102 Chapter 6. Processors for Applicative Rewriting

Summary of Chapter 6

In this chapter we have investigated various ways to handle applicative TRSs and DP
problems. While the estimations of the dependency graph and the usable rules work
quite well with our improved estimations of Chapter 3, there still were problems when
applying the processors based on well-founded orders of Chapter 4. To this end, we use
the A-transformation to transform applicative DP problems to functional form, if they
are proper.

Since in the termination case there is the problem of losing minimality, we combined
the reduction pair processors based on needed rules with the A-transformation in such a
way that minimality is preserved. Finally, we also integrated argument filters where there
are even less needed rules, and where the rules only have to be π-proper, i.e., only those
parts must be proper which are not dropped by π. Since these processors always simplify
a DP problem, one should apply them as long as possible.

Our work extends the result of [KKSV96] that one can apply the A-transformation for
full rewriting if the whole TRS is proper. An extension to the DP framework and to
the innermost case has already been published by us in [GTS05b]. However, in contrast
to [GTS05b] here we consider Q-restricted rewriting, we give all the details about the
combination of theA-transformation with the reduction pair processors, and we integrated
argument filters.

Sometimes, the resulting DP problems are not even π-proper, or at least not π-proper
for a suitable choice of π. In that case one might try the alternative transformation of
[HM06b]. There, every applicative TRS can be translated into a TRS in functional form
whenever all left-hand sides of the applicative TRS do not contain “variable applications”.
This criterion is strictly more liberal than proper but it is incomparable with π-proper.
The main idea in [HM06b] is to uncurry the terms as far as possible and add a finite set
of uncurrying rules to the resulting TRS. For example, the applicative TRS

id ′x→ x

plus ′0→ id

plus ′(s ′x) ′y → s ′(plus ′x ′y)

is not proper and also not π-proper since there are different arities for plus. But the
transformation of [HM06b] is applicable and it produces the following TRS.

id1(x)→ x

plus1(0)→ id0

plus2(s1(x), y)→ s1(plus2(x, y))

plus1(x) ′y → plus2(x, y)

plus0
′x→ plus1(x)

id0
′x→ id1(x)

s0
′x→ s1(x)

Comparing [HM06b] with our results there are some differences. The clear benefit of
[HM06b] is that there are no arity-requirements and no requirements on the right-hand
sides. On the other hand, if our transformation is applicable then we produce a smaller
resulting system than [HM06b]. However, the main benefit of our results is the complete

6.3. Argument Filters for Applicative DP Problems 103

integration in the DP framework including the handling of Q-restricted rewriting. (There-
fore, we usually only have to transform a small subset of the original system.) Hence, it
remains as an interesting question how to integrate [HM06b] to the DP framework.

Looking at other related work we see that most approaches for higher-order functions
in term rewriting use higher-order TRSs. While there exist powerful termination criteria
for higher-order TRSs (e.g., [Bla04, Pol96]), the main automated termination techniques
for such TRSs are simplification orders (e.g., [JR07]) which fail on functions like div in
Example 6.1.

Exceptions are the monotonic higher-order semantic path order [BR01] and the existing
variants of dependency pairs for higher-order TRSs. However, these variants require
considerable restrictions (e.g., on the TRSs [SK05] or on the orders that may be used
[AY05, Kus01, SWS01]). So in contrast to our results, they are less powerful than the
original dependency pair technique when applied to first-order functions.

Termination techniques for higher-order TRSs often handle a richer language than
our results. But these approaches are usually difficult to automate (there are only few
implementations of these techniques available). In contrast, it is very easy to integrate our
results into existing termination provers for ordinary first-order TRSs using dependency
pairs (and first-order reduction orders).

Other approaches [AY03, AY04, LB98, Toy04] represent higher-order functions by first-
order TRSs, similar to us. However, they mostly use monomorphic types (this restriction
is also imposed in some approaches for higher-order TRSs [BR01]). In other words, there
the types are only built from basic types and type constructors like → or ×, but there
are no type variables, i.e., no polymorphic types. Then terms like “map ′minus ′xs” and
“map ′(minus ′x) ′xs” cannot both be well typed, but one needs different map-symbols for
arguments of different types. In contrast, our approach uses untyped term rewriting.
Hence, it can be applied for termination analysis of polymorphic or untyped functional
languages. Moreover, [LB98] and [Toy04] only consider extensions of the lexicographic
path order, whereas we can also handle non-simply terminating TRSs like Example 6.1.

7. Processors Based on Semantic
Labeling

Semantic labeling is a technique developed by Zantema [Zan95] to simplify termination
proving. The main advantage is that by labeling one can rename different occurrences
of the same function symbol f apart into fl1 , . . . , fln by attaching different labels l1 to
ln. Then for example one can filter each fli differently when solving constraints. How-
ever, to label a TRS one first has to find semantics for the TRS. For every symbol one
needs an interpretation such that all rules are a model (or a quasi-model) for the given
interpretation.

Of course, we want to lift semantic labeling from full rewriting to Q-restricted rewriting
and from TRSs to DP problems. Concerning the strategy there already has been work by
us about semantic labeling for innermost rewriting in [TM07]. However, that work does
not allow quasi-models and there are no completeness criteria given. In contrast we will
show novel methods for Q-restricted rewriting which are always complete for models, and
even quasi-models are allowed and under certain conditions also complete.

For the switch from TRSs to DP problems the main problem is the minimality flag.
Here, again we will show ways to preserve minimality in the model case, and we will give
some sufficient conditions in the quasi-model case. An important new result is that for
full rewriting minimality can always be carried over.

The chapter is organized as follows. In Section 7.1 we recapitulate the ingredients of
semantic labeling in more detail, and we investigate how to extend semantic labeling for
DP problems in the model case. The same extension is then performed in Section 7.2
for the quasi-model case. Finally, in Section 7.3 we show a way where semantic labeling
always is complete and always preserves minimality, even for quasi-models and arbitrary
strategies. The idea is to label a DP problem, simplify it, and then remove the labels
afterwards.

7.1. Semantic Labeling with Models

Definition 7.1 (Models and Labelings). Let F be a signature. An F -algebraM consists
of a set M , called the carrier, together with a set of interpretations fM : Mn → M , one
for each f ∈ F .

Given the set of variables V each variable assignment β : V → M induces the term
evaluation [β] : T (F ,V)→M as follows.

• [β](x) = β(x)

• [β](f(t1, . . . , tn)) = fM([β](t1), . . . , [β](tn))

An F-algebra M is a model of a set of rules R iff for every rule `→ r ∈ R and every
variable assignment β the equation [β](`) = [β](r) is satisfied.

106 Chapter 7. Processors Based on Semantic Labeling

For each f ∈ F with arity n let Lf be a non-empty set of labels, and let λf : Mn → Lf
be a labeling map. Then the labeled signature is F = {fl | f ∈ F , l ∈ Lf}, and the
labeling function Lab : T (F ,V)× (V →M)→ T (F ,V) is defined as follows.

• Lab(x, β) = x

• Lab(f(t1, . . . , tn), β) = fλf ([β](t1),...,[β](tn))(Lab(t1, β), . . . ,Lab(tn, β))

Labeling is extended to rewrite rules, sets of terms, and pair-graphs as follows. For a
TRS R over the signature F the labeled TRS is defined as R = {Lab(`, β)→ Lab(r, β) |
` → r ∈ R, β : V → M}, for a set of terms Q we define the labeled version as Q =
{Lab(q, β) | q ∈ Q, β : V → M}, and for a pair-graph P = (N,E) we define the labeled
version P = (N,E) where (Lab(s, β) → Lab(t, β),Lab(u, β′) → Lab(v, β′)) ∈ E iff (s →
t, u→ v) ∈ E.

Removing the labels is done by the function Unlab : T (F ,V)→ T (F ,V):

• Unlab(x) = x

• Unlab(fl(t1, . . . , tn)) = f(Unlab(t1), . . . ,Unlab(tn))

From now on we often assume that some F -algebra and corresponding label functions
are given. There is the following main result about semantic labeling due to Zantema.

Lemma 7.2 (Labeling and Rewriting [Zan95, Lemma 3]). Let M be a model of R and
let β : V →M be a variable assignment. Then

t→R t′ implies Lab(t, β)→R Lab(t′, β)

and
t→R t′ implies Unlab(t)→R Unlab(t′)

By Lemma 7.2 one directly obtains the result that R and R have the same termination
behavior. The advantage of proving termination of the labeled TRS is that different
occurrences of the same unlabeled symbol f may now be different labeled symbols fl1
and fl2 . This has many benefits, e.g., when having to solve term-constraints it is possible
to use different interpretations or precedences for fl1 and fl2 , or in the estimation of the
dependency graph one may obtain less edges. The latter benefit is illustrated in more
detail in Example 7.6.

The question now is how the result of Lemma 7.2 can be extended to the DP framework.
Here, we have to solve three problems. The first one is how to deal with the additional
pairs in P . In [Ohl01] it is required that additionally to the rules of R also the pairs of P
have to satisfy the model condition.31 We show that it is already sufficient if one finds a
model for the rules of R and does not impose any condition on P . However, this is only
a minor improvement as for standard DP problems, where all pairs are rooted with head
symbols, one can just map every head symbol to the same element of the carrier. Then

31To be more precise in the [Ohl01, Corollary 1.5] semantic labeling is performed after argument filtering
and it is directly combined with the basic reduction pair processor of Theorem 4.2, i.e., for a given
argument filter π one has to find a model or quasi-model of the rewrite system π(P∪R) and then solve
the labeled constraints. However, since each interpretation of the filtered system can be extended to
one over the original system such that one obtains a model or quasi-model of the original system, we
can easily simulate the approach of [Ohl01] by first applying semantic labeling on the original system
and then use a reduction pair processor afterwards.

7.1. Semantic Labeling with Models 107

the model condition for the pairs of P is trivially satisfied. And since the labeled pairs and
rules do not depend on the interpretations of the head symbols, fixing the interpretations
for the head symbol does not restrict the set of resulting labeled systems one can get by
semantic labeling.

The second problem is whether the minimality flag can be preserved. We will show as a
new result that in general this is not the case, but will present different novel restrictions
under which minimality is not lost.

The third problem we have to face is to handle the evaluation strategy given in Q.
Here, we generalize a result of [TM07] which shows how to perform semantic labeling for
innermost rewriting. As we will see later in Section 7.2 even in the innermost case our
generalization is more often applicable than using the results of [TM07].

We start with handling the third problem, i.e., we first show in Lemma 7.4 that indeed
we can simulate every Q-restricted rewrite step of the original system in the labeled
system. Therefore, we first need a correspondence of normal forms which is formulated
in the following lemma.

Lemma 7.3 (Labeling and Normal Forms). Let Q be a set of terms and β be a variable
assignment. Then t ∈ NF (Q) iff Lab(t, β) ∈ NF (Q).

Note that we only get a result about normal forms of unlabeled terms and their (cor-
rectly) labeled versions, but there is no statement about arbitrary terms over the la-
beled signature and their unlabeled versions, i.e., in general t ∈ NF (Q) does not imply
Unlab(t) ∈ NF (Q). Therefore, we can only generalize the first result of Lemma 7.2 to
Q-restricted rewriting.

Lemma 7.4 (Labeling and Q-Restricted Rewriting). Let M be a model of R and let
β : V →M be a variable assignment. Then

t Q→R t′ implies Lab(t, β) Q→R Lab(t′, β)

The proof is a straightforward extension of Zantema’s proof of Lemma 7.2 by integrating
Lemma 7.3. However, the other direction that every reduction with the labeled system can
be simulated by the unlabeled system is not true due to the reduction strategy given by
Q. This is later shown in Example 7.7 and Example 7.11. Nevertheless, using Lemma 7.4
one can prove the following theorem about a first processor based on semantic labeling.

Theorem 7.5 (Processors Based on Semantic Labeling). Let M be an F-algebra, let Lf
be a set of labels for every f ∈ F , and let λf be the corresponding labeling map. The
following processor Proc is sound. For a DP problem (P ,Q,R, f), Proc returns

• {(P ,Q,R, a)}, if M is a model of R.

• {(P ,Q,R, f)}, otherwise

The power of the semantic labeling processor is demonstrated in the following example.

Example 7.6. Let Q = ∅ and let the TRS R consist of the following rules.

f(true, x)→ f(odd(double(x)), x)

double(0)→ 0

double(s(x))→ s(s(double(x)))

odd(0)→ false

odd(s(0))→ true

odd(s(s(x)))→ odd(x)

108 Chapter 7. Processors Based on Semantic Labeling

Using the previous techniques we can remove all pairs in DP(R) except for

F(true, x)→ F(odd(double(x)), x) (157)

One cannot prove finiteness of the DP problem ({(157)},Q,R,m) with the previous
techniques using standard orders. However, it is quite clear that the DP problem is finite
as 2x is always an even number. This semantic knowledge can now be integrated into
the DP problem when using the semantic labeling processor. To integrate the knowledge
we use a modulo-2-counter. To be more precise, we use the algebra M with carrier
M = {0, 1} and sM(x) = (1 + x) mod 2, oddM(x) = x, trueM = 1, and fM(. . .) = 0 for
all remaining function symbols f . Then indeed, M is a model of R.

For the labeling we choose LF = M and Lf = { } for all remaining symbols f . Note
that if Lf only contains one element then the labeling function λf must always return

and hence, one always gets the same labeled function symbol f for f . So, we can
identify f and f . In this sense whenever we speak of an unlabeled symbol f we mean that
Lf = { } and we write f instead of f .

Hence, for the labeling we only have to specify the labeling function for F and we define
it as λF(m1,m2) = m1. Then we obtain R = R, Q = Q = ∅, and P consists of the pair

F1(true, x)→ F0(odd(double(x)), x) (158)

Since the two occurrences of the symbol F are now labeled apart into F0 and F1, it is easy
to prove finiteness of the resulting DP problem ({(158)},Q,R, a) as there are no edges
in the estimation of the dependency graph any more.

Note that techniques to find suitable models automatically have been developed in
[KM07, KZ06, Zan05b].

Although the semantic labeling processor of Theorem 7.5 turns out to be quite useful,
it also has two severe drawbacks. First, it does not preserve minimality and second, it is
incomplete. The following example shows that this cannot be avoided in general.

Example 7.7. Let R consist of the following rules and let Q = lhs(R).

f(a, i(x))→ g(x, x)

g(h(x), y)→ f(x, k(j(h(a), y)))

k(j(x, y))→ i(y)

j(x, x)→ b

e(x)→ f(a, i(h(x)))

One can prove that R is innermost terminating which is equivalent to Q-termination.
The intuitive reason is that for an infinite reduction the x in the first rule must be
instantiated by h(a). But then we obtain in the right hand-side of the second rule the
term f(a, k(j(h(a), h(a)))). In this term we must reduce the subterm j(h(a), h(a)) to b and
hence, in the resulting term we cannot reduce f(a, k(b)) to an instance of the left-hand
side of the first rule to obtain an infinite sequence.

A formal proof can also be done within the DP framework using our previous processors.
There is only one SCC in the estimated dependency graph of the initial DP problem and
this SCC contains the following two dependency pairs.

F(a, i(x))→ G(x, x) (159)

G(h(x), y)→ F(x, k(j(h(a), y))) (160)

7.1. Semantic Labeling with Models 109

Then using the instantiation processor of Theorem 5.3 we see that the arguments of the
left-hand side of (160) are identical and replace (160) by

G(h(x), h(x))→ F(x, k(j(h(a), h(x)))) (161)

Moreover, using the forward instantiation processor of Theorem 5.5 we detect that the x
in (161) has to be instantiated by a and hence, we replace (161) by

G(h(a), h(a))→ F(a, k(j(h(a), h(a)))) (162)

We can now perform the reduction of j(. . .) by the rewriting processor of Theorem 5.10
and replace (162) by32

G(h(a), h(a))→ F(a, k(b)) (163)

Finally, for the DP problem ({(159), (163)},Q,R, f) the estimated dependency graph
does not contain SCCs any more and Q-termination is proved.

However, we can transform the original finite DP problem into an infinite one if
we apply semantic labeling. We use the F -algebra M with carrier M = {0, 1} and
fM(m1, . . . ,mn) = 0 for all f ∈ F . Then clearly M is a model of R. For the labeling we
choose Lh = M , λh(m) = m, and the remaining function symbols are unlabeled. Hence,
the labeled TRS R consists of the following rules and Q = lhs(R).

f(a, i(x))→ g(x, x)

g(h0(x), y)→ f(x, k(j(h0(a), y)))

g(h1(x), y)→ f(x, k(j(h0(a), y)))

k(j(x, y))→ i(y)

j(x, x)→ b

e(x)→ f(a, i(h0(x)))

e(x)→ f(a, i(h1(x)))

We now show thatR is not Q-terminating any more. The reason is that the equivalence
in Lemma 7.3 is too weak to simulate every reduction in the labeled system by a corre-
sponding reduction is the original system. The problem is that not every term of T (F ,V)
is correctly labeled, i.e., is a member of T (F ,V). For the ill-labeled term t = f(a, i(h1(a)))
we obtain the cyclic reduction

t Q→R g(h1(a), h1(a))
Q→R f(a, k(j(h0(a), h1(a))))
Q→R f(a, i(h1(a))) = t

This reduction is only possible as we now have two labeled variants of h(a). The correct
variant h0(a) is in the right-hand sides of the g-rules and the ill-labeled variant h1(a) is
hidden in the substitution. As these terms are not equal, the blocking effect of the term
j(x, x) ∈ Q is useless.

To conclude, if we apply the semantic labeling processor on the non-infinite DP problem
(∅,Q,R, f) we obtain the infinite DP problem (∅,Q,R, a) which shows that the semantic
labeling processor is incomplete in general.

32Note that the requirements for the rewriting processor are indeed satisfied as the only usable rule is
j(x, x)→ b.

110 Chapter 7. Processors Based on Semantic Labeling

Note, that the problem is even worse. Even if we start from correctly labeled terms,
the labeled TRS R allows to produce ill-labeled terms. As an example consider the
term e(a) which is correctly labeled. However, e(a) can be reduced to the ill-labeled and
non-terminating term t by the last rule of R. Using this effect it is now easy to give a
DP problem which proves that minimality cannot be preserved by the semantic labeling
processor. If we choose P = {D(x) → D(e(a))} then clearly there is an infinite minimal
(P ,Q,R)-chain as R is Q-terminating. But as argued above the right-hand side D(e(a))
of the only pair in P is not Q-terminating w.r.t. R.

We will now present two alternatives to strengthen the semantic labeling processor
of Theorem 7.5. One problem that occurred in Example 7.7 was the ability of the la-
beled system to transform correctly labeled terms to ill-labeled ones. This forced us in
Theorem 7.5 to drop minimality. Reconsider the last two rules of the labeled system R in
Example 7.7. For each of the possible variable assignments of x there is a corresponding
rule resulting in the two different right-hand sides f(a, i(h0(x))) and f(a, i(h1(x))). How-
ever, in the corresponding left-hand sides eλe(0)(x) = e (x) and eλe(1)(x) = e (x) we cannot
detect the different assignments for x any more. The labeling map λe ignores its argument
and always produces the same label . But if we would have labeled e in the same way
as h then there would not be a problem any more. The corresponding rules

e0(x)→ f(a, i(h0(x)))

e1(x)→ f(a, i(h1(x)))

can reduce the correctly labeled term Lab(e(a), β) = e0(a) only to the correctly labeled
term f(a, i(h0(a))) which is Q-terminating w.r.t. R.

The idea that the labeling should somehow contain the full information of the evaluation
of their arguments is extended to the following definition. Then in Lemma 7.9 it is shown
that for these labelings one cannot reduce correctly labeled terms to ill-labeled terms.
This will allow us to keep minimality in the semantic labeling processor.

Definition 7.8 (Full Labeling). LetM be an F-algebra with carrier M . Then for full la-
beling the labels are fixed to Lf = Mn and the labeling maps are fixed to λf (m1, . . . ,mn) =
(m1, . . . ,mn) for every f with arity n.

Choosing the full labeling has some benefits. It always produces the most distinct
labeled systems, i.e., if for any labeling the rules Lab(`, β)→ Lab(r, β) and Lab(`, β′)→
Lab(r, β′) are different then they are also different when using the full labeling. Even
more, with full labeling one does not produce rules twice, i.e., for two different variable
assignments β and β′ which differ on the variables of a rule ` → r the rules Lab(`, β) →
Lab(r, β) and Lab(`, β′)→ Lab(r, β′) are different. Hence, with full labeling one gets the
most distinct labeled system.

One disadvantage of full labeling is that the labeled systems are rather large which may
become a problem for the automation. However, if one does not use full labeling then one
also has a problem to mechanize semantic labeling: In addition to the problem of finding
suitable interpretations, one has to come up with suitable labeling functions.

But the most important benefit of full labeling is the fact, that one cannot produce
ill-labeled terms if the starting term is correctly labeled. This is shown in the upcom-
ing Lemma 7.9 (ii) and it will allow us to preserve termination of a term by labeling.
Therefore, we are able to carry over minimality in Theorem 7.10, an improved version of
Theorem 7.5.

7.1. Semantic Labeling with Models 111

Lemma 7.9 (Properties of Full Labeling). Let M be an F-algebra. If terms are labeled
by full labeling then the following statements are valid.

(i) Let x be a variable and β and β′ be two variable assignments that differ on x, i.e.,
β(x) 6= β′(x). For every non-variable term t with x ∈ V(t) and for every two
substitution σ and σ′ the terms Lab(t, β)σ and Lab(t, β′)σ′ are different.

(ii) If Lab(t, β)→R s then s = Lab(t′, β) for some t′ with t→R t′.

Theorem 7.10 (Processors Based on Full Labeling). Let M be an F-algebra, and let
terms be labeled by full labeling. The following processor Proc is sound. For a DP problem
(P ,Q,R, f), Proc returns

• {(P ,Q,R, f)}, if M is a model of R.

• {(P ,Q,R, f)}, otherwise

It remains an open problem whether the processor of Theorem 7.10 is complete. To
prove such a result one would need to transform infinite reductions in the labeled DP
problem to infinite reductions in the original DP problem. Here, the problem is that
one can start reductions of R with arbitrary (ill-labeled) terms and as demonstrated in
Example 7.7 these may have infinite reductions although the unlabeled terms are termi-
nating. However, all the counter-examples like Example 7.7 and the upcoming example
Example 7.11 do not work any more if one uses full labeling.

Hence, up to now it is unclear whether full labeling is complete. Therefore, we still
are looking for conditions under which semantic labeling is complete. If we reconsider
Example 7.7 there was a problem with the non-linear term j(x, x) ∈ Q. In the original
TRS we encountered the subterm k(j(h(a), h(a))) which cannot be reduced by the rule
k(j(x, y)) → i(y) as the subterm j(h(a), h(a)) is not in Q-normal form. However, in the
labeled system we had two different arguments of j. The term k(j(h0(a), h1(a))) can be
reduced to i(h1(a)) as the ill-labeled subterm h1(a) is different from h0(a) and hence, the
term j(x, x) ∈ Q does not prohibit the reduction.

Therefore, a natural question is whether the semantic labeling processor is complete if
Q is linear. Unfortunately, the following example shows that linearity is neither sufficient
for completeness nor does it allow to preserve the minimality flag.

Example 7.11. Let R consist of the following rules and let Q = lhs(R).

f(a, x)→ f(g(x), x)

g(h(x))→ i(x)

i(a)→ a

h(a)→ a

e(x)→ f(a, h(x))

One can prove thatR isQ-terminating in a similar way as in Example 7.7. The intuitive
reason is that the x in the first rule must be instantiated by h(a) which is not allowed as
this term is contained in Q.

A formal proof within the DP framework is also possible. After applying the processors
based on the dependency graph one remains with only one dependency pair

F(a, x)→ F(g(x), x)

112 Chapter 7. Processors Based on Semantic Labeling

This pair can be replaced by the narrowing processor of Theorem 5.19 by

F(a, h(x))→ F(i(x), h(x))

At this point the estimated dependency graph detects that there are no SCCs for the
remaining DP problem and Q-termination is proved.

But again, if we use the same F -algebra, labeled signature, and labeling map as in
Example 7.7 we obtain the following labeled rules R and Q = lhs(R).

f(a, x)→ f(g(x), x)

g(h0(x))→ i(x)

g(h1(x))→ i(x)

i(a)→ a

h0(a)→ a

e(x)→ f(a, h0(x))

e(x)→ f(a, h1(x))

Hence, we can start an infinite reduction starting in the correctly labeled term e(a) as
follows.

e(a)
Q→R f(a, h1(a))
Q→R f(g(h1(a)), h1(a))
Q→R f(i(a), h1(a))
Q→R f(a, h1(a))
Q→R . . .

Thus, as in Example 7.7 neither is semantic labeling complete nor does it preserve mini-
mality, even if Q is linear.

The problem in Example 7.11 is that Q only contains the correctly labeled term h0(a)
but not the incorrect version h1(a). To solve this problem we benefit from the flexibility
that Q is just a set of terms which is unrelated to R. This allows us to put more terms
into the labeled version of Q than the correctly labeled ones, but we do not have to add
corresponding ill-labeled rules. This idea leads to the following definition.

Definition 7.12 (Q). Let Q ⊆ T (F ,V) and let F be the labeled signature. Then we
define Q as

Q = {q ∈ T (F ,V) | Unlab(q) ∈ Q}

The benefit of Q is that one obtains a result similar to Lemma 7.2 provided that Q
is linear. Before we present the corresponding Lemma 7.14 we need the following result
that connects normal forms of Q with normal forms of Q.

Lemma 7.13 (Labeling and Normal Forms). Let β be an arbitrary variable assignment.
Then t ∈ NF (Q) implies Lab(t, β) ∈ NF (Q) and if Q is linear then t ∈ NF (Q) implies
Unlab(t) ∈ NF (Q).

Lemma 7.14 (Labeling and Q-Restricted Rewriting). Let R be a TRS over the signature
F and let Q ⊆ T (F ,V). If M is a model of R then for every variable assignment
β : V →M

t Q→R t′ implies Lab(t, β)
Q→R Lab(t′, β)

7.2. Semantic Labeling with Quasi-Models 113

and if Q is linear then

t
Q→R t′ implies Unlab(t) Q→R Unlab(t′)

As for Lemma 7.4, the proof of Lemma 7.14 is an easy extension of the proof of
Lemma 7.2 by using Lemma 7.13.

Now we can again present an improved version of the semantic labeling processor of
Theorem 7.5 which is complete and preserves minimality if Q is linear.

Theorem 7.15 (Processors Based on Semantic Labeling). Let M be an F-algebra, let
Lf be a set of labels for every f ∈ F , and let λf be the corresponding labeling map. The
following processor Proc is sound. For a DP problem (P ,Q,R, f), Proc returns

• {(P ,Q,R, f)}, if M is a model of R and if Q is linear. In this case Proc is
complete.

• {(P ,Q,R, a)}, if M is a model of R and if Q is not linear.

• {(P ,Q,R, f)}, otherwise

An obvious question is whether replacing Q by Q is already sufficient to obtain com-
pleteness and to preserve minimality, i.e., whether the additional requirement of linearity
of Q is really required. As Example 7.11 only demonstrates that linearity on its own is
not sufficient, this question is not answered yet. But a look at Example 7.7 will reveal
the answer. It turns out that the given infinite reduction of the correctly labeled term
e(a) is still possible if one replaces Q by Q.

Comparing the semantic labeling processors of Theorems 7.10 and 7.15 we see that
each variant has its own benefits. In Theorem 7.10 there is no restriction to linear sets
Q and hence, minimality can always be carried over. However, in Theorem 7.15 we have
the flexibility to choose arbitrary labels and labeling maps and we are not forced to
produce the rather large labeled DP problem that we obtain from full labeling, but this
flexibility may also be a problem for the automation. Note that there is no difference
in the completeness results of the two theorems. The reason is that of course one can
reformulate Theorem 7.10 and replace Q by Q. Then one also obtains completeness in
case of a linear Q for the semantic labeling processor of Theorem 7.10. Thus, for the
automation we suggest to use the processor of Theorem 7.10. However, the additional
flexibility in Theorem 7.15 may be helpful when extending semantic labeling to predictive
labeling [HM06a, TM07], a related method that is discussed in more detail in the summary.

7.2. Semantic Labeling with Quasi-Models

Sometimes the requirement that M is a model of R is hard to satisfy. Therefore, in
[Zan95] there is another version of semantic labeling based on quasi-models. Given a
partial order ≥ on M , instead of requiring the model-condition [β](`) = [β](r) for all rules
`→ r and all variable assignments β one just demands [β](`) ≥ [β](r). However, the cost
of this relaxation is that the interpretation and the labeling functions must be weakly
monotonic and one has to add additional rules. The details are captured in the following
definition.

114 Chapter 7. Processors Based on Semantic Labeling

Definition 7.16 (Quasi-Model [Zan95]). Let M be an F-algebra equipped with a par-
tial order ≥ on M such that the interpretations are weakly monotone, i.e., for all f ∈
F and for all a1, . . . , an, b1, . . . , bn ∈ M with ai ≥ bi the inequality fM(a1, . . . , an) ≥
fM(b1, . . . , bn) must be satisfied.

Then M is a quasi-model of a set of rules R iff for every rule ` → r ∈ R and every
variable assignment β the inequality [β](`) ≥ [β](r) is satisfied.

For each f ∈ F let Lf be a non-empty set of labels provided with a well-founded partial
order ≥ on Lf . For each f ∈ F with arity n let λf : Mn → Lf be a labeling map which
is weakly monotonic. Then the set of decreasing rules Decr consists of all rules

fl(x1, . . . , xn)→ fl′(x1, . . . , xn)

for all f ∈ F and all l, l′ ∈ Lf with l > l′. Here, > denotes the strict part of ≥.

From [Zan95] we know that if M is a quasi-model of R then termination of R is
equivalent to termination of R∪Decr. Of course, we again want to generalize this result
to Q-restricted rewriting and lift it from TRSs to DP problems as in Section 7.1. Note
that in [TM07] it was shown that it is impossible to use quasi-models in combination with
innermost rewriting. However, in the following we show how quasi-models can be used
for Q-restricted rewriting, even if Q = lhs(R). This is possible only due to the flexibility
of Q-restricted rewriting where one has a separate set for the strategy. The problem for
innermost rewriting are the decreasing rules. On the one hand they must be added to R
to perform the necessary rewriting steps, but on the other hand they must not be added
to R for the innermost test that all arguments of a redex are in normal form. However,
this is not a problem for Q-restricted rewriting where one can add the decreasing rules to
R without adding them to Q.

The main lemma provided by [Zan95] for quasi-models is the following.

Lemma 7.17 (Labeling and Rewriting [Zan95, Lemma 7]). Let M be a quasi-model of
R and let β : V →M be a variable assignment. Then

t→R t′ implies Lab(t, β)→R→∗Decr Lab(t′, β)

and
t→Decr t′ implies Unlab(t) = Unlab(t′) and
t→R t′ implies Unlab(t)→R Unlab(t′)

Note that not even the first part of Lemma 7.17 carries over to Q-restricted rewriting.
The problem is that Decr-rules must sometimes be applied although the arguments are
not in Q-normal form. Consider the TRS R = {a → b}, Q = lhs(R), and the reduction
f(a, a) Q→R f(a, b). We choose the quasi-model with M = {0, 1}, aM = 1, bM = 0, Lf =
M,λf(m1,m2) = m2 together with the order 1 > 0. Then Decr consists of the rule
f1(x, y)→ f0(x, y) and Lab(f(a, a), β) = f1(a, a)

Q→R f1(a, b), but f1(a, b) cannot be reduced
further to f0(a, b) = Lab(f(a, b), β) using

Q→Decr since a is not in normal form w.r.t. Q.
Therefore, in the first part of the following lemma we only consider reductions resulting

in normal forms.

Lemma 7.18 (Labeling and Q-Restricted Rewriting). Let M be a quasi-model of R and
let β : V →M be a variable assignment. Then

t Q→∗R t′ and t′ ∈ NF (Q) implies Lab(t, β)
Q→∗R∪Decr Lab(t′, β)

7.2. Semantic Labeling with Quasi-Models 115

and if Q is linear then

t
Q→Decr t′ implies Unlab(t) = Unlab(t′) and

t
Q→R t′ implies Unlab(t) Q→R Unlab(t′)

To adapt the semantic labeling processor of Theorem 7.15 to quasi-models is now
straightforward.

Theorem 7.19 (Processors Based on Semantic Labeling with Quasi-Models). Let M,
Lf , λf , and ≥ as in Definition 7.16. The following processor Proc is sound. For a DP
problem (P ,Q,R, f), Proc returns

• {(P ,Q,R ∪ Decr, f)}, if M is a quasi-model of R and if Q is linear. In this case
Proc is even complete.

• {(P ,Q,R∪Decr, a)}, if M is a quasi-model of R and if Q is not linear.

• {(P ,Q,R, f)}, otherwise

Although the semantic labeling processor of Theorem 7.19 is complete and preserves
minimality if Q is linear, it has some disadvantages. The reason is that due to the
decreasing rules Decr all previous head symbols are transformed to non-head symbols in
the labeled DP problem. That this is a disadvantage can be seen in the following example.

Example 7.20. Let R consist of the following rules.

g(x)→ x

g(a)→ c

For P = {F(a) → F(g(b))} and Q = ∅ the (P ,Q,R)-dependency graph is empty.
However, this cannot be detected by the estimations presented in Section 3.1.

We use the algebraM with M = {0, 1, 2} and gM(m) = FM(m) = m, aM = 2, bM = 1,
and cM = 0. Then M is a quasi-model of R if we use the standard order ≥ on M but it
is not a model as

[β](g(a)) = 2 > 0 = [β](c)

We choose LF = M and λF(m) = m, Lg = {0, 1} and λg(m) = min(1,m), and we do not
label the remaining function symbols. Then one obtains the following labeled rules R.

g0(x)→ x

g1(x)→ x

g1(a)→ c

The TRS Decr contains the rules

F2(x)→ F1(x)

F2(x)→ F0(x)

F1(x)→ F0(x)

g1(x)→ g0(x)

For P = {F2(a) → F1(g1(b))} it cannot be detected by the dependency graph estima-
tions that there is no edge in the (P ,Q,R ∪ Decr)-dependency graph. The problem is

116 Chapter 7. Processors Based on Semantic Labeling

that the rules in Decr allow to rewrite a term t = F1(. . .) at the root position and hence,
applying an (estimated) Cap-function will replace t by a fresh variable. And as a fresh
variable unifies with every left-hand side of pairs of P , no edges can be deleted. So even if
the original pair would be G(. . .)→ F(g(b)) where G is a different head-symbol then after
the labeling it would not be detectable that there is no connection in the dependency
graph.

To handle the problem with the Decr-rules for head symbols a possibility is to split
the Decr-rules into two parts. The part DecrH contains the decreasing rules for the
head symbols and Decr¬H consists of the remaining decreasing rules. In the previous
example DecrH consists of the first three rules and Decr¬H is the set with the single rule
g1(x)→ g0(x).

Now the idea is to add DecrH to P and Decr¬H to R. Then for the corresponding DP
problem there are four pairs in P ∪ DecrH but every estimation can detect there are no
SCCs in the dependency graph. The reason is that now F0, F1, and F2 are head-symbols
and are not replaced by fresh variables using an estimated Cap-function.

However, there also is a problem when adding DecrH to P . Note that P is not just a
set of pairs but a graph (N,E). Clearly, one should add DecrH to N but the question
is which edges should be added to E. That this may be a problem for completeness is
shown in the following example.

Example 7.21. Consider the DP problem (P ,Q,R) where R = {d → c}, Q = ∅ and
where we have the following pairs.

F(x, a, c)→ F(x, b, d) (164)

F(x, b, c)→ F(x, a, d) (165)

F(s(x), y, c)→ F(x, y, d) (166)

The structure of P is given in the following graph.

(164) oo // (166)

(165)//oo

Note that there is no edge between (164) and (165) which prevents an infinite (P ,Q,R)-
chain.33

We now use semantic labeling with the algebra M with carrier M = {0, 1} and with
interpretations dM = 1 and fM(. . .) = 0 for all remaining function symbols f . Then
M is a quasi-model of R using the usual order ≥ on M . We choose LF = M and
λF(m1,m2,m3) = m3, and we do not label the remaining function symbols. In this way
we obtain R = R, Decr¬H = Q = ∅, and the following labeled pairs.

F0(x, a, c)→ F1(x, b, d) (167)

F0(x, b, c)→ F1(x, a, d) (168)

F0(s(x), y, c)→ F1(x, y, d) (169)

Moreover, there is one decreasing pair in DecrH = Decr.

F1(x, y, z)→ F0(x, y, z) (170)

33A problem like this may arise from applying the argument filter processor of Theorem 4.38.

7.2. Semantic Labeling with Quasi-Models 117

Let us consider the graph structure of the union of P and DecrH. The connections
between (167), (168), and (169) are just copied from P . To detect the required connections
between (170) and the pairs of P we consider the chains in the original DP problem. As
each edge in P really corresponds to a chain, for correctness we must be able to simulate
each of these chains in the labeled DP problem. For example, the chain (164), (166), (165)
can only be simulated by (167), (170), (169), (170), (168). Hence, we must add incoming
and outgoing edges of (170) to every pair of P . This results in the following graph.

(167) oo // (169)

(168)//oo

(170)
��

OO

##

ccGGGGGGGGG {{

;;wwwwwwwww

The problem is that now there is a connection between (167) and (168) without using
(169). And indeed

(167), (170), (168), (170), (167), . . .

is an infinite (P ∪DecrH,Q,R∪Decr¬H)-chain although the original problem (P ,Q,R)
is finite.

So, in Example 7.20 we have seen that adding all decreasing rules to R – although com-
plete – is not a good idea. The partitioning into DecrH and Decr¬H helps to prevent the
problem of Example 7.20 that the labeled versions of head symbols are no head symbols
any more. But when adding DecrH it can happen that we introduce connections that are
not possible in the unlabeled DP problem resulting in an incomplete processor. This was
demonstrated in Example 7.21.

The final solution will be to use the partitioning into DecrH and Decr¬H, but instead of
building P ∪DecrH we will directly combine the effect of DecrH into the labeled version
of P . The idea is to built labeled pairs where the head symbols of the right-hand side
are directly labeled with all smaller variants. So instead of creating the labeled pair
Lab(β, s) → fl(. . .) and having the decreasing pair fl(. . .) → fl′(. . .) in DecrH, we now
directly built the pair Lab(β, s)→ fl′(. . .). Then we do not have to use DecrH any more.
This new construction is captured more formally in the following definition.

Definition 7.22 (Quasi-Labeled Pair-Graph). Let the F-algebra, the partial order ≥, the
labels, and the labeling maps be as in Definition 7.16. Let (P ,Q,R) be a DP problem with
head symbols H and P = (N,E). We define the quasi-labeled pair-graph as P = (N,E)
where

• N = {Lab(β, s)→ Lab(β, t) | s→ t ∈ N, root(t) /∈ H, β : V →M}∪
{Lab(β, s)→ fl′(Lab(β, t1), . . . ,Lab(β, tn)) | s→ f(t1, . . . , tn) ∈ N,
f ∈ H, β : V →M, l′ ∈ Lf , λf ([β](t1), . . . , [β](tn)) ≥ l′}

• E = {(s, t) ∈ N ×N | (Unlab(s),Unlab(t)) ∈ E}

Now we can formulate an improved version of the semantic labeling processor for quasi-
models in Theorem 7.19.

Theorem 7.23 (Processors Based on Semantic Labeling with Quasi-Models and Head
Symbols). Let M, Lf , λf , and ≥ be as in Definition 7.16. The following processor Proc
is sound. For a DP problem (P ,Q,R, f), Proc returns

118 Chapter 7. Processors Based on Semantic Labeling

• {(P ,Q,R∪Decr¬H, f)}, if M is a quasi-model of R, if Q is linear, and if H is the
set of head symbols of (P ,Q,R). In this case Proc is even complete.

• {(P ,Q,R ∪ Decr¬H, a)}, if M is a quasi-model of R, if Q is not linear, and if H
is the set of head symbols of (P ,Q,R).

• {(P ,Q,R, f)}, otherwise.

We first show that now the problems mentioned in Examples 7.20 and 7.21 are solved
when using Theorem 7.23.

Example 7.24. If we apply the semantic labeling processor of Theorem 7.23 on the DP
problem of Example 7.20 with the same quasi-model and the same labeling then we obtain
the following TRS R∪Decr¬H.

g0(x)→ x

g1(x)→ x

g1(a)→ c

g1(x)→ g0(x)

Note that there are no decreasing rules for the head symbol F any more. Therefore, we
now obtain two pairs in P .

F2(a)→ F1(g1(b))

F2(a)→ F0(g1(b))

For this resulting DP problem termination is trivially proven by the dependency graph
which was not the case if we would have used Theorem 7.19.

Example 7.25. In this example we apply Theorem 7.23 on the problematic DP problem
of Example 7.21, again using the same quasi-model and labeling function. There are no
decreasing rules for the head symbols any more and we obtain the following new pairs.

F0(x, a, c)→ F1(x, b, d) (171)

F0(x, a, c)→ F0(x, b, d) (172)

F0(x, b, c)→ F1(x, a, d) (173)

F0(x, b, c)→ F0(x, a, d) (174)

F0(s(x), y, c)→ F1(x, y, d) (175)

F0(s(x), y, c)→ F0(x, y, d) (176)

The graph of the new DP problem looks as follows.

(171) oo //
cc

##G
GG

GG
GG

GG
(175)

OO

��

(173)//oo
;;

{{www
ww
ww
ww

(172) oo //
{{

;;wwwwwwwww
(176)
TT

(174)//oo
##

ccGGGGGGGGG

Note that as in the input DP problem, in the labeled DP problem the only way to
come from a pair on the left-hand side to one of the right-hand side (or vice versa) is if

7.2. Semantic Labeling with Quasi-Models 119

one also visits a pair in the middle. Thus, after removing the pairs (175) and (176) with
the reduction pair processor, the processors based on the dependency graph finally prove
finiteness. This is in contrast to labeled DP problem in Example 7.21 which is not finite.

The processor of Theorem 7.23 using quasi-models clearly corresponds to the processor
of Theorem 7.15 for models. Both require that Q is linear for completeness and to carry
over minimality. However, in the case of models we also had the processor based on
full labelings of Theorem 7.10 which always carries over minimality regardless of Q. Of
course, it would be nice to have a corresponding processor for quasi-models, too. The
following example shows that this is not possible.

Example 7.26. Let R consist of the following rules and let Q = lhs(R).

f(x)→ g(h(x, x))

g(h(x, y))→ f(x)

h(x, x)→ i(x)

One can prove that R is innermost terminating which is equivalent to Q-termination.
The intuitive reason is that for an infinite reduction the right-hand side of the first rule will
directly reduce to g(i(x)) and no instance of this term can be reduced by the second rule.
As in the previous examples of this chapter we can also do the proof in the DP framework.
One would first apply the rewriting processor of Theorem 5.10 on the dependency pair
F(x) → G(h(x, x)) and replace this by F(x) → G(i(x)) and then the processors based on
the dependency graph finish the termination proof.

We consider the infinite DP problem ({F(x) → F(f(i(a)))},Q,R,m). The reason for
being infinite is that it is possible to build an infinite chain. Due to innermost termination
of R the term f(i(a)) is Q-terminating. And thus, one can instantiate the variable x of
the left-hand side of the pair by some normal form of f(i(a)) to obtain the infinite chain.

Now consider the quasi-modelM with M = {0, 1}, aM = hM(. . .) = 1, and fM(. . .) =
0 for all remaining function symbols f . If we use full labeling then the set P consists of
the pairs

F0(x)→ F0(f0(i1(a)))

F1(x)→ F0(f0(i1(a)))

and R contains the following rules.

f0(x)→ g1(h0,0(x, x))

f1(x)→ g1(h1,1(x, x))

g1(h0,0(x, y))→ f0(x)

g1(h0,1(x, y))→ f0(x)

g1(h1,0(x, y))→ f1(x)

g1(h1,1(x, y))→ f1(x)

h0,0(x, x)→ i0(x)

h1,1(x, x)→ i1(x)

120 Chapter 7. Processors Based on Semantic Labeling

The decreasing rules Decr¬H are

f1(x)→ f0(x)

g1(x)→ g0(x)

h0,1(x)→ h0,0(x)

h1,0(x)→ h0,0(x)

h1,1(x)→ h0,0(x)

h1,1(x)→ h1,0(x)

h1,1(x)→ h0,1(x)

i1(x)→ i0(x)

and the set Q contains the following terms.

f0(x), f1(x),

g0(h0,0(x, y)), g0(h0,1(x, y)), g0(h1,0(x, y)), g0(h1,1(x, y)),

g1(h0,0(x, y)), g1(h0,1(x, y)), g1(h1,0(x, y)), g1(h1,1(x, y)),

h0,0(x, x), h0,1(x, x), h1,0(x, x), h1,1(x, x)

As the term f0(i1(a)) is not Q terminating w.r.t. R ∪ Decr¬H, there obviously is no
minimal (P ,Q,R ∪ Decr¬H)-chain and hence, even with full-labeling and with Q we
cannot keep minimality. The problem is that in the infinite reduction

f0(i1(a))
Q→R g1(h0,0(i1(a), i1(a)))
Q→Decr¬H g1(h0,0(i1(a), i0(a)))
Q→R f0(i1(a))
Q→R . . .

we get an ill-labeled term g1(h0,0(i1(a), i0(a))) using the decreasing rules. Then the non-
linear term h0,0(x, x) does not prohibit the reduction to f0(i1(a)) as it does in the unlabeled
case. Hence, the main advantage of full-labeling – the fact that no ill-labeled terms are
created – is destroyed by the decreasing rules.

7.3. Semantic Labeling and Unlabeling

In the previous two sections we have seen the technique of semantic labeling for models
and quasi-models. The main benefit is that different occurrences of the same function
symbols may become different symbols due to the labeling. And then processors based on
the dependency graph and those based on orders often succeed although they have failed
on the unlabeled DP problem.

However, there is one major drawback with semantic labeling: the labeled DP problems
tend to get large, even when the carrier set size is only 2 or 3. This problem is magnified
if one wants to use several different models in sequence. That this can be useful is
demonstrated in the following example.

Example 7.27. We consider the same idea as in Example 7.6 where we needed to count
modulo 2. In this example we need to count modulo 2 and modulo 3. The rules of R are

7.3. Semantic Labeling and Unlabeling 121

as follows.

f(false, x)→ f(even(six(x)), x)

f(false, x)→ f(divThree(six(x)), x)

six(0)→ 0

six(s(x))→ s(s(s(s(s(s(six(x)))))))

even(s(0))→ false

even(s(s(x)))→ even(x)

divThree(s(0))→ false

divThree(s(s(s(x))))→ divThree(x)

Since R belongs to a class where innermost termination implies termination ([GA01,
Theorem 16]) we choose Q = lhs(R). As in Example 7.6 all pairs but those for the f-rules
can easily be removed. In the problematic DP problem (P ,Q,R′,m) the TRS R′ consists
of all but the f-rules and we have two pairs:

F(false, x)→ F(even(six(x)), x) (177)

F(false, x)→ F(divThree(six(x)), x) (178)

To solve this DP problem, one can first use semantic labeling with a modulo-2-counter
to get rid of (177), and afterwards use a modulo-3-counter for (178). Of course, in this
example one can directly use a modulo-6-counter but then the search space for suitable
interpretations is rather large.

So, we start with the algebra M with carrier M = {0, 1} and the interpretation given
by sM(x) = (x + 1) mod 2, falseM = divThreeM(x) = 1, evenM(x) = x, and fM(. . .) = 0
for all remaining function symbols f .

If we use full labeling we obtain the following new pairs P and rules R′.

F1,0(false, x)→ F0,0(even0(six0(x)), x)

F1,1(false, x)→ F0,1(even0(six1(x)), x)

F1,0(false, x)→ F1,0(divThree0(six0(x)), x)

F1,1(false, x)→ F1,1(divThree0(six1(x)), x)

six0(0)→ 0

six1(s0(x))→ s1(s0(s1(s0(s1(s0(six0(x)))))))

six0(s1(x))→ s1(s0(s1(s0(s1(s0(six1(x)))))))

even1(s0(0))→ false

even0(s1(s0(x)))→ even0(x)

even1(s0(s1(x)))→ even1(x)

divThree1(s0(0))→ false

divThree1(s0(s1(s0(x))))→ divThree0(x)

divThree0(s1(s0(s1(x))))→ divThree1(x)

As in Example 7.6 we can easily remove the first two labeled pairs by the processors
based on the dependency graph, and moreover we can delete all labeled even-rules, since
they are no longer usable. But we still have a problem with the remaining two labeled

122 Chapter 7. Processors Based on Semantic Labeling

pairs. Of course, it is now possible to use a semantic labeling processor with a modulo-
3-counter on the remaining labeled DP problem, but this results a huge search problem
as now one has to find interpretations for twice as many symbols. In essence, then we
could have directly searched for a model with carrier size six for the modulo-6-counter.
To conclude, repeated application of a semantic labeling processor results in huge DP
problems and huge search problems.

An alternative approach is to remove the labels again after we have simplified the labeled
DP problem.34 Here this would result in the DP problem ({(178)},Q,R′′,m) where R′′
is like R′ without the even-rules. Then we do not have the problem that the DP problems
grow larger and larger, but we always result in DP problems that are smaller than the
original DP problem. Additionally, the search-space for new models is not increased, too.

So, in our example we can again apply semantic labeling, but this time we use the
algebra M′ with the carrier M ′ = {0, 1, 2} and the interpretation given by sM′(x) =
(x + 1) mod 3, falseM′ = 1, divThreeM′(x) = x, and fM′(. . .) = 0 for all remaining
function symbols f . For full labeling we obtain the following new pairs.

F1,0(false, x)→ F0,0(divThree0(six0(x)), x)

F1,1(false, x)→ F0,1(divThree0(six1(x)), x)

F1,2(false, x)→ F0,2(divThree0(six2(x)), x)

Now obviously the resulting DP problem can be solved by the processors based on the
dependency graph.

Formulating the alternative approach as one combined processor would consist of three
steps.

(i) Given a DP problem (P ,Q,R, f) find a model M of R and choose some labeling.

(ii) Use processors to simplify the labeled DP problem (P ,Q,R, f)35 and obtain new
DP problems D1, . . . ,Dn.

(iii) Return {Unlab(D1), . . . ,Unlab(Dn)}.

In this combined processor there is one major problem. Note that a processor may
transform DP problems arbitrarily, i.e., it may introduce new function symbols which do
not possess a label. (Examples are given by the needed rules processor of Theorem 4.12
and the A-transformation processor of Theorem 6.8.) Moreover, a processor may attach
additional labels like the semantic labeling processor. So, in general it is completely
unclear how to remove the labels of the DP problems D1, . . . ,Dn.

To this end, we must not allow arbitrary processors in step (ii). A first requirement is
quite natural. We do not allow processors which introduce new function symbols. But
even if we require the harder condition that the processors in step (ii) may only reduce P
and R, and that they may not modify Q, then still the alternative approach is unsound.
This is demonstrated in the following example.

34Note that a corresponding idea was independently developed in [Zan05b, Section 7.3] which removes
labels on the level of string rewrite systems.

35Of course, the labeled DP problem depends on the theorem that is used for the labeling, e.g., we obtain
different problems when we use Theorem 7.10, Theorem 7.15, or Theorem 7.23.

7.3. Semantic Labeling and Unlabeling 123

Example 7.28. We adapt the TRS of Example 7.11.

f(x, y)→ f(x, y)

f(a, x)→ f(g(x), x)

g(h(x))→ i(x)

i(a)→ a

h(a)→ a

Obviously, R is not innermost-terminating due to the first rule. We can easily simplify
the initial DP problem to (P ,Q,R,m) with the following pairs in P .

F(x, y)→ F(x, y)

F(a, x)→ F(g(x), x)

If we use the same F -algebra, labeled signature, and labeling map as in Examples 7.7
and 7.11, we obtain the following labeled rules R, the labeled version of Q is Q = lhs(R),
and P = P .

f(x, y)→ f(x, y)

f(a, x)→ f(g(x), x)

g(h0(x))→ i(x)

g(h1(x))→ i(x)

i(a)→ a

h0(a)→ a

Now we simplify the labeled DP problem (P ,Q,R, f) by the sound processor which
removes the first pair from P . Note that this really is sound according to the semantics
of a processor. It is only required that whenever there is an infinite (minimal) chain in
the input DP problem then there must be some infinite (minimal) chain in the output
problem. As the resulting DP problem has the infinite minimal chain

F(a, h1(a))→P F(g(h1(a)), h1(a)) Q→R F(i(a)), h1(a)) Q→R F(a, h1(a))→P . . .

the processor obviously satisfies this requirement.
Unlabeling the DP problem ({F(a, x)→ F(g(x), x)},Q,R, a) results in the DP problem

({F(a, x)→ F(g(x), x)},Q,R, a) which is finite, cf. Example 7.11.

So we need an even stronger correspondence between the input DP problem and the
output DP problems of the processor which is used in step (ii). The main idea is that
we use processors with Proc((P ,Q,R, f)) = {(P1,Q,R1, f1), . . . , (Pk,Q,Rk, fk)} which
transform every infinite (P ,Q,R)-chain s1 → t1, s2 → t2, . . . into a corresponding new
(Pi,Q,Ri)-chain by just omitting some initial part of the chain. Here, the substitution
and the rewrite steps that are used to build the (P ,Q,R)-chain may not be changed.
Thus, these processor can only identify which pairs and rules cannot occur infinitely
often in an infinite chain.

For example, the processor used for the simplification in Example 7.28 does not have
this property: it is possible to build an infinite chain using only the pair F(x, y)→ F(x, y)
and there is no possibility to build a corresponding chain with infinitely many occurrences
of F(x, y)→ F(x, y) from the resulting DP problem.

124 Chapter 7. Processors Based on Semantic Labeling

Definition 7.29 (Chain Identifying Processor). A processor Proc is chain identifying
iff for every DP problem (P ,Q,R, f) the processor returns a set of new DP problems
{(P1,Q,R1, f), . . . , (Pk,Q,Rk, f)} with Pi ⊆ P and Ri ⊆ R such that for every infinite
(P ,Q,R, f)-chain s1 → t1, s2 → t2, . . . using the substitution σ with

tiσ
Q→`i,1→ri,1 . . .

Q→`i,ji→ri,ji si+1σ

there is an n ∈ IN and m ∈ {1, . . . , k} such that sn → tn, sn+1 → tn+1, . . . is an infinite
path in Pm and all rules `i,j → ri,j with i ≥ n are in Rm.

First note that chain identifying processors are always sound and complete, but not
every sound and complete processor is chain identifying. However, many processors are
indeed chain identifying. (Theorems 3.3, 3.4, 3.25, 4.2, 4.18, 4.20, 4.22, 4.27, 4.32, 4.39,
4.41, 6.17 (B) and (D), 6.22, and 7.30) Further note that it is not a hard requirement that
a chain identifying processor may neither change Q nor the minimality flag. The reason is
that whenever it is identified that every infinite chain from some point onwards only uses
certain pairs and rules then of course, if the original chain is minimal and respects the
strategy, then this will also hold for the shortened chain which is like the original chain
just without some initial part.

Now we present the semantic labeling processor that is used in Example 7.27. It first
labels the DP problem, then it simplifies the labeled DP problem by some chain identifying
processor and finally it removes all labels.

Theorem 7.30 (Semantic Labeling and Unlabeling Processors). Let Procid be a chain
identifying processor, let Procmodel be a processor of Theorem 7.5, Theorem 7.10, or of
Theorem 7.15, let Procquasi be a processor of Theorem 7.19 or of Theorem 7.23. Then the
following processor Proc is chain identifying and therefore sound and complete. For a DP
problem (P ,Q,R, f), Proc returns

• {(Unlab(P1),Q,Unlab(R1), f), . . . , (Unlab(Pk),Q,Unlab(Rk), f)},
if M is a model of R,

Procmodel((P ,Q,R, f)) = {(P ′,Q′,R′, f ′)}, and
Procid((P ′,Q′,R′, f ′)) = {(P1,Q′,R1, f

′), . . . , (Pk,Q′,Rk, f
′)}

• {(Unlab(P1),Q,Unlab(R1 \ Decr), f), . . . ,
(Unlab(Pk),Q,Unlab(Rk \ Decr), f)},

if M is a quasi-model of R,
Procquasi((P ,Q,R, f)) = {(P ′,Q′,R′, f ′)}, and
Procid((P ′,Q′,R′, f ′)) = {(P1,Q′,R1, f

′), . . . , (Pk,Q′,Rk, f
′)}

• {(P ,Q,R, f)}, otherwise

Beside the previously mentioned advantage of Theorem 7.30 that we remain with small
DP problems there is another benefit. Note that as a chain identifying processor, the
processor of Theorem 7.30 is always complete and it preserves the minimality flag. This
is in contrast to the previous processors based on semantic labeling which are used as
ingredient to this new processor. There, only under certain conditions completeness is
obtained and minimality can be preserved.

There seems to be a slight restriction in Theorem 7.30. Up to now we only allow one
application of one chain identifying processor between labeling and unlabeling. However,

7.3. Semantic Labeling and Unlabeling 125

this is not a severe restriction as we can always compress an arbitrary application of arbi-
trary chain identifying processor into one chain identifying processor using the following
lemma. This was already needed in Example 7.27, since there we applied three chain
identifying processors on the labeled DP problem before unlabeled it.

Lemma 7.31 (Combining Chain Identifying Processors). Let Proc0, Proc1, . . . , Procn be
chain identifying processors, and let D be a DP problem. If Proc0(D) = {D1, . . . ,Dn} and
if for all 1 ≤ i ≤ n the result of Proci(Di) is {Di,1, . . . ,Di,ki} then the following processor
Proc is chain identifying. For a DP problem (P ,Q,R, f), Proc returns

• {D1,1, . . . ,D1,k1 , . . . ,Dn,1, . . . ,Dn,kn}, if (P ,Q,R, f) = D

• (P ,Q,R, f), otherwise

By Lemma 7.31 we know that applying the processors of Theorems 3.3 and 3.4 in
sequence results in a chain identifying processor Proc. And applying Lemma 7.31 a second
time, we conclude that the sequential application of Proc and Theorem 3.25 also is a chain
identifying processor Proc ′. Hence, the sequential application of all three processors indeed
corresponds to one application of the (combined) chain identifying processor Proc ′. This
finally allows us to apply Theorem 7.30 like we did in Example 7.27.

Summary of Chapter 7

In this chapter we have shown various unpublished new results about how to extend
semantic labeling, a technique usually applied on TRSs, to the DP framework. To this
end, we have lifted semantic labeling from full rewriting to Q-restricted rewriting for
both models and quasi-models, and we have presented ways to preserve minimality and
to achieve completeness for a semantic labeling processor. Finally, if one wants to label,
simplify, and then unlabel a DP problem, we have figured out the class of chain-identifying
processors which may be used for the intermediate simplifying step. In this way, one can
always achieve completeness and minimality is never lost. This final approach has the
additional advantage that it never increases the resulting DP problem. Therefore, we
propose this approach for the automation of semantic labeling in combination with the
chain identifying processors of Chapters 3 and 4.

For the automation of course one has to find suitable (quasi-)models. How to solve
this problem is investigated in [KM07, KZ06, Zan05b]. In [Zan05b] one can also find our
idea of labeling and unlabeling, which was independently developed. However, there are
two major differences: in [Zan05b] labeling and unlabeling is performed on the level of
string rewrite systems and only one specific technique (rule removal as in Section 4.3) is
applied between labeling and unlabeling, whereas we have presented the results in the
DP framework and we have identified a whole class of processors that may be used in
between.

The combination of semantic labeling and dependency pairs has already been done in
[Ohl01], but this work is completely subsumed by our work, as one can use Theorem 7.30
with the basic reduction pair processor of Theorem 4.2 to simulate [Ohl01], for example.
However, in contrast to [Ohl01] we investigate minimality and completeness, we have a
more complex structure of DP problems which contain a strategy and a graph-component,
and we can combine every chain identifying processor with semantic labeling, and not only
the basic reduction pair processor.

126 Chapter 7. Processors Based on Semantic Labeling

Semantic labeling under strategies has already been investigated by us in [TM07] where
we considered innermost termination for semantic labeling with models. This thesis com-
pletely extends these results as we deal with the more general case of Q-restricted rewrit-
ing. Moreover, we even perform semantic labeling with evaluation strategy and quasi-
models. This is again an improvement, since in [TM07] it is shown that one cannot use
semantic labeling with quasi-models if one considers innermost rewriting. And finally, in
[TM07] we only worked on the level of TRSs, whereas in this thesis we integrated semantic
labeling to the DP framework.

However, in the work of [HM06a, TM07] a variant of semantic labeling, predictive
labeling, is presented. The advantage of predictive labeling is that only a (quasi-)model
of the usable rules (which are defined w.r.t. a given labeling) has to be found. But since
in these papers predictive labeling again works on TRSs, and not on DP problems it is
incomparable to our work. Moreover, only ordinary and innermost rewriting have been
considered.

The work of [KM07] integrates predictive labeling to the DP framework for full rewrit-
ing, it corresponds to the processor of Theorem 7.19 for Q = ∅ where only the needed
rules have to satisfy the quasi-model condition. This clearly extends our results in some
way, but certain aspects like completeness and minimality are not covered in that work.
Therefore, it would be an interesting future work to integrate that work into ours, but
there may be problems. For example for non-linear sets Q, here we used full labeling
to preserve minimality. But for full labeling semantic labeling and predictive labeling
coincide.

We show by an adaptation of Example 7.6 that certain benefits of predictive labeling
are already present in our processors.

Example 7.32. Let R consist of the following rules.

f(true, x)→ random(f(odd(double(x)), x))

double(0)→ 0

double(s(x))→ s(s(double(x)))

odd(0)→ false

odd(s(0))→ true

odd(s(s(x)))→ odd(x)

random(x)→ s(x)

random(x)→ x

Note that R is not terminating, but innermost terminating. To prove innermost termina-
tion as in Example 7.6, one would like to label the f-symbol. If one uses semantic labeling
directly on R then one has problems finding a suitable model due to the random-rules.
The benefit of predictive labeling is that one only has to find a model for the double- and
odd-rules, but not for the problematic random-rules. However, performing the proof in
the DP framework is also possible with semantic labeling. Using the standard processors
we can remove all pairs in DP(R) except for

F(true, x)→ F(odd(double(x)), x)

and we can replace R by the usable rules, which are the double- and odd-rules. Then,
one can use the same algebra to prove finiteness of the DP problem as one would use to

7.3. Semantic Labeling and Unlabeling 127

prove innermost termination of R by predictive labeling (e.g., one can use the algebra of
Example 7.6): in both cases the same rules have to satisfy the model condition.

There is an improved variant of predictive labeling where one only has to consider
the usable or needed rules w.r.t. an argument filter. With that technique one can even
prove innermost termination of the TRS where one has replaced the first rule of R by the
following.

f(true, x, y)→ f(odd(double(x)), x, random(y))

Here, the random-rules are called inside the recursive call in an accumulator, which makes
them usable. But if the interpretations and the labelings ignore the third argument of f
then predictive labeling does not demand that the algebra is a model of the random-rules.

However, this can again be simulated by our methods. Applying the argument filter
processor of Theorem 4.38 with π(F) = [1, 2] deletes the accumulator of the corresponding
dependency pair

F(true, x, y)→ F(odd(double(x)), x, random(y))

and afterwards the random-rules are not usable any more. Then one can prove finiteness
as before.

Finally, to use predictive labeling in the termination case with quasi-models, there is
a certain condition on the order. However, this condition ensures that if we apply the
needed rules processor of Theorem 4.12, then the additional rules of Cε always satisfy
the quasi-model condition. Thus, again there is no large difference to predictive labeling,
since often the needed rules are exactly the usable rules w.r.t. the labeling.

Nevertheless, a combination of our results with [KM07] would be helpful, since the
processors of Theorems 4.38 and Theorem 4.12 are incomplete and the latter additionally
destroys minimality.

Another interesting future work would be to answer the open question whether full
labeling (Theorem 7.10) is complete.

8. Processors for Non-Termination
Analysis

Almost all techniques for automated termination analysis try to prove termination and
there are hardly any methods to prove non-termination. But detecting non-termination
automatically would be very helpful when debugging programs.

We show that the DP framework is particularly suitable for combining both termination
and non-termination analysis. We introduce a processor which tries to detect infinite DP
problems in order to answer “no”. Then, if all previous processors were complete, we
can conclude non-termination of the original TRS. An important advantage of the DP
framework is that it can couple the search for a proof and a disproof of termination:

Processors which try to prove termination are also helpful for the non-termination
proof because they transform the initial DP problem into sub-problems, where most of
them can easily be proved finite. So they detect those sub-problems which could cause
non-termination. Therefore, the non-termination processors should only operate on these
sub-problems and thus, they only have to regard a subset of the rules when searching for
non-termination.

On the other hand, processors that try to disprove termination are also helpful for the
termination proof, even if some of the previous processors were incomplete. The reason is
that there are many indeterminisms in a termination proof attempt, since usually many
processors can be applied to a DP problem. Thus, if one can find out that a DP problem is
infinite, very often one has reached a “dead end” and should backtrack if one has applied
incomplete processors before.36

Our criteria to detect infiniteness of a DP problem are based on looping DP problems
which were already introduced in [GTS05b]. However, in that work it has not been inves-
tigated how to detect loops in the context of innermost or Q-restricted rewriting. Since
these problems often occur, there is urgent need to check whether a loop (for full rewrit-
ing) also respects the strategy. To this end, in [GTS05c] sufficient, but incomplete criteria
have been presented. However, in this thesis we strictly extend the results of [GTS05c]
as we will show and explain a novel decision procedure for this question. Although the
procedure is easy to implement its termination proof is quite involved.

This chapter is organized as follows. To prove non-termination within the DP frame-
work, in Section 8.1 we recall the notion of a looping problem and generalize it from
full rewriting to Q-restricted rewriting. Then in Section 8.2 we show a new processor
which can switch from innermost termination to termination which will make disproving
Q-termination easier. That processor will even allow us to disprove innermost termina-
tion of non-innermost looping problems by finding a loop which disregards the innermost
strategy. Finally, in Section 8.3 we will present the new decision procedure for detecting
loops for Q-restricted rewriting.

36It might still be possible to prove finiteness, since there are examples like Example 2.12 which are both
finite and infinite.

130 Chapter 8. Processors for Non-Termination Analysis

8.1. Looping Problems

An obvious approach to find infinite reductions is to search for a term s which reduces to
a term C[sµ] containing an instance of s. Such a reduction is called a loop and a TRS
R with such a reduction is called looping. A loop has three desirable properties. First,
each loop can be finitely represented, e.g., by giving the rules and corresponding positions
that are used in the reduction from s to C[sµ]. Second, once one has found the rules
and positions for the rewrite sequence, it is easily possible to verify whether it is really
possible to reduce s to C[sµ]. (For full rewriting this is trivial.) And most importantly,
a loop gives rise to the following infinite reduction which proves non-termination.

s→+
R C[sµ]→+

R C[Cµ[sµ2]]→+
R C[Cµ[Cµ2[sµ3]]]→+

R . . . (179)

Unfortunately, if one does not consider full rewriting but innermost rewriting or Q-
restricted rewriting, then loopingness does not imply non-termination, since neither i→R
nor Q→R is stable if Q 6= ∅. The reason is that from s Q→+

R C[sµ] one cannot deduce
sµ Q→+

R Cµ[sµ2]. And even if this is possible, then it might be the problem that later on
for some larger n the reduction sµn Q→+

R Cµ
n[sµn+1] is not possible.

As an example consider the TRS R = {f(g(x)) → f(g(g(x))), g(g(g(x))) → a}. By
choosing s = f(g(x)), C = 2, and µ = {x/g(x)} we obtain the following reduction.

s i→R C[sµ] = f(g(g(x))) i→R C[Cµ[sµ2]] = f(g(g(g(x))))

Now the only possible next reduction step yields the normal form f(a), such that one
cannot build the infinite reduction (179) as in the termination case. And indeed, the TRS
R is innermost terminating.

To solve this problem, one can define that a TRS R is Q-looping iff there is a term
s, a substitution µ, and a context C such that sµn Q→+

R Cµn[sµn+1] for every natural
number n. A similar definition was already used in [GTS05b, Footnote 6]. Then indeed,
Q-loopingness implies non-termination for the Q-restricted rewrite relation. However the
following example shows that this definition does not really correspond to a loop, e.g., it
does not have the first two of the three desired properties of a loop.

Example 8.1. Consider the TRS R with the following rules.

f(x, y)→ f(s(x), g(h(x, 0)))

h(s(x), y)→ h(x, s(y))

g(h(x, y))→ i(y)

Then for Q = lhs(R) the TRS R is Q-looping, as for s = f(s(x), g(h(x, 0))), C = 2, and
µ = {x/s(x)} there are the following reductions.

sµn = f(s(x), g(h(x, 0)))µn

= f(sn+1(x), g(h(sn(x), 0)))
Q→n
R f(sn+1(x), g(h(x, sn(0))))

Q→R f(sn+1(x), i(sn(0)))
Q→R f(sn+2(x), g(h(sn+1(x), 0)))
= Cµn[sµn+1]

The problem is that the reductions from sµn to Cµn[sµn+1] depend on n. In this example
it might still be possible to represent and check the reductions in a finite way as they have
a regular structure, but in general the problem is not even semi-decidable.

8.1. Looping Problems 131

Suppose we want to solve the undecidable problem whether a function over the nat-
urals is total. Since term rewriting is Turing-complete we can assume that there are
corresponding rules for i which compute that function by innermost evaluation strategy.
But then we can add the three rules of R and totality of i is equivalent to the question
whether s, µ, and C as above form an innermost-loop, since we obtain a loop iff all terms
i(sn(0)) for n ∈ IN have a normal form.

So, the problem with the requirement sµn Q→+
R Cµn[sµn+1] is that although there are

some intermediate terms in the infinite reduction that have a regular structure, it is
possible that for every n the reduction from sµn to Cµn[sµn+1] is completely different.

However, in the infinite reduction (179) for standard rewriting there is a strong regu-
larity in the reductions from sµn to Cµn[sµn+1]. For every n one can apply exactly the
same rules in exactly the same order at exactly the same positions. Hence, one only has
to give the reduction of s to C[sµ] to know how to continue for sµ, sµ2, This gives
rise to the our final definition of Q-looping.

Definition 8.2 (Q-Looping TRS). Let R be a TRS, and let Q be a set of terms. Then
R is Q-looping iff there is a term s, a context C, a substitution µ, a number m ≥ 1, and
if there are rules `1 → r1, . . . , `m → rm ∈ R and positions p1, . . . , pm such that for all
n ∈ IN there is the following reduction.

sµn Q→`1→r1,p1 ◦ Q→`2→r2,p2 ◦ · · · ◦ Q→`m→rm,pm C[sµn+1]

Note that Definition 8.2 generalizes the definition of a looping TRS, since a TRS R
is looping iff s →+

R C[sµ] iff R is ∅-looping. Moreover, this definition of Q-loopingness
has the desired first property that a loop can be finitely represented, and also the desired
third property is satisfied.

Theorem 8.3 (Loops and Non-Termination). Let R be a TRS and Q be a set of terms.
If R is Q-looping then R is not Q-terminating.

Theorem 8.3 is easily proven, since from Q-loopingness of R we get the same reduction
as in (179) where one just replaces →R by Q→R. Notice that it is not at all obvious
whether the second desired property of a loop is satisfied: there might be a problem to
check whether a given rewrite sequence really is a loop, since one has to check the looping
reduction for the possibly infinite set of terms s, sµ, Before we show the novel result
in Section 8.3 how this problem can be decided, we first generalize loopingness to DP
problems.

Our definition of a looping DP problem generalizes [GTS05b, Definition 22] from the
termination case to Q-restricted rewriting, in particular for Q = ∅ both definitions are
equivalent. However, our definition is different for the innermost case since we do not
allow that the reductions may depend on n as it is done in [GTS05b, Footnote 6].

Definition 8.4 (Looping DP Problem). Let D = (P ,Q,R, f) be a DP problem. Then D
is looping iff there is a term s, a substitution µ, a number m ≥ 1, and if there are rules
`1 → r1, . . . , `m → rm ∈ P ∪ R and positions p1, . . . , pm such that for all n ∈ IN there is
the following reduction sequence.

sµn Q→`1→r1,p1 ◦ Q→`2→r2,p2 ◦ · · · ◦ Q→`m→rm,pm sµn+1

132 Chapter 8. Processors for Non-Termination Analysis

Moreover, these reductions have to satisfy three additional requirements: there must be at
least one P-reduction, for every P-reduction the corresponding position must be the root
position, and for every P-reduction the redex must be in Q-normal form.37

The additional requirement on the P-reductions corresponds to the fact that in chains,
every pair in P may only be applied at the root and all instantiated left-hand sides of the
pairs must be in Q-normal form. Moreover, we need at least one pair to build a chain.

Theorem 8.5 (Processor Based on Loop-Detection). The following processor Proc is
sound and complete. For a DP problem (P ,Q,R, f), Proc returns

• no, if (P ,Q,R, f) is looping,

• {(P ,Q,R, f)}, otherwise

Comparing Theorem 8.3 with Theorem 8.5, one can see two advantages of Theorem 8.5.
First, there is no need to search for a context and instead of taking an arbitrary term s
to start the loop of a TRS, one can always start the search with an instance of a left-
hand side of a pair. The reason for the latter is that one can w.l.o.g. assume that the
one necessary step with the pair is the first step in a loop. The proof of the following
Theorem 8.6 reveals that one will find all looping TRSs, even if one starts the loops with
an instance of a left-hand side of the TRS.

The second advantage is more important. Due to the previous processors usually there
are only few rules and pairs remaining which may be non-terminating. Hence, the modu-
larity of the DP framework helps to reduce the search space for a non-termination proof.
We can apply every sound and complete processor – which often was designed to prove
termination – before trying to disprove termination.

The following theorem shows that one can detect all Q-looping TRSs by looking for
loops in the corresponding DP problems.

Theorem 8.6 (Looping TRSs and Looping DP Problems). A TRS R is Q-looping iff
(DP(R),Q,R, f) is looping.

Note that the correspondence between looping TRSs and looping DP problems was
already proven in [GTS05b, Theorem 23], but only for full rewriting. Thus, Theorem 8.6
generalizes that result to Q-restricted rewriting.

Example 8.7. Let R = {f(x, y, z, u)→ g(x, f(c(x, y), z, z, y))}. For the initial DP prob-
lem (P ,∅,R,m) with P = DP(R) there is the following reduction with the substitution
µ = {x/c(x, y), y/z, u/y}.

s = F(x, y, z, u)→P,ε F(c(x, y), z, z, y) = sµ

Since full rewriting is closed under substitutions this directly implies sµn →P,ε sµn+1 for
all n. Hence, (P ,∅,R,m) is looping and infinite.

If we want to directly prove that R is a looping TRS, we can choose the same µ, a
similar term s = f(x, y, z, u), but additionally we have to provide the context C = g(x,2).

In the next section we show that Theorem 8.6 only tells us half of the truth, and in
Section 8.3 we investigate how to find loops.

37To improve readability in this chapter we disregard the graph structure of P. However, all the presented
results can be easily extended to graphs as well.

8.2. Switching to Termination 133

8.2. Switching to Termination

Usually, to analyze termination of a TRS we first apply various processors on the initial
DP problem (DP(R),Q,R,m) before we try to disprove termination. Then, if all these
processors have been complete we can conclude non-termination. But it may be the
case that the initial DP problem is looping whereas the resulting DP problems are still
infinite, but not looping any more. Therefore, we would not only like to know that our
processors are complete, but they should also be loop preserving : using loop preserving
processors has the advantage that they do not harm for disproving termination, whereas
the application of other complete processors may prevent a successful non-termination
proof.

And indeed, nearly all of our processors are loop preserving, e.g., every chain identifying
processor (cf. Definition 7.29) is loop preserving. However, there is one processor that is
often used and that is not loop preserving: the processor of Theorem 3.14 to switch to
innermost termination. Consider the following example.

Example 8.8. Let R consist of the following rules and let Q = ∅.

f(x)→ f(g(0, true))

g(x, true)→ g(s(x), isnat(x))

isnat(0)→ true

isnat(s(x))→ isnat(x)

Obviously, R is looping due to the first rule where one can choose s = f(x) and µ =
{x/g(0, true)}. However, the rules of the remaining TRS do not admit a looping reduction:
The non-terminating reduction

g(0, true) →R g(s(0), isnat(0)) →1
R

g(s(0), true) →R g(s(s(0)), isnat(s(0))) →2
R

g(s(s(0)), true) →R g(s(s(s(0))), isnat(s(s(0)))) →3
R . . .

is not a loop. Due to Theorem 8.6 also the initial DP problem contains a loop, using the
dependency pair F(x)→ F(g(0, true)) of the first rule. However, once we apply the usual
processors including the processor to switch to innermost termination, we get the DP prob-
lem (P , lhs(R),R,m) with P = {F(x) → F(g(0, true)),G(x, true) → G(s(x), isnat(x))}.
Then, there is no loop any more, since one cannot even build an infinite chain with the
pair F(x)→ F(g(0, true)) as g(0, true) has no normal form, and since the other pair of P
– as shown before – does not admit a loop.

To handle this problem, in this section we develop an inverse processor to Theorem 3.14
which switches to full termination. Then the problem of Example 8.8 is solved, as after
its application we can again find the loop as for the initial DP problem. Moreover, by
this method we can also prove that the TRS in Example 8.8 is not innermost terminating
although it is not innermost looping.

Of course, when developing a processor which switches to full termination the difficult
task is to prove that it is complete. But it turns out that completeness of such a processor
is quite similar to soundness of the processor of Theorem 3.14. The reason is that in both
ways we have to construct an infinite chain with large strategy component Qlarge from
an infinite chain with smaller strategy component Qsmall. However, there are minor
differences: in Theorem 3.14 Qsmall = Q and Qlarge = lhs(R) whereas for a processor

134 Chapter 8. Processors for Non-Termination Analysis

to switch to full termination we have Qsmall = ∅ and Qlarge = Q where in both cases
Q is the strategy component of the input DP problem. Another important difference
is that for the completeness of a processor to switch to full termination one also needs
to conclude Q-restricted non-termination of R from non-termination of R, i.e., one does
not only have to consider infinite chains. One reason is that a DP problem (P ,∅,R, f)
is already infinite if R is not terminating. However, that this is not the only reason is
illustrated in Example 8.10.

But let us first formally introduce the processor to switch to full termination in the
following theorem, where we see that the requirements are quite similar to those of
Theorem 3.14.

Theorem 8.9 (Processor to Switch to Termination). Let Proc be the processor which
returns {(P ,∅,R, a)} for a given DP problem (P ,Q,R, f). Then, Proc is sound and it
is complete, if

• for all s → t ∈ P, non-variable subterms of s do not unify with left-hand sides of
rules from R,

• R is locally confluent,

• NF (R) ⊆ NF (Q), and

• Q-restricted termination of R implies termination of R

One question is how to guarantee the last requirement that Q-restricted termination
of R implies termination of R without doing the termination proof of R. Our solution is
to alternatively require that R belongs to a class of TRSs where innermost termination
and termination are equivalent. Then the last requirement is indeed satisfied, since by
Lemma 2.4 one can conclude innermost termination of R from Q-termination of R.

We now show that the last requirement of Theorem 8.9 is essential, even if one would
define that a DP problem is infinite iff it admits an infinite chain.

Example 8.10. Consider the DP problem (∅, lhs(R),R, a) where R consists of the
following rules.

g(a)→ g(b)

g(b)→ g(a)

a→ c

b→ d

Then (∅, lhs(R),R, a) is not infinite asR is innermost terminating and as there obviously
is no infinite innermost chain. However, R is locally confluent, i→R is even confluent,
and (∅,∅,R, a) is infinite since R is not terminating. Thus, without the requirement
that innermost termination of R should imply termination of R, Theorem 8.9 becomes
unsound.

But even if one considers the DP problems (P , lhs(R),R, a) and (P ,∅,R, a) with
P = {F(g(c), g(d), x) → F(x, x, x)} one obtains a counterexample. Although there is
an infinite (P ,∅,R)-chain in addition to non-termination of R there still is no infinite
(P , lhs(R),R)-chain.

8.3. Detecting Looping Problems 135

Another way to reduce the set Q is to apply the Q-reduction processors of Theorems
3.34 and 3.36. Since for disproving termination minimality is irrelevant, one should always
prefer Theorem 3.34 over Theorem 3.36 as the processor of the former theorem can delete
more terms from Q and it is more often applicable.

Since Theorem 3.34 and Theorem 8.9 are incomparable one should apply them both
as a first step to disprove termination. Nevertheless, these processors just simplify the
DP problem for a later non-termination proof, but they will never say “no”. Hence, to
disprove termination we afterwards still have to apply Theorem 8.5. However, we still
have not presented a way to detect loops. This is the topic of the next section.

8.3. Detecting Looping Problems

In [GTS05b] it is investigated how loops can be detected by narrowing. Another approach
to detect loops is based on unfolding and is presented in [Pay06]. Moreover, for the special
class of string rewrite systems, in [GZ99] a decision procedure is presented, which can
answer the question whether there is a loop up to a given length. However, in all these
papers ([GTS05b, GZ99, Pay06]) only loops for full rewriting are detected and there is
no technique to detect whether such a loop also respects the strategy given by Q. This is
partially solved in [GTS05c] where approximations are presented by which one can detect
innermost loops.

In this section we extend the results of [GTS05c] and develop a novel method to decide
whether a loop respects the strategy. If there is a loop for full rewriting then we have
found a reduction of the following form.

sµn →`1→r1,p1 ◦ →`2→r2,p2 ◦ · · · ◦ →`m→rm,pm sµn+1

Since every time the same rules are applied at the same positions, all intermediate terms
have the form siµ

n. Hence, the reductions look at follows.

sµn = s1µ
n →`1→r1,p1 s2µ

n →`2→r2,p2 . . . smµ
n →`m→rm,pm sµn+1

Note that this reduction isQ-looping iff every direct subterm si|pijµn of every redex siµ
n|pi

is in Q-normal form (and if one considers looping DP problems then additionally for every
i with `i → ri ∈ P the terms siµ

n have to be in Q-normal form). Since a term t is in
Q-normal form iff t does not contain a redex w.r.t. Q, we can reformulate the question
about Q-loopingness in terms of so-called redex problems.

Definition 8.11 (Redex, Matching, and Identity Problems). Let s and q be terms, let
µ be a substitution with finite domain. Then a redex problem is a triple (s |m q, µ), a
matching problem is a triple (sm q, µ), and an identity problem is a triple (s u q, µ).

A redex problem (s |m q, µ) is solvable iff there is a natural number n, a position p,
and a substitution σ such that sµn|p = qσ, a matching problem is solvable iff there is a
natural number n and a substitution σ such that sµn = qσ, and an identity problem is
solvable iff there is a natural number n such that sµn = qµn.

Obviously, for every term s the redex problem (s |m µ, q) is not solvable for any q ∈ Q
iff sµn ∈ NF (Q) for all n ∈ IN.

Example 8.12. We consider the TRS of Example 8.7 where now we want to analyze
Q-termination for Q = {q} with q = c(c(c(x1, x1), x2), x3). Then the loop of Example 8.7
(with s = F(x, y, z, u) and µ = {x/c(x, y), y/z, u/y}) respects the strategy iff (s |m q, µ)
is not solvable.

136 Chapter 8. Processors for Non-Termination Analysis

To answer the question whether a redex problem (s |m q, µ) is solvable, we have to look
for three unknowns: the position p, the substitution σ, and the number n. We will now
eliminate these unknowns one by one and start with the position p. This will result in
matching problems. Then in a second step we will further transform matching problems
into identity problems where only the number n is unknown. Finally, we will present a
novel algorithm to decide identity problems. Therefore, at the end of this section we will
have a decision procedure for redex problems, and thus also for the question whether a
given loop respects the strategy.

To start with simplifying a redex problem (s |m q, µ) into a finite disjunction of match-
ing problems, note that since the position can be chosen freely from all terms s, sµ, sµ2, . . .
it is not possible to just unroll the possible choices for the position. But the following
theorem shows that it is indeed possible to reduce redex problems to matching problems.

Theorem 8.13 (Solving Redex Problems). Let (s |m q, µ) be a redex problem. Let
W =

⋃
i∈IN V(sµi). Then (s |m q, µ) is solvable iff q is a variable or the matching problem

(um q, µ) is solvable for some non-variable subterm u of a term in {s} ∪ {xµ | x ∈ W}.

Note that the set W is finite since it is a subset of the finite set of variables V(s) ∪⋃
x∈Dom(µ) V(xµ). Hence, Theorem 8.13 can easily be automated.

Example 8.14. We use Theorem 8.13 for the redex problem (s |m q, µ) of Example 8.12.

i sµi V(sµi)
0 F(x, y, z, u) {x, y, z, u}
1 F(c(x, y), z, z, y) {x, y, z}

Since there is no new variable in the second iteration we can stop and know that W =
{x, y, z, u}. Thus, (s |m q, µ) is solvable iff one of the following two matching problems is
solvable.

(F(c(x, y), z, z, y) m q, µ) (c(x, y) m q, µ)

Now the question whether a given matching problem is solvable remains. This amounts
to detecting the unknown number n and the matcher σ. Our next aim is again to reduce
this problem to a conjunction of identity problems where there is no matcher σ any more.
However, we first have to generalize the notion of a matching problem (s m q, µ) which
includes one pair of terms s m q into a matching problem which allows a set of pairs of
terms.

Definition 8.15 (Matching Problem). A matching problem is a pair (M, µ) of a set M
of pairs {s1 m q1, . . . , sk m qk} together with a substitution µ. A matching problem for
(M, µ) is solvable iff there is a substitution σ and a number n ∈ IN such that for all
1 ≤ j ≤ k the equality sjµ

n = qjσ is valid.

If M only contains one pair s m q then we identify (M, µ) with (s m q, µ), and if µ is
clear from the context we write M as an abbreviation for (M, µ).

We now give a set of four transformation rules which either detect that a matching
problem is not solvable (indicated by ⊥), or which transform a matching problem into
solved form. And once we have reached a matching problem in solved form, it is possible
to translate it into identity problems.

8.3. Detecting Looping Problems 137

Definition 8.16 (Transformation of Matching Problems). Let V be the set of vari-
ables and let µ = {x1/t1, . . . , xm/tm} be a substitution. We define Vincr = {x ∈ V |
there is some n ∈ IN with xµn /∈ V} as the set of increasing variables.

For each matching problem (M, µ) with M = M′] {s m q} with q /∈ V there is a
corresponding transformation rule.

(i) M⇒ {s′µm q′ | s′ m q′ ∈M}, if s ∈ Vincr

(ii) M⇒⊥, if s ∈ V \ Vincr

(iii) M⇒⊥, if s = f(. . .), q = g(. . .), and f 6= g

(iv) M⇒M′ ∪ {s1 m q1, . . . , sk m qk}, if s = f(s1, . . . , sk), q = f(q1, . . . , qk)

Otherwise, a matching problem is in solved form.

The following theorem shows that every matching problem (sm q, µ) can be reduced to
a set of identity problems.

Theorem 8.17 (Solving Matching Problems). Let (M, µ) be a matching problem.

(i) The transformation rules of Definition 8.16 are confluent and terminating.

(ii) If M⇒⊥ then M is not solvable.

(iii) If M⇒M′ then M is solvable iff M′ is solvable.

(iv) M is solvable iffM⇒∗M′ for some matching problemM′ = {s1mx1, . . . , skmxk}
in solved form, such that for all i 6= j with xi = xj the identity problem (si u sj, µ)
is solvable.

Example 8.18. We illustrate the transformation rules of Definition 8.16 by contin-
uing Example 8.14, where at the end we had to analyze two matching problems for
q = c(c(c(x1, x1), x2), x3) and µ = {x/c(x, y), y/z, u/y}.

• The matching problem (F(c(x, y), z, z, y) m q, µ) can be reduced to ⊥ by rule (iii).

• The other matching problem can be transformed by rules (i) and (iv) into solved
form as follows.

(c(x, y) m q, µ) = {c(x, y) m c(c(c(x1, x1), x2), x3)}
⇒ {xm c(c(x1, x1), x2), y m x3}
⇒ {c(x, y) m c(c(x1, x1), x2), z m x3}
⇒ {xm c(x1, x1), y m x2, z m x3}
⇒ {c(x, y) m c(x1, x1), z m x2, z m x3}
⇒ {xm x1, y m x1, z m x2, z m x3}

Hence, by Theorem 8.17 all matching problems are not solvable iff the identity
problem (x u y, µ) is not solvable.

138 Chapter 8. Processors for Non-Termination Analysis

Input: An identity problem (s u t, µ).
Output: “Yes”, the identity problem is solvable, or “No”, it is not.

(i) While µ contains a cycle of length n > 1 do µ := µn

(ii) S := ∅

(iii) If s = t then stop with result “Yes”

(iv) If there is a shared position p of s and t such that s|p = f(. . .) and t|p = g(. . .)
and f 6= g then stop with result “No”

(v) If there is a shared position p of s and t such that s|p = x, t|p = g(. . .), and x is
not an increasing variable then stop with result “No”.
Repeat this step with s and t exchanged.

(vi) If there is a shared position p of s and t such that s|p = x, t|p = y, x 6= y, and
x, y /∈ Dom(µ) then stop with result “No”

(vii) Add the triple (x, p, t|p) to S for all shared positions p of s and t such that
x = s|p 6= t|p where x is an increasing variable
Repeat this step with s and t exchanged.

(viii) If (x, p1, u1) ∈ S and (x, p2, u2) ∈ S where

(a) u1 and u2 are not unifiable or where

(b) u1 = u2 and p1 < p2,

then stop with result “No”

(ix) s := sµ, t := tµ

(x) Continue with step (iii)

Figure 8.19.: An algorithm to decide solvability of identity problems

It only remains to give an algorithm which decides solvability of an identity problem.
The full algorithm is presented in Figure 8.19, and we will explain the performed steps
one by one.

First we replace the substitution µ by µn such that µn does not contain cycles. Here,
a substitution δ contains a cycle of length n iff δ = {x1/x2, x2/x3, . . . , xn/x1, . . . } where
the xi are pairwise different variables. Obviously, if δ contains a cycle of length n then
in δn all variables x1, . . . , xn do not belong to the domain any more. Thus, step (i) will
terminate and afterwards µ does not contain cycles of length 2 or more.

Note that like in Theorem 8.13 where we replaced µ by δ = µj−i, the identity problem
(s u t, µ) is solvable iff (s u t, µn) is solvable. Hence, after step (i) we still have to decide
solvability of (s u t, µ) for the modified µ. The advantage is that now µ has a special
structure. For all x ∈ Dom(µ) either x is an increasing variable or for some n the term
xµn is a variable which is not in the domain of µ. And for such substitutions µ the terms
s, sµ, sµ2, . . . finally become stationary at each position, i.e., for every position p there is
some n such that either all terms sµn|p, sµn+1|p, sµn+2|p, . . . are of the form f(. . .), or all

8.3. Detecting Looping Problems 139

these terms are the same variable x /∈ Dom(µ). Therefore, it is possible to define sµ∞ as
the limit of all terms s, sµ, sµ2,

If the identity problem is solvable then there is some n such that sµn = tµn which is
detected in step (iii). The reason is that with steps (ix) and (x) it is iterated over all term
pairs (s, t), (sµ, tµ), (sµ2, tµ2),

On the other hand it might be the case that an identity problem has a stationary
conflict, i.e., sµ∞ 6= tµ∞. Then the identity problem is unsolvable since sµn = tµn implies
sµ∞ = tµ∞. However, if the terms sµ∞ and tµ∞ differ, then there is some position p such
that the symbols at position p differ, or sµ∞|p is a variable and tµ∞|p is not a variable
(or vice versa), or both sµ∞|p and tµ∞|p are different variables Hence, if we choose n high
enough then p is stationary for both sµn|p and tµn|p. But then one of three rules (iv)-(vi)
will trigger. The reason is that all variables in sµ∞ and tµ∞ are not from the domain of
µ.

Up to now we can detect all solvable identity problems and all identity problems which
are not solvable due to a stationary conflicts. However, there remain other identity prob-
lems which are neither solvable nor do they possess a stationary conflict. As an example
consider (x u y, {x/f(x), y/f(y)}). Then sµ∞ = f(f(f(. . .))) = tµ∞ but this identity
problem is not solvable since xµn = fn(x) 6= fn(y) = yµn. We call these identity problems
infinite.

The remaining steps (ii), (vii), and (viii) are used to detect infinite identity problems.
In the set S we store subproblems (x, p, u) such that whenever the identity problem is
solvable, then xµm = uµm must hold for some m to make the terms sµn and tµn equal at
position p. We give some intuitive arguments why the two abortion criteria in step (viii)
are correct. For (viii–a) notice that if u1 and u2 are not unifiable then xµm cannot be
both u1µ

m and u2µ
m, which would be a conflict. And if in the problem to make xµm equal

to u1µ
m we again produce the same problem at a lower position, then this will continue

forever. Hence, the problem is not solvable, which will be detected by step (viii–b).
The following theorem shows that indeed all answers of the algorithm are correct and it

also shows that we will always get an answer. However, especially the termination proof
is quite involved since we have to show that the criteria in step (viii) suffice to detect all
infinity identity problems.

Theorem 8.20 (Solving Identity Problems). The algorithm in Figure 8.19 to decide solv-
ability of identity problems is correct and it terminates.

Example 8.21. We illustrate the algorithm with the identity problem (x u y, µ) where
µ = {x/f(y, u0), y/f(z, u0), z/f(x, u0), u0/u1, u1/u0}.

As µ contains a cycle of length 2 we replace µ by µ2 = {x/f(f(z, u0), u1), y/f(f(x, u0), u1),
z/f(f(y, u0), u1)}. Since xµ∞ = f(f(f(. . . , u1), u0), u1) = yµ∞ we know that the problem is
solvable or infinite. Hence, the steps (iv)-(vi) will never succeed. We start with s = x and
t = y. Since the terms are different we add (x, ε, y) and (y, ε, x) to S. In the next iteration
we have s = f(f(z, u0), u1) and t = f(f(x, u0), u1). Again, the terms are different and we
add (x, 11, z) and (z, 11, x) to S. The next iteration yields the new triples (y, 1111, z) and
(z, 1111, y), and after having applied µ three times we get the two last triples (x, 111111, y)
and (y, 111111, x). Then due to (viii–b) the algorithm terminates with “No”.

By simply combining the theorems of this section we have finally obtained a decision
procedure which can solve the question whether a loop is also a loop when regarding the
strategy given by Q.

140 Chapter 8. Processors for Non-Termination Analysis

Corollary 8.22 (Deciding Q-loops). For every looping reduction of a TRS or of a DP
problem it is decidable whether that reduction is a loop when regarding the strategy Q.

Example 8.23. At the end of Example 8.18 we knew that the given loop respects the
strategy iff (x u y, µ) is not solvable where µ = {x/c(x, y), y/z, u/y}. We apply the
algorithm of Figure 8.19 to show that this identity problem is indeed not solvable, and
hence the loop is also Q-looping.

Since µ only contains cycles of length 1, we skip step (i). So, let s = x and t = y. Then
none of the steps (iii)-(vi) are applicable. Hence, we add (x, ε, y) to S and continue with
s = c(x, y) and t = z. Then, in step (v) the algorithm is stopped with answer “No” due
to a stationary conflict.

Summary of Chapter 8

In this chapter we have presented various methods to prove that a TRS is non-terminating.
First, we have seen that every loop gives rise to non-termination. Then we have presented
a new contribution, where we have generalized the concept of a loop from full rewriting
to Q-restricted rewriting and from TRSs to DP problems. Moreover, we have proven that
a TRS is looping iff its initial DP problem is looping. This result is important since it
implies that one can only benefit from disproving termination in the DP framework: If a
TRS is looping, one will be able to detect that loop in a corresponding DP problem, and
often one can detect the loop more easily, since the processors to prove termination often
narrow the search space to find a loop considerably.

To further simplify disproving termination, we have introduced a novel processor which
can transform infinite non-looping DP problems into looping DP problems by switching
from innermost termination to termination.

All of the above methods have already been published by us in a basic version in
[GTS05b] where we only considered full and innermost rewriting instead of Q-restricted
rewriting. Moreover, the equivalence result between looping TRSs and looping DP prob-
lems is only available for full rewriting in [GTS05b].

Finally, we have presented a new algorithm to decide whether a loop for full rewriting
is also a loop for Q-restricted rewriting. This extends our work in [GTS05c] which can
only approximate this question.

To automate disproving, we propose the following strategy. First one should apply all
complete processors of the previous chapters as if one would try to prove termination. This
will usually simplify the initial DP problem considerably and it will detect the possibly
non-terminating parts. Then one should really try to disprove termination. To obtain a
small setQ one should apply the processor of Theorem 3.34 to remove all terms ofQ which
cannot block a reduction any more, and one should apply the processor of Theorem 8.9
to switch to termination, if possible. Note that both these processors drop minimality,
but this does not matter, since minimality is not needed when disproving termination.
Finally one should try to disprove termination by Theorem 8.5, i.e., by searching for a
loop. To this end, one can use one of the methods in [GTS05b, GZ99, Pay06] for finding
loops for full termination, and then check whether that loop respects the strategy by our
new algorithm where of course, one should guide this search by the evaluation strategy
as far as possible.

In the related work of [WS06] a larger class of non-terminating problems has been
identified, so called inner-loops. These still have some regular structure but up to now,

8.3. Detecting Looping Problems 141

no technique is available which can automatically detect inner-loops that are not already
loops. It would be interesting to develop these techniques and to generalize inner-loops
from full rewriting to Q-restricted rewriting.

Other related work can be found in [Pla86]. There a TRS R is already called “non-
terminating” if it allows a self-embedding reduction sequence. A reduction sequence
t1 →R t2 →R . . . is called self-embedding if there are i and j > i such that tj %emb ti.
Thus, this criterion can be used to detect that R is not simply-terminating. This is
used to avoid infinite reductions in the reduction step of Knuth-Bendix style completion.
However these results are incomparable to our work, since their criterion does not imply
non-termination with the usual meaning of non-termination.

9. Conclusion

We introduced the DP framework for termination proofs (Chapter 2) which generalizes
the classical DP approach [AG00] into a general basis for automated termination proofs.
Since it turned out that the classical evaluation strategies of full rewriting and innermost
rewriting are not expressive enough – especially if one wants to obtain completeness – we
used the more general notion of Q-restricted rewriting.

Then we showed how to formulate the existing components of the DP approach as
processors within this framework (Chapters 3–5). In contrast to the DP approach, now
these components can be applied at any time during the termination proof and their
applicability conditions only concern the current DP problem, not the whole TRSs. For
example, we designed a modular and more powerful version of the technique of [Gra95]
to switch to innermost termination. Moreover, we developed several new processors and
extended existing techniques ([Urb01]) to simplify DP problems, such that far less con-
straints have to be satisfied, or less new pairs and rules will be generated. Additionally,
we introduced semantic notions (of Cap and of usable rules) which encompass all known
syntactic definitions, and our estimations yield better results than all previous versions.
And even more importantly, since our processors only make use of these semantic notions,
every future improvement of the estimations can be integrated without having to recheck
or adapt a single proof of any of the processors.

Afterwards, we presented several new processors to handle applicative TRSs, which are
first-order TRSs of a special form that can be used to represent higher-order functions
(Chapter 6). Here, we extended the existing work about transforming applicative TRSs to
standard functional form ([KKSV96]) to DP problems, which entailed the new problem of
considering the evaluation strategy in that transformation. There we detected that some
of the desired processors would be unsound, but we solved this problem by combining
the transformation with those processors that are based on well-founded orders. This
is sufficient since most of the other processors are equally powerful on transformed and
untransformed DP problems.

As next step we adapted the powerful technique of semantic labeling [Zan95] to the DP
framework (Chapter 7). Our work included the integration of strategies for both models
and quasi-models, we investigated completeness of semantic labeling, and we detected
which processors may be used between labeling and unlabeling.

Finally, we illustrated how to disprove termination (Chapter 8). A major contribution
was already made in the previous chapters since for all processors in Chapters 3–7, we
also investigated their completeness which allows us to use them also when proving non-
termination. To finally detect non-termination we try to find loops, a notion we have
generalized from full to Q-restricted rewriting and from TRSs to DP problems. To this
end, we designed a novel algorithm which can decide whether a loop for full rewriting
respects a given evaluation strategy, and additionally other techniques were presented
that allow to switch to a more liberal strategy before trying to detect a loop.

Of course, there are other techniques to analyze termination that have not yet been
adapted to the DP framework like match-bounds [GHW03, GHWZ07] or the size-change

144 Chapter 9. Conclusion

principle [LJB01, TG03, TG05]. Therefore, in [GTS05a, Theorem 36] it is shown how
to integrate arbitrary existing termination techniques into the DP framework. The main
idea is to prove Q-termination of P ∪ R in order to show that (P ,Q,R, f) is finite. In
this way, these techniques can benefit from other processors which were applied before.
This increases their applicability and power considerably. However, it would of course be
more advantageous to integrate these techniques more closely into the DP framework like
it was done for semantic labeling. This would be an interesting future work.

All of our techniques not only work in theory but they can be efficiently mechanized,
too. This can be done in two steps.

First, one needs an efficient implementation of each individual processor. For the more
challenging processors – those of Chapters 4, 6, 7, and 8 – one can find corresponding
techniques in our work [CSL+06, FGM+07, GTSF03, GTSF06, STA+07] and in the work
of [CLS06, CMTU05, GZ99, Pay06, HM05, KM07, KZ06, Zan05b, ZHM07]. Here, the
most recent techniques often use SAT encodings and benefit from modern SAT solvers.

And second, one definitely needs a strategy when to apply each technique. One can take
the following general purpose strategy as starting point, but of course one might want to
adapt it for certain classes of input problems, or if new techniques become available.

Our strategy works as follows. We start with the tree that only contains the initial DP
problem as node. And whenever we detect an unprocessed DP problem (P ,Q,R, f) in
this tree, we try to successfully apply a processor in the following sequence, i.e., we apply
the first processor Proc which satisfies Proc((P ,Q,R, f)) 6= {(P ,Q,R, f)}.

(i) Apply very fast and complete processors

(a) Delete all edges in the pair-graph due to the dependency graph (Theorem 3.3
with estimation of Definition 3.9)

(b) Decompose pair-graph (Theorem 3.4)

(c) Delete all edges in the pair-graph due to the dependency graph (Theorem 3.3
with star-estimation of Definition 3.31)

(d) Switch to innermost termination (Theorem 3.14)

(e) Remove all unusable rules (Theorem 3.25)

(f) Remove non-blocking terms in Q (Theorem 3.36)

(g) Switch from applicative to functional form in the innermost case (Theorem 6.8)

(ii) Apply fast and complete processors

(a) Remove pairs by the subterm criterion (Theorem 4.41)

(b) Switch from applicative to functional form in the termination case by using
monotonic reduction pairs (Theorem 6.17 (C))

(c) Remove all unneeded rules by using monotonic reduction pairs (Theorems 4.20
and 6.17 (B))

(d) Remove further rules by using monotonic reduction pairs (Theorems 4.22 and
6.17 (B))

If one has found a reduction order for one of the above processors one should directly
try to simplify the resulting DP problem further with the help of this reduction order.
For example, the constraints to successfully apply (ii–b) do not require a strict

145

decrease. However, if it turns out that some pairs or rules are strictly decreasing
one can directly simplify the DP problem further by (ii–d).

(iii) Apply powerful and complete processors

Remove pairs by using “simple” reduction pairs (such as RPO, KBO, linear poly-
nomial orders with low coefficients)

(a) For applicative DP problems use reduction pair processor (Theorem 6.22), or
if a DP problem is not even π-proper, try combination with argument filter
processor (Theorem 4.38)

(b) For non-applicative DP problems use reduction pair processors (Theorems 4.27
and 4.32)

(iv) Apply complete transformations

(a) Rewrite pairs (Theorem 5.10)

(b) Narrow pairs (Theorem 5.19)

(c) Instantiate pairs (Theorems 5.3 and 5.5)

Here, the processors in steps (iv–a) and (iv–b) should only be applied if their ap-
plication is complete. Moreover, one should directly apply all pair transformations
before restarting at the beginning of our strategy. The reason is that often many
transformation have to be performed, before a reduction pair processor can be ap-
plied afterwards. However, the processors of step (i) should be tried after every
transformation.

Since the transformations can often be applied infinitely many times, we have iden-
tified “safe” transformations which are guaranteed to terminate. More details can
be found in [GTSF06, Definition 33].

(v) Apply very powerful and complete processors

Repeat step (iii) with “complex” reduction pairs (such as negative or non-linear
polynomial orders and matrix interpretations)

(vi) Try to disprove termination

(a) Remove all non-blocking terms from Q (Theorem 3.34)

(b) Switch to termination (Theorem 8.9)

(c) Find a loop (Theorem 8.5)

After steps (vi–a) and (vi–b) have been applied, one should not restart with the
global strategy in step (i), but directly try step (vi–c). If one cannot find a loop,
one should not apply any step of (vi) at all, since otherwise minimality would be
lost.

(vii) Apply incomplete transformations

Reapply step (iv) but even allow incomplete transformations

(viii) Apply semantic labeling

Use the technique of labeling and unlabeling (Theorem 7.30). For the labeling
always use full labeling (Theorems 7.10 and 7.23) and for quasi-models and linear

146 Chapter 9. Conclusion

sets Q combine it with Theorem 7.15 to preserve minimality. For the simplification
between labeling and unlabeling use the chain-identifying processors of steps (i–a)–
(i–c) and (i–e) as well as the processors of steps (ii–c), (ii–d), and (iii) in combination
with linear polynomial orders.

Our strategy has two global properties. All DP problems in the tree have their min-
imality flag enabled and the roots of the pairs are always head symbols. (Note that
minimality is lost locally when trying to disprove termination and when semantic labeling
is used with quasi-models and non-linear sets Q (steps (vi) and (viii)). To achieve the
former property, we did not allow the processors of Theorems 4.12, 6.12, and 6.17 (A).
And because of the latter property we did not integrate Theorem 4.39.

All other processors of this thesis that cannot be found in our strategy are not inte-
grated, because they are subsumed by some strictly more powerful processor.

A large number of processors (including all that have been presented in this thesis) have
been implemented in our automated termination tool AProVE [GST06]. Moreover, we
have designed a dedicated strategy similar to the one above for every class of termination
problems, i.e., there is one strategy for TRSs, one for Prolog-programs, one for Haskell-
programs, etc.

The accumulated effect38 of our contributions can be seen at the annual international
Termination Competition [MZ07]. Due to the DP framework, since the beginning of the
competition in the year 2004, AProVE was the most powerful system in the term rewriting
category, both for proving and for disproving termination. Here, the tools were tested
on the examples from the termination problem data base (TPDB) [TPDB], a collection
of termination problems from several sources and different areas of computer science. To
give some numbers, in the competition of this year where every tool had two minutes to
analyze each TRS, AProVE could detect that 723 of the 975 TRSs are terminating and it
could disprove termination of 128 systems, whereas the second most powerful tools could
only prove termination of 574 TRSs and disprove termination of 117 systems.

This demonstrates that the DP framework is indeed very well suited for automation and
for application in practice. The fact that the most successful of the other termination tools
Cariboo [FGK02], CiME,39Jambox,40 Matchbox [Wal04], MultumNonMulta,41 MU-TERM
[AGIL07], NTI [Pay06], TEPARLA,42 TERMPTATION,43 TORPA [Zan05b], TPA [Kop06],
TTT [HM07], TTT2,44 and TTTbox45 also use dependency pairs, additionally fortifies this
claim.

To summarize, without our contributions, AProVE would not be the winner of the
competition in the last four years.

Since the combination of techniques within the DP framework leads to a very modular,
flexible, and powerful approach, the DP framework is particularly suitable as a basis

38To empirically illustrate the advantages of a particular technique, we refer to the large amount of
experimental data which is available in [GTS05b, GTSF03, GTSF04, GTSF06, TGS04] and at http:
//aprove.informatik.rwth-aachen.de/eval/#experiments.

39Available at http://cime.lri.fr/.
40Available at http://joerg.endrullis.de/.
41Available at http://www.theory.informatik.uni-kassel.de/~dieter/multum/.
42Available at http://www.win.tue.nl/~hzantema/torpa.html.
43Available at http://www.lsi.upc.es/~albert/term.html.
44Available at http://colo6-c703.uibk.ac.at/ttt2/.
45Available at http://cl-informatik.uibk.ac.at/~mkorp/TTTbox.html.

http://aprove.informatik.rwth-aachen.de/eval/#experiments
http://aprove.informatik.rwth-aachen.de/eval/#experiments
http://cime.lri.fr/
http://joerg.endrullis.de/
http://www.theory.informatik.uni-kassel.de/~dieter/multum/
http://www.win.tue.nl/~hzantema/torpa.html
http://www.lsi.upc.es/~albert/term.html
http://colo6-c703.uibk.ac.at/ttt2/
http://cl-informatik.uibk.ac.at/~mkorp/TTTbox.html

147

for future research on automated termination proving. We see four main directions of
research:

While there already exist several powerful processors, these processors are not yet suffi-
cient to handle all termination problems occurring in practice. Therefore, one important
topic for further work is the improvement of the existing processors and the development
of new processors which are particularly fast or particularly powerful for certain classes
of DP problems. (Some more detailed ideas have already been given in the summaries of
each of the Chapters 3 – 8.)

Another important line of research is the development of strategies to decide which
processor should be applied next on a particular DP problem. We have designed such
strategies for the current set of processors, but with every new technique, the development
becomes more complex: Even in the presented strategy one should use time-outs in specific
steps, because otherwise not even step (vi) would be reached if one choses certain classes
of reduction pairs in step (v). (Exchanging these two steps would not help since the
current step (vi) – if used without resource limits – would then block step (v).) Thus,
distributing the resource time on the available processors in such a way that one benefits
from all available techniques is a major problem that needs to be investigated.

Since current termination provers become more and more complicated, the chances are
high that not every generated proof is correct. And indeed, in the last years some provers
returned wrong answers due to a bug in the implementation of the theorems. Therefore,
verifying termination proofs becomes a more and more important task. Here, the research
has just started recently with the CoLoR and A3PAT projects [BDC+06, CCF+07].

The last direction is about the connection between term rewriting and programming
languages. Although there already exist transformations from logic- and functional-
programming into TRSs that work well in practice, they can still be improved to handle
and exploit more features of the language, e.g., built-in data-structures, types, etc. More-
over, successful transformational approaches to prove termination for the important class
of imperative programs are still missing. On the other hand it would also be interesting,
to adapt the powerful termination techniques of term rewriting such that they become
applicable directly on programs, and – vice versa – to integrate termination techniques
from other areas into term rewriting.

Bibliography

[Abe04] A. Abel. Termination checking with types. RAIRO – Theoretical Informatics
and Applications, 38(4):277–319, 2004.

[AG00] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236:133–178, 2000.

[AGIL07] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving termination of
context-sensitive rewriting with MU-TERM. In Proceedings of the 6th Spanish
Conference on Programming and Computer Languages (PROLE ’06), Elec-
tronic Notes in Theoretical Computer Science, 2007. To appear. Tool available
at http://www.dsic.upv.es/~slucas/csr/termination/muterm/.

[AM93] G. Aguzzi and U. Modigliani. Proving termination of logic programs by trans-
forming them into equivalent term rewriting systems. In Proceedings of the
13th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FST & TCS ’93), volume 761 of Lecture Notes in Computer
Science, pages 114–124, 1993.

[AY03] T. Aoto and T. Yamada. Termination of simply typed term rewriting systems
by translation and labelling. In Proceedings of the 14th International Con-
ference on Rewriting Techniques and Applications (RTA ’03), volume 2706 of
Lecture Notes in Computer Science, pages 380–394, 2003.

[AY04] T. Aoto and T. Yamada. Termination of simply-typed applicative term rewrit-
ing systems. In Proceedings of the 2nd International Workshop on Higher-
Order Rewriting (HOR ’04), pages 61–65, 2004.

[AY05] T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In
Proceedings of the 16th International Conference on Rewriting Techniques and
Applications (RTA ’05), volume 3467 of Lecture Notes in Computer Science,
pages 120–134, 2005.

[AZ95] T. Arts and H. Zantema. Termination of logic programs using semantic uni-
fication. In Proceedings of the 5th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR ’95), volume 1048 of Lec-
ture Notes in Computer Science, pages 219–233, 1995.

[BCDO06] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In Proceedings of the 18th
International Conference on Computer Aided Verification (CAV ’06), volume
4144 of Lecture Notes in Computer Science, pages 386–400, 2006.

[BDC+06] F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski.
CoLoR, a Coq library on rewriting and termination. In Proceedings of the 8th

http://www.dsic.upv.es/~slucas/csr/termination/muterm/

150 Bibliography

International Workshop on Termination (WST 06’), pages 69–73, 2006. See
also http://color.loria.fr/.

[BFG+04] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based
termination of recursive definitions. Mathematical Structures in Computer
Science, 14(1):1–45, 2004.

[BFR00] C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic
path orderings. In Proceedings of the 17th International Conference on Au-
tomated Deduction (CADE ’00), volume 1831 of Lecture Notes in Artificial
Intelligence, pages 346–364, 2000.

[Bla04] F. Blanqui. A type-based termination criterion for dependently-typed higher-
order rewrite systems. In Proceedings of the 15th International Conference
on Rewriting Techniques and Applications (RTA ’04), volume 3091 of Lecture
Notes in Computer Science, pages 24–39, 2004.

[BMS05] A. R. Bradley, Z. Manna, and H. B. Sipma. Termination of polynomial pro-
grams. In Proceedings of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI ’05), volume 3385 of
Lecture Notes in Computer Science, pages 113–129, 2005.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

[BR01] C. Borralleras and A. Rubio. A monotonic higher-order semantic path or-
dering. In Proceedings of the 8th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR ’01), volume 2250 of
Lecture Notes in Artificial Intelligence, pages 531–547, 2001.

[CCF+07] E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification
of automated termination proofs. In Proceedings of the 6th International
Symposium on Frontiers of Combining Systems (FroCoS ’07), Lecture Notes
in Artificial Intelligence, 2007. To appear. See also http://www3.iie.cnam.

fr/~urbain/a3pat/.

[CLS05] M. Codish, V. Lagoon, and P. Stuckey. Testing for termination with mono-
tonicity constraints. In Proceedings of the 21th International Conference on
Logic Programming (ICLP ’05), volume 3668 of Lecture Notes in Computer
Science, pages 326–340, 2005.

[CLS06] M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints
for LPO termination. In Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), volume 4098 of Lecture
Notes in Computer Science, pages 4–18, 2006.

[CMTU05] E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving
termination using polynomial interpretations. Journal of Automated Reason-
ing, 34(4):325–363, 2005.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’06), pages 415–426. ACM Press,
2006.

http://color.loria.fr/
http://www3.iie.cnam.fr/~urbain/a3pat/
http://www3.iie.cnam.fr/~urbain/a3pat/

Bibliography 151

[CS02] M. Colon and H. B. Sipma. Practical methods for proving program termina-
tion. In Proceedings of the 14th International Conference on Computer Aided
Verification (CAV ’02), volume 2034 of Lecture Notes in Computer Science,
pages 442–454, 2002.

[CSL+06] M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl.
SAT solving for argument filterings. In Proceedings of the 13th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR ’06), volume 4246 of Lecture Notes in Artificial Intelligence, pages
30–44, 2006.

[DD94] D. De Schreye and S. Decorte. Termination of logic programs: The never-
ending story. Journal of Logic Programming, 19/20:199–260, 1994.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3:69–116, 1987.

[Der04] N. Dershowitz. Termination by abstraction. In Proceedings of the 20th In-
ternational Conference on Logic Programming (ICLP ’04), volume 3132 of
Lecture Notes in Computer Science, pages 1–18, 2004.

[DS02] D. De Schreye and A. Serebrenik. Acceptability with general orderings. In
Computational Logic: Logic Programming and Beyond, volume 2407 of Lec-
ture Notes in Computer Science, pages 187–210, 2002.

[EWZ06] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for prov-
ing termination of term rewriting. In Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR ’06), volume 4130 of Lec-
ture Notes in Artificial Intelligence, pages 574–588, 2006.

[FGK02] O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof
tool for termination with strategies. In Proceedings of the 4th International
Conference on Principles and Practice of Declarative Programming (PPDP
’02), pages 62–73. ACM Press, 2002. Tool available at http://protheo.

loria.fr/softwares/cariboo.

[FGM+07] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. SAT solving for termination analysis with polynomial interpre-
tations. In Proceedings of the 10th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’07), volume 4501 of Lecture Notes
in Computer Science, pages 340–354, 2007.

[GA01] J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Ap-
plicable Algebra in Engineering, Communication and Computing, 12(1,2):39–
72, 2001.

[GAO02] J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

[GHW03] A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting
systems. In Proceedings of the 28th International Symposium on Mathematical
Foundations of Computer Science (MFCS ’03), volume 2747 of Lecture Notes
in Computer Science, pages 449–459, 2003.

http://protheo.loria.fr/softwares/cariboo
http://protheo.loria.fr/softwares/cariboo

152 Bibliography

[GHWZ07] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata
that certify termination of left-linear term rewriting systems. Information
and Computation, 205(4):512–534, 2007.

[Gie95] J. Giesl. Termination analysis for functional programs using term orderings.
In Proceedings of the 2nd International Static Analysis Symposium (SAS ’95),
volume 983 of Lecture Notes in Computer Science, pages 154–171, 1995.

[Gra95] B. Gramlich. Abstract relations between restricted termination and conflu-
ence properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

[GSST06] J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated
termination analysis for Haskell: From term rewriting to programming lan-
guages. In Proceedings of the 17th International Conference on Rewriting
Techniques and Applications (RTA ’06), volume 4098 of Lecture Notes in
Computer Science, pages 297–312, 2006.

[GST06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic ter-
mination proofs in the DP framework. In Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR ’06), volume 4130 of Lec-
ture Notes in Artificial Intelligence, pages 281–286, 2006. Tool available at
http://aprove.informatik.rwth-aachen.de/.

[GTS05a] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair frame-
work: Combining techniques for automated termination proofs. In Proceed-
ings of the 11th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR ’04), volume 3452 of Lecture Notes
in Artificial Intelligence, pages 301–331, 2005.

[GTS05b] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving ter-
mination of higher-order functions. In Proceedings of the 5th International
Workshop on Frontiers of Combining Systems (FroCoS ’05), volume 3717 of
Lecture Notes in Artificial Intelligence, pages 216–231, 2005.

[GTS05c] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Disproving termination of
term rewriting. Talk given at the Workshop on Disproving – Non-Theorems,
Non-Validity, Non-Provability, 2005.

[GTSF03] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving depen-
dency pairs. In Proceedings of the 10th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’03), volume
2850 of Lecture Notes in Artificial Intelligence, pages 167–182, 2003.

[GTSF04] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termina-
tion proofs with AProVE. In Proceedings of the 15th International Conference
on Rewriting Techniques and Applications (RTA ’04), volume 3091 of Lecture
Notes in Computer Science, pages 210–220, 2004.

[GTSF06] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and
improving dependency pairs. Journal of Automated Reasoning, 37(3):155–
203, 2006.

http://aprove.informatik.rwth-aachen.de/

Bibliography 153

[GTSS07] J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving ter-
mination by bounded increase. In Proceedings of the 21st Conference on Au-
tomated Deduction (CADE ’07), volume 4603 of Lecture Notes in Artificial
Intelligence, pages 443–459, 2007.

[GW93] H. Ganzinger and U. Waldmann. Termination proofs of well-moded logic pro-
grams via conditional rewrite systems. In Proceedings of the 3rd International
Workshop on Conditional Term Rewriting (CTRS ’93), volume 656 of Lecture
Notes in Computer Science, pages 216–222, 1993.

[GWB98] J. Giesl, C. Walther, and J. Brauburger. Termination analysis for func-
tional programs. Automated Deduction – A Basis for Applications, 3:135–164.
Kluwer Academic Publishers, 1998.

[GZ99] A. Geser and H. Zantema. Non-looping string rewriting. RAIRO Theoretical
Informatics and Applications, 33(3):279–302, 1999.

[HM05] N. Hirokawa and A. Middeldorp. Automating the dependency pair method.
Information and Computation, 199(1,2):172–199, 2005.

[HM06a] N. Hirokawa and A. Middeldorp. Predictive labeling. In Proceedings of
the 17th International Conference on Rewriting Techniques and Applications
(RTA ’06), volume 4098 of Lecture Notes in Computer Science, pages 313–
327, 2006.

[HM06b] N. Hirokawa and A. Middeldorp. Uncurrying for termination. In Proceedings
of the 3rd International Workshop on Higher-Order Rewriting (HOR ’06),
pages 19–24, 2006.

[HM07] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and
features. Information and Computation, 205(4):474–511, 2007. Tool available
at http://colo6-c703.uibk.ac.at/ttt/.

[HW06] D. Hofbauer and J. Waldmann. Termination of string rewriting with ma-
trix interpretations. In Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), volume 4098 of Lecture
Notes in Computer Science, pages 328–342, 2006.

[JR07] J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path or-
derings. Journal of the ACM, 54(1):1–48, 2007.

[KB70] D. Knuth and P. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon, 1970.

[KKS98] M. R. K. Krishna Rao, D. Kapur, and R. Shyamasundar. Transformational
methodology for proving termination of logic programs. Journal of Logic
Programming, 34(1):1–42, 1998.

[KKSV96] R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

http://colo6-c703.uibk.ac.at/ttt/

154 Bibliography

[KL80] S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering.
Unpublished Manuscript, University of Illinois, IL, USA, 1980.

[KM07] A. Koprowski and A. Middeldorp. Predictive labeling with dependency pairs
using SAT. In Proceedings of the 21st Conference on Automated Deduction
(CADE ’07), volume 4603 of Lecture Notes in Artificial Intelligence, pages
410–425, 2007.

[KNT99] K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transforma-
tion. In Proceedings of the 1st International Conference on Principles and
Practice of Declarative Programming (PPDP ’99), volume 1702 of Lecture
Notes in Computer Science, pages 48–62, 1999.

[Kop06] A. Koprowski. TPA: Termination Proved Automatically. In Proceedings of
the 17th International Conference on Rewriting Techniques and Applications
(RTA ’06), volume 4098 of Lecture Notes in Computer Science, pages 257–
266, 2006. Tool available at http://www.win.tue.nl/tpa/.

[Kru60] J. B. Kruskal. Well-quasiorderings, the Tree Theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95:210–223, 1960.

[Kus01] K. Kusakari. On proving termination of term rewriting systems with higher-
order variables. IPSJ Transactions on Programming, 42(SIG 7 (PRO 11)):35–
45, 2001.

[KZ06] A. Koprowski and H. Zantema. Automation of recursive path ordering for
infinite labelled rewrite systems. In Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR ’06), volume 4130 of Lecture
Notes in Artificial Intelligence, pages 332–346, 2006.

[Lan79] D. Lankford. On proving term rewriting systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[LB98] M. Lifantsev and L. Bachmair. An LPO-based termination ordering for
higher-order terms without λ-abstraction. In Proceedings of the 11th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs ’98),
volume 1479 of Lecture Notes in Computer Science, pages 277–293, 1998.

[LJB01] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle
for program termination. In ACM Symposium on Principles of Programming
Languages (POPL ’01), pages 81–92, 2001.

[LMS03] V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is
more accurate. In Proceedings of the 19th International Conference on Logic
Programming (ICLP ’03), volume 2916 of Lecture Notes in Computer Science,
pages 254–268, 2003.

[Luc05] S. Lucas. Polynomials over the reals in proofs of termination: from theory
to practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586,
2005.

http://www.win.tue.nl/tpa/

Bibliography 155

[Mar94] M. Marchiori. Logic programs as term rewriting systems. In Proceedings of
the 4th International Conference on Algebraic and Logic Programming (ALP
’94), volume 850 of Lecture Notes in Computer Science, pages 223–241, 1994.

[Mar96] M. Marchiori. Proving existential termination of normal logic programs. In
Proceedings of the 5th International Conference on Algebraic Methodology and
Software Technology (AMAST ’96), volume 1101 of Lecture Notes in Com-
puter Science, pages 375–390, 1996.

[Mid94] A. Middeldorp. A simple proof to a result of Bernhard Gramlich. Pre-
sentation given at the 5th Japanese Term Rewriting Meeting, Tsukuba,
1994. Available at http://cl-informatik.uibk.ac.at/~ami/research/

publications/misc/bg.pdf.

[Mid01] A. Middeldorp. Approximating dependency graphs using tree automata tech-
niques. In Proceedings of the 1st International Joint Conference on Auto-
mated Reasoning (IJCAR ’01), volume 2083 of Lecture Notes in Artificial
Intelligence, pages 593–610, 2001.

[Mid02] A. Middeldorp. Approximations for strategies and termination. In Proceedings
of the 2nd International Workshop on Reduction Strategies in Rewriting and
Programming (WRS ’02), volume 70(6) of Electronic Notes in Theoretical
Computer Science, pages 1–20, 2002.

[MR03] F. Mesnard and S. Ruggieri. On proving left termination of constraint logic
programs. ACM Transactions on Computational Logic, 4(2):207–259, 2003.

[MZ07] C. Marché and H. Zantema. The termination competition. In Proceedings of
the 18th International Conference on Rewriting Techniques and Applications
(RTA ’07), volume 4533 of Lecture Notes in Computer Science, pages 303–313,
2007. See also http://www.lri.fr/~marche/termination-competition/.

[Ohl01] E. Ohlebusch. Semantic labeling meets dependency pairs. In Proceedings
of the 5th International Workshop on Termination (WST ’01), pages 36–38,
2001.

[Pay06] Étienne Payet. Detecting non-termination of term rewriting systems us-
ing an unfolding operator. In Proceedings of the 16th International Sympo-
sium on Logic-Based Program Synthesis and Transformation (LOPSTR ’06),
volume 4407 of Lecture Notes in Computer Science, pages 177–193, 2006.
Tool available at http://www2.univ-reunion.fr/~epayet/Research/TRS/

TRSanalyses.html.

[Pla86] D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method.
In Proceedings of the 8th International Conference on Automated Deduction
(CADE ’86), volume 230 of Lecture Notes in Computer Science, pages 79–88,
1986.

[Pol96] J. van de Pol. Termination of higher-order rewrite systems. PhD thesis,
Utrecht, 1996.

http://cl-informatik.uibk.ac.at/~ami/research/publications/misc/bg.pdf
http://cl-informatik.uibk.ac.at/~ami/research/publications/misc/bg.pdf
http://www.lri.fr/~marche/termination-competition/
http://www2.univ-reunion.fr/~epayet/Research/TRS/TRSanalyses.html
http://www2.univ-reunion.fr/~epayet/Research/TRS/TRSanalyses.html

156 Bibliography

[PR04a] A. Podelski and A. Rybalchenko. A complete method for the synthesis of
linear ranking functions. In Proceedings of the 5th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI ’04),
volume 2937 of Lecture Notes in Computer Science, pages 239–251, 2004.

[PR04b] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of
the 19th IEEE Symposium on Logic in Computer Science (LICS ’04), pages
32–41. IEEE Computer Society, 2004.

[PS97] S. E. Panitz and M. Schmidt-Schauss. TEA: Automatically proving termina-
tion of programs in a non-strict higher-order functional language. In Proceed-
ings of the 4th International Static Analysis Symposium (SAS ’97), volume
1302 of Lecture Notes in Computer Science, pages 345–360, 1997.

[Raa97] F. van Raamsdonk. Translating logic programs into conditional rewriting
systems. In Proceedings of the 14th International Conference on Logic Pro-
gramming (ICLP ’97), pages 168–182. MIT Press, 1997.

[SGST06] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated
termination analysis for logic programs by term rewriting. In Proceedings
of the 16th International Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR ’06), volume 4407 of Lecture Notes in Computer
Science, pages 177–193, 2006.

[SK05] M. Sakai and K. Kusakari. On dependency pair method for proving termi-
nation of higher-order rewrite systems. IEICE Transactions on Information
and Systems, E88-D(3):583–593, 2005.

[Sma04] J.-G. Smaus. Termination of logic programs using various dynamic selection
rules. In Proceedings of the 20th International Conference on Logic Program-
ming (ICLP ’04), volume 3132 of Lecture Notes in Computer Science, pages
43–57, 2004.

[STA+07] P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Prov-
ing termination using recursive path orders and SAT solving. In Proceedings of
the 6th International Symposium on Frontiers of Combining Systems (FroCoS
’07), Lecture Notes in Artificial Intelligence, 2007. To appear.

[Ste95] J. Steinbach. Simplification orderings: History of results. Fundamenta Infor-
maticae, 24:47–87, 1995.

[SWS01] M. Sakai, Y. Watanabe, and T. Sakabe. An extension of dependency pair
method for proving termination of higher-order rewrite systems. IEICE Trans-
actions on Information and Systems, E84-D(8):1025–1032, 2001.

[Ter03] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science 55. Cambridge University Press, 2003.

[TG03] R. Thiemann and J. Giesl. Size-change termination for term rewriting. In
Proceedings of the 14th International Conference on Rewriting Techniques and
Applications (RTA ’03), volume 2706 of Lecture Notes in Computer Science,
pages 264–278, 2003.

Bibliography 157

[TG05] R. Thiemann and J. Giesl. The size-change principle and dependency pairs
for termination of term rewriting. Applicable Algebra in Engineering, Com-
munication and Computing, 16(4):229–270, 2005.

[TGS04] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termina-
tion proofs using dependency pairs. In Proceedings of the 2nd International
Joint Conference on Automated Reasoning (IJCAR ’04), volume 3097 of Lec-
ture Notes in Artificial Intelligence, pages 75–90, 2004.

[Tiw04] A. Tiwari. Termination of linear programs. In Proceedings of the 16th Inter-
national Conference on Computer Aided Verification (CAV ’04), volume 3097
of Lecture Notes in Artificial Intelligence, pages 70–82, 2004.

[TM07] R. Thiemann and A. Middeldorp. Innermost termination of rewrite systems
by labeling. In Proceedings of the 7th International Workshop on Reduction
Strategies in Rewriting and Programming (WRS ’07), Electronic Notes in
Theoretical Computer Science, 2007. To appear.

[Toy87] Y. Toyama. Counterexamples to the termination for the direct sum of term
rewriting systems. Information Processing Letters, 25:141–143, 1987.

[Toy04] Y. Toyama. Termination of S-expression rewriting systems: Lexicographic
path ordering for higher-order terms. In Proceedings of the 15th Interna-
tional Conference on Rewriting Techniques and Applications (RTA ’04), vol-
ume 3091 of Lecture Notes in Computer Science, pages 40–54, 2004.

[TPDB] The termination problem data base (TPDB). Available at http://www.lri.
fr/~marche/tpdb/.

[TT00] A. Telford and D. Turner. Ensuring termination in ESFP. Journal of Uni-
versal Computer Science, 6(4):474–488, 2000.

[TZGS07] R. Thiemann, H. Zantema, J. Giesl, and P. Schneider-Kamp. Adding con-
stants to string rewriting. Applicable Algebra in Engineering, Communication
and Computing, 2007. To appear.

[Urb01] X. Urbain. Automated incremental termination proofs for hierarchically de-
fined term rewriting systems. In Proceedings of the 1st International Joint
Conference on Automated Reasoning (IJCAR ’01), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 485–498, 2001.

[Wal94] C. Walther. On proving the termination of algorithms by machine. Artificial
Intelligence, 71(1):101–157, 1994.

[Wal04] J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In
Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA ’04), volume 3091 of Lecture Notes in Computer Science,
pages 85–94, 2004. Tool available at http://dfa.imn.htwk-leipzig.de/

matchbox/.

[WS06] Y. Wang and M. Sakai. On non-looping term rewriting. In Proceedings of the
8th International Workshop on Termination (WST ’06), pages 17–21, 2006.

http://www.lri.fr/~marche/tpdb/
http://www.lri.fr/~marche/tpdb/
http://dfa.imn.htwk-leipzig.de/matchbox/
http://dfa.imn.htwk-leipzig.de/matchbox/

158 Bibliography

[Xi02] H. Xi. Dependent types for program termination verification. Higher-Order
and Symbolic Computation, 15(1):91–131, 2002.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Funda-
menta Informaticae, 24:89–105, 1995.

[Zan05a] H. Zantema. Reducing right-hand sides for termination. In Processes, Terms
and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes in
Computer Science, pages 173–197, 2005.

[Zan05b] H. Zantema. Termination of string rewriting proved automatically. Journal
of Automated Reasoning, 34:105–139, 2005. Tool available at http://www.

win.tue.nl/~hzantema/torpa.html.

[ZHM07] H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filter-
ings. In Proceedings of the 33rd International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM ’07), volume 4362 of
Lecture Notes in Computer Science, pages 579–590, 2007.

http://www.win.tue.nl/~hzantema/torpa.html
http://www.win.tue.nl/~hzantema/torpa.html

A. Proofs

A.2. Proofs of Chapter 2

Proof of Lemma 2.4. Obvious.

Proof of Lemma 2.6. We show both directions separately. First consider that there is
some q ∈ Q′ ∩ NF (Q). As q ∈ Q′, obviously q /∈ NF (Q′) and hence, NF (Q) 6⊆ NF (Q′).

For the other direction let there be some t with t ∈ NF (Q) and t /∈ NF (Q′). From
the latter we know that t contains a subterm qσ with q ∈ Q′. Note that q ∈ NF (Q) as
t ∈ NF (Q) and as rewriting is closed under contexts and substitutions. But this shows
Q′ ∩ NF (Q) 6= ∅.

Proof of Theorem 2.11. (i) ⇒ (ii): We define [as the inverse operation to], i.e., (f](t1,
. . . , tn))[= f(t1, . . . , tn). Let s1 → t1, s2 → t2, . . . be an infinite (DP(R),Q,R)-
chain with t1σ

Q→∗R s2σ, t2σ Q→∗R s2σ, Thus, s1σ
[= `1σ

Q→R r1σ = C1[t1σ
[] Q→∗R

C1[s2σ
[] = C1[`2σ] Q→R C1[r2σ] = C1[C2[t3σ

[]] Q→∗R C1[C2[s3σ
[]] Q→R . . . is an infinite

Q→R reduction.

(ii) ⇒ (iii): Obvious, as every minimal (P ,Q,R)-chain is also a (P ,Q,R)-chain.

(iii) ⇒ (i): Suppose, we have an infinite Q→R-reduction. Then, there is minimal (w.r.t. �)
term t0 that starts an infinite reduction where all its proper subterms are Q→R
terminating. Thus, t0

Q→∗R,>ε s1 = `1σ
Q→R,ε r1σ and r1σ is Q→R non-terminating.

Again, there must be a minimal non-terminating subterm t1 of r1σ. By minimality
of t1 the root of t1 must be defined. Moreover, as all proper subterms of `1σ are
Q→R terminating the term r1 cannot be a proper subterm of `1. Hence, the step
from s1 to t1 must correspond to a dependency pair of R. Thus, s]1 →DP(R) t

]
1 is a

reduction at the root position. Continuing in this way, we get an infinite sequence
of dependency pairs. To show that this sequence really is a chain we have to show
that all s]i are in Q-normal form. First note that all proper subterms of all si are
in Q-normal form. Hence, all proper subterms of all s]i are in Q-normal form, too.
Furthermore, the root of each s]i is a tuple symbol, thus no si can be matched by a
term of Q, too.

Finally, as all ti are chosen minimal and as all t]i have a tuple symbol as root that
is not contained in Q, all t]i are Q→R-terminating.

Proof of Lemma 2.17. Let some (P ′,Q′,R′, f ′) ∈ Proc((P ,Q,R, f)) be infinite and sup-
pose that (P ,Q,R, f) is not infinite. Thus, R is Q-terminating and (P ,Q,R, f) is finite.
Due to Q-termination of R, every (P ,Q,R)-chain is minimal and thus, there is no infinite
(P ,Q,R)-chain, even if f = m.

Note that by Lemma 2.4 Q′-termination of R′ follows from Q-termination of R. So
if (P ′,Q′,R′, f ′) is infinite, there must be an infinite (P ′,Q′,R′)-chain. But then this
is also a (P ,Q,R)-chain which contradicts the observation above. The reason is that

160 Appendix A. Proofs

if the edge si → ti, si+1 → ti+1 is present in P ′ then the same edge is contained in P ,
that tiσ Q

′→∗R′ si+1σ implies tiσ
Q→∗R si+1σ by Lemma 2.4, and that siσ ∈ NF (Q′) implies

siσ ∈ NF (Q).

A.3. Proofs of Chapter 3

Proof of Theorem 3.3. Completeness follows from Lemma 2.17, since P∩P ′ ⊆ P . Proc is
sound because we only drop those edges (s→ t, u→ v) in P which cannot form a chain.
Hence, whenever s1 → t1, s2 → t2, . . . is an infinite (minimal) (P ,Q,R)-chain then it is
also an infinite (minimal) (P ′,Q,R)-chain and thus, an infinite (minimal) (P ∩P ′,Q,R)-
chain.

Proof of Theorem 3.4. Completeness follows from Lemma 2.17, since Pi ⊆ P for all i.
Proc is sound since after a finite number of nodes in the beginning, any infinite (minimal)
(P ,Q,R)-chain only contains nodes and edges from a single SCC. Hence, there also is an
infinite (minimal) (Pi,Q,R)-chain for some Pi.

Proof of Lemma 3.8. Let tσ Q→R,p1 u1 Q→R,p2 . . . Q→R,pn un = u be a reduction such that
Sσ ⊆ NF (Q). Let {q1, . . . , qm} be the set of positions where ECap replaces the subterms
of t by corresponding fresh variables x1, . . . , xm. By the definition of Cap and by the
definition of an estimated Cap function for each pi there is a higher position qj ≤ pi.
Hence, u can at most differ from tσ on positions below a qj. We define µ to be like σ but
on the variables x1, . . . , xn we define µ(xi) = u|qi . Then by construction ECapSR,Q(t)µ = u
and µ and σ differ only on the fresh variables.

Proof of Theorem 3.10. Suppose s → t, u → v is a (P ,Q,R)-chain, i.e., there is a sub-
stitution σ such that sσ and uσ are Q-normal forms and tσ Q→∗R uσ. From the latter we

conclude by Lemma 3.8 that uσ = ECap
{s,u}
R,Q (t)µ for some substitution µ that differs from

σ only on the fresh variables that are introduced by ECap. Hence, u and ECap
{s,u}
R,Q (t)

are unifiable by µ where sµ and uµ are in Q-normal form. But then then sδ and uδ are
obviously also Q-normal forms where δ is the mgu of u and ECap

{s,u}
R,Q (t).

Proof of Lemma 3.12. We prove by structural induction that for every term ICap replaces
subterms by fresh variables at higher positions than Cap. As the generalized TRS R and
the sets Q and S are fixed throughout this proof, we write ICap(t) instead of ICapSR,Q(t)

and similarly Cap(t) instead of CapSR,Q(t).
If ICap(t) is a fresh variable then there is nothing to prove. Otherwise, if t is a variable

x and ICap(x) = x then NF (Q) ⊆ NF (R) and x occurs in S. If σ is a substitution with
Sσ ⊆ NF (Q) then xσ is a R-normal form and hence xσ cannot be reduced by Q→R. Thus,
Cap(x) = x.

Finally, if t = f(t1, . . . , tn) and ICap(t) = f(ICap(t1), . . . , ICap(tn)) then by induction
we know that in every ICap(ti) the fresh variables have been introduced at higher positions
than in Cap(ti). Hence, if in every reduction of tσ with Sσ ⊆ NF (Q) there is no reduction
at root position, then by Definition 3.7 Cap(t) = f(Cap(t1), . . . ,Cap(tn)) and we are done.
Otherwise, there is a substitution σ with Sσ ⊆ NF (Q) with a reduction of the form
tσ Q→∗R f(s1, . . . , sn) = `τ Q→R rτ = u where `→ r ∈ R and the last reduction step is the
first reduction step at the root position. Hence, every direct subterm of `τ is in Q-normal
form. Moreover, tiσ

Q→∗R si and by Lemma 3.8 we know that every si = ICap(ti)µ for a
substitution µ that differs from σ only on the fresh variables that have been introduced

A.3. Proofs of Chapter 3 161

by ICap. W.l.o.g. we assume that µ is equal to τ on the variables of the rule `→ r. Thus,
f(ICap(t1), . . . , ICap(tn))µ = f(ICap(t1)µ, . . . , ICap(tn)µ) = f(s1, . . . , sn) = `τ = `µ
shows that f(ICap(t1), . . . , ICap(tn)) and ` are unifiable by µ. As µ is identical to τ
on the variables of ` and as µ is identical to σ on all variables but those that have been
introduced by ICap we know that all terms in Sµ∪{`µ|1, . . . , `µ|n} are in Q-normal form.
Thus, also for the mgu δ of f(ICap(t1), . . . , ICap(tn)) and ` all terms in Sδ∪{`δ|1, . . . , `δ|n}
are in Q-normal form. This finally proves that ICap(t) is a fresh variable in contradiction
to the assumption.

Proof of Theorem 3.14. Completeness follows from Lemma 2.17. For soundness, we prove
that under the conditions of the first case in Theorem 3.14, every minimal (P ,Q,R)-chain
also results in a minimal (P , lhs(R),R)-chain, i.e., an innermost chain.

If s1 → t1, s2 → t2, . . . is a minimal (P ,Q,R)-chain then there is a substitution σ such
that we have the following conditions for all i:

(a) tiσ
Q→∗R si+1σ

(b) siσ is in Q-normal form

(c) tiσ is terminating w.r.t. Q→R
By (a) and (c), σ(x) is terminating w.r.t. Q→R for all x ∈ V(s2) ∪ V(s3) ∪ . . . Since

Q→R is locally confluent on these terms, every σ(x) has a unique normal form σ(x) ↓
w.r.t. Q→R by Newman’s lemma. Let σ′ be the substitution with σ′(x) = σ(x)↓ for all
x ∈ V(s2) ∪ V(s3) ∪ . . . and σ′(x) = σ(x) otherwise. For all i > 1 we obtain:

(i) For all terms t we have tσ Q→∗R tσ′.

(ii) If non-variable subterms of si do not unify with left-hand sides of rules from R, then
siσ
′ is a normal form w.r.t. Q→R.

(iii) A term is an R-normal form iff it is a normal form w.r.t. Q→R.

The observations (i) and (ii) are obvious. For (iii), the “only if” direction follows from
Q→R ⊆ →R (by Lemma 2.4). For the “if” direction, let t be a normal form w.r.t. Q→R
and assume that t contains R-redexes. Let t′ be an “innermost” R-redex, i.e., all proper
subterms of t′ are in R-normal form. Since NF (R) ⊆ NF (Q), they are also in Q-normal
form. But then t′ is also a redex w.r.t. Q→R. This contradicts the assumption that t is a
normal form w.r.t. Q→R.

Now we show that s2 → t2, s3 → t3, . . . is also a minimal (P , lhs(R),R)-chain. To this
end, we use the substitution σ′ instead of σ. For all i > 1 we have to prove:

(a′) tiσ
′ i→R∗ si+1σ

′

(b′) siσ
′ is in normal form w.r.t. R

(c′) tiσ
′ is innermost terminating

For (a′), note that tiσ
Q→∗R si+1σ

Q→∗R si+1σ
′ by (a) and (i), where si+1σ

′ is a normal
form w.r.t. Q→R by (ii). Moreover, since tiσ is terminating w.r.t. Q→R and since Q→R is
locally confluent on Q-terminating terms w.r.t. R, si+1σ

′ is the unique normal form of tiσ
w.r.t. Q→R by Newman’s lemma. Since tiσ

Q→∗R tiσ
′ by (i), tiσ

′ is terminating w.r.t. Q→R
by (c) and since i→R ⊆ Q→R by Lemma 2.4, tiσ

′ is also innermost terminating. Let w be

162 Appendix A. Proofs

a normal form of tiσ
′ w.r.t. i→R. As tiσ

Q→∗R w and as w is also a normal form w.r.t. Q→R
by (iii), w must be the unique normal form si+1σ

′. Hence, tiσ
′ i→∗R si+1σ

′.
For (b′), siσ

′ is a normal form w.r.t. Q→R by (ii). Thus, (iii) implies that it is also a
normal form w.r.t. R.

For (c′), we have tiσ
Q→∗R tiσ′ by (i). Thus, tiσ

′ is terminating w.r.t. Q→R by (c). Hence,
tiσ
′ is also terminating w.r.t. i→R since i→R ⊆ Q→R by Lemma 2.4.

Proof of Lemma 3.19. Let t Q→R ti for i ∈ {1, 2} with t1 6= t2. As Q→R is closed under
contexts we only have to look at the case where t = `σ Q→R rσ = t1. If the reduction from
`σ to t2 gives rive to a critical pair then we are done since t1 6= t2 is a contradiction to
the requirement that there are only trivial critical pairs. In the other case the reduction
to t2 is completely inside σ. Hence, there is some variable x at a position of ` such that
σ(x) Q→R s and t2 = `σ[s]p. We define δ to be like σ on all variables except for x and
δ(x) = s. Then, clearly t2

Q→∗R `δ and t1 = rσ Q→∗R rδ.
Unfortunately, we cannot guarantee `δ Q→R rδ as the subterms of `δ are not nec-

essarily in Q-normal form. But as t is terminating w.r.t. Q→R we know that for each
y ∈ V(`) ⊇ V(r) the term yδ can be rewritten to some normal form w.r.t. Q→R. Let µ
be the corresponding substitution, i.e., µ(y) is defined as a normal form of yδ for each
y. Then indeed we obtain t1

Q→∗R rδ Q→∗R rµ and t2
Q→∗R `δ Q→∗R `µ Q→R rµ. For this last

reduction step we show for every position p of ` that `µ Q→R,>p rµ or `µ|p ∈ NF (Q). Since,
obviously `µ /∈ NF (R) ⊇ NF (Q) this will indeed prove the desired reduction `µ Q→R rµ.

First note that there can be no redex in µ since NF (R) ⊆ NF (Q) implies that each
normal form w.r.t. Q→R is also an R-normal form. Hence, we only have to consider the
case where `|p is not a variable. By induction there already is a reduction `µ Q→R,p′ rµ
for some p′ with p > p′ – then there is nothing to show – or every proper subterm of `µ|p
is in Q-normal form. We consider two cases. If a reduction at position p is possible with
R then this gives rise to a critical pair. Since all critical pairs are trivial, this reduction
must result in rµ and we are done as all proper subterms of the redex are in Q-normal
form. In the other case no term of Q can match `µ|p due to NF (R) ⊆ NF (Q), and since
all proper subterms are in Q-normal form, we have proven that `µ|p ∈ NF (Q).

Proof of Corollary 3.23. R terminates if the DP problem (DP(R),∅,R,m) is finite by
Theorem 2.11. For overlay systems, no non-variable subterms of left-hand sides from
DP(R) unify with left-hand sides from R. Hence, by using Theorem 3.14, it is sufficient if
the DP problem (DP(R), lhs(R),R,m) is finite. This follows from innermost termination
(i.e., lhs(R)-termination) of R by Theorem 2.11.

Proof of Theorem 3.25. Completeness follows from Lemma 2.17 and soundness can be
proven as follows: whenever the sequence s → t, u → v occurs in an infinite chain, i.e.,
tσ Q→∗R uσ where sσ ∈ NF (Q), then by Definition 3.24 all rules in this reduction are

from U{s}R,Q(t) ⊆ U(P ,Q,R) ⊆ EU(P ,Q,R). Thus we obtain tσ Q→∗EU(P,Q,R) uσ which

shows that every infinite (P ,Q,R)-chain is an infinite (P ,Q, EU(P ,Q,R))-chain. To
carry over minimality of chains it suffices to state that Q→EU(P,Q,R) is a subrelation of Q→R
by Lemma 2.4.

Proof of Theorem 3.28. The theorem is a direct consequence of Theorem 4.30 where we
choose the argument filter π defined by π(f) = [1, . . . , n] for all function symbols f with
arity n.

A.3. Proofs of Chapter 3 163

Proof of Theorem 3.32. Suppose s→ t, u→ v is a (P ,Q,R)-chain, i.e., there is a substi-
tution σ such that sσ and uσ are Q-normal forms and tσ Q→∗R uσ. By Definition 3.24 we

obtain tσ →∗R′′ uσ for the TRS R′′ = EU{s,u}R,Q (t) and hence, uσ →∗R′ tσ. Using Lemma 3.8
we conclude tσ = ECap∅

R′,∅(u)µ for some substitution µ that differs from σ only on the
fresh variables that are introduced by ECap. Hence, t and ECap∅

R′,∅(u) are unifiable by
µ where sµ and uµ are in Q-normal form. But then obviously for the mgu δ of t and
ECap∅

R′,∅(u) we also know that sδ and uδ are Q-normal forms.

Proof of Theorem 3.34. LetQ′ = Q∩T (F ,V). Obviously, by Lemma 2.4 every (P ,Q,R)-
chain is a (P ,Q′,R)-chain proving soundness. For completeness, we can just replace any
symbol occurring in Q \ Q′ by a fresh symbol not occurring in P ∪ R ∪ Q. Thus, after
this replacement everything is in normal form w.r.t. Q\Q′, and every term in Q′-normal
form is now also in Q-normal form. As all symbols that are replaced in this way are not
contained in F , no reduction of P∪R is destroyed by the replacement. Hence, in this way
we obtain from any infinite Q′→R reduction an infinite Q→R reduction and from an infinite
(P ,Q′,R) chain one obtains an infinite (P ,Q,R)-chain.

Proof of Theorem 3.36. Let Q′ = {q ∈ Q | root(q) ∈ F}. Completeness is proven in the
same way as in the proof of Theorem 3.34. For soundness we again can use Lemma 2.4 to
handle infinite, non-minimal chains. However, to prove that the processor is sound even
for minimal chains we have to show that whenever an instantiated right-hand side tσ of
P is terminating w.r.t. Q→R then tσ is also terminating w.r.t. Q′→R. Here, we can restrict σ
to be a Q-normal substitution. To this end, we prove the following property for all terms
s ∈ T (F ,V) and all Q-normal substitutions δ with root(δ(x)) /∈ F for all x ∈ Dom(δ):

If sδ Q′→R u then sδ Q→R u and u = s′δ′ for some s′ ∈ T (F ,V) and some Q-normal
substitution δ′ with root(δ′(x)) /∈ F for all x ∈ Dom(δ). (?)

Using (?) obviously allows us to prove termination of sδ w.r.t. Q′→R if sδ is terminating
w.r.t. Q→R. However, as we are interested in the termination of tσ we first have to get
the corresponding s and δ with t = sδ. To this end we partition σ into µδ where µ(x) is
like σ(x) but where all maximal subterms v of σ(x) which are rooted with a symbol that
is not in F are replaced by fresh variables xv, and where δ replaces all these variables
by the corresponding subterm, i.e., δ(xv) = v. Then we choose s = tµ which is a term
of T (F ,V) since t and all µ(x) are elements of T (F ,V) by construction. Moreover, as σ
is a Q-normal substitution this must be the case for δ, too. Hence, by (?) we can then
conclude termination of tσ w.r.t. Q′→R from termination of tσ w.r.t. Q→R.

To prove (?) we perform structural induction on s. As δ is a Q-normal substitution and
as NF (Q) ⊆ NF (R), s can be no variable. So, let s = f(s1, . . . , sn). If the reduction is
below the root then one just has to apply the induction hypothesis. The only interesting
case is a reduction at the root, i.e., sδ = `ρ Q′→R rρ = u for some rule ` → r ∈ R.
To prove (?) it suffices to show that sδ Q→R u. The reason is that this implies ρ being
a Q-normal substitution, and then we can partition rρ into (rµ′)δ′ in the same way as
we partitioned tσ into (tµ)δ to apply (?). To prove sδ Q→R u we show that all direct
subterms of sδ are in Q-normal form. Suppose siδ has a Q-redex, i.e., siδ|p = qτ for
some position p and some substitution τ . First note that siδ|p cannot completely be in
δ as δ is a Q-normal substitution, so p points to a non-variable position of si. Note that
then root(si|p) = root(q) ∈ F since si ∈ T (F ,V). Hence, by construction q ∈ Q′ which
contradicts sδ Q′→R u.

164 Appendix A. Proofs

A.4. Proofs of Chapter 4

Proof of Theorem 4.2. Completeness follows from Lemma 2.17 and soundness is proved
as in [AG00, Theorems 7 and 11].

Let s1 → t1, s2 → t2, . . . be an infinite (minimal) (P ,Q,R)-chain. We distinguish two
cases. If there is some n ∈ IN such that for every i ≥ n the pair si → ti is contained in
P\ �π then sn → tn, sn+1 → tn+1, . . . clearly is an infinite (minimal) (P\ �π,Q,R, f)
chain and we are done.

Otherwise, there is some s → t ∈ �π which occurs infinitely often in the chain. As
s1 → t1, s2 → t2, . . . is a chain there must a be a substitution σ such that tiσ

Q→∗R si+1σ.
As %π contains R and as %π is stable and monotonic we obtain tiσ %π si+1σ. Moreover,
as every pair in P is oriented with %π or with �π and as both these relations are stable we
obtain s1σ (

%
)π
t1σ %π s2σ (

%
)π
t2σ As s → t occurs infinitely often in the chain and

as %π and �π are compatible this shows that s1σ starts an infinite decreasing sequence
w.r.t. �π. This is in contradiction to the well-foundedness of �π.

Proof of Lemma 4.7. Let M = {t0, . . . , tn} with t0 < · · · < tn. Since the term Comp(M)
= c(t0, c(t2 . . . c(tn,⊥) . . .)) is in Q-normal form, we obtain for every i the reduction
Comp(M) Q→∗Cε c(ti, c(ti+1 . . . c(tn,⊥) . . .)) = si by applying i-times the second rule
c(x, y) → y of Cε. Each si must be in Q-normal form and we can use the first rule
c(x, y)→ x of Cε to finally obtain Comp(M) Q→∗Cε si

Q→Cε ti.

Proof of Lemma 4.10. As first step we prove for every set S ′ of terms that if CapS
′

R,Q(t) =

f(s1, . . . , sn) then t = f(t1, . . . , tn) and si = CapS
′

R,Q(ti). (?)

If CapS
′

R,Q(t) = f(s1, . . . , sn) then by Definition 3.7 obviously the term t can be no

variable and moreover, t must be of the form f(t1, . . . , tn). As CapS
′

R,Q(t) is not a fresh
variable for every substitution µ with S ′µ ⊆ NF (Q) the term tµ cannot be reduced at
the root level. Thus, the only possible reductions of tµ are those that can be performed
in the subterms tiµ. But also the converse result is valid: whenever we can reduce tiµ
then we can perform the same reduction in tµ. By Definition 3.7 we conclude that for
each position ip of t the subterm t|ip of t is replaced by a fresh variable iff the subterm
ti|p of ti is replaced by a fresh variable when applying Cap. Thus, for each i we obtain

si = CapS
′

R,Q(ti) which finally proves (?).

We now prove the lemma. If ECapSR,Q(t) is a fresh variable x then we choose δ with

δ(x) = CapTR,Q(tσ). Then indeed we obtain ECapSR,Q(t)σδ = xσδ = xδ = CapTR,Q(tσ) as
desired.

If CapTR,Q(tσ) is a fresh variable then by Definition 3.7 there is a substitution µ such
that T µ ⊆ NF (Q) and (tσ)µ Q→∗R Q→R s where the last reduction is at the root position.
We choose the substitution σµ to show that CapSR,Q(t) must be a fresh variable, too.
We obtain the same term t(σµ) and S(σµ) = (Sσ)µ ⊆ T µ ⊆ NF (Q) establishes the
required normal form condition. Hence, for the remaining proof we can assume that
neither ECapSR,Q(t) nor CapTR,Q(tσ) are fresh variables. We perform induction on t.

If t = x then ECapSR,Q(t) = x. Hence, for every substitution µ with Sσµ ⊆ NF (Q)
the term xσµ is in normal form w.r.t. Q→R. With the same argumentation as above we
conclude that CapTR,Q(xσ) does not replace any subterm of xσ. Thus, CapTR,Q(tσ) = tσ =

ECapSR,Q(t)σ and we can choose δ to be the empty substitution.

Otherwise, t = f(t1, . . . , tn) and as ECapSR,Q(t) and CapTR,Q(tσ) are not fresh variables

we know that ECapSR,Q(t) = f(s1, . . . , sn) and CapTR,Q(tσ) = f(. . .). We define the

A.4. Proofs of Chapter 4 165

function ECap ′ which maps every ti to si and every other term is mapped to a fresh
variable. Then ECap ′ must be an estimated Cap-function as otherwise ECap would not
estimate Cap. Thus, we can apply the induction hypothesis to obtain substitutions δi
with CapTR,Q(tiσ) = ECap ′SR,Q(ti)σδi. As each δi is only defined on the fresh variables
that are introduced by ECap ′ we can build a combined substitution δ which satisfies
CapTR,Q(tiσ) = ECap ′SR,Q(ti)σδ for every i. We finally prove the lemma as follows.

CapTR,Q(tσ) = CapTR,Q(f(t1σ, . . . , tnσ))

(by (?)) = f(CapTR,Q(t1σ), . . . ,CapTR,Q(tnσ))

= f(ECap ′SR,Q(t1)σδ, . . . ,ECap ′SR,Q(tn)σδ)

= f(ECap ′SR,Q(t1), . . . ,ECap ′SR,Q(tn))σδ

= f(s1, . . . , sn)σδ

= ECapSR,Q(t)σδ

Proof of Lemma 4.11. Note that by construction of Sall and σ all terms in Sallσ are Q-
normal.

(i) We perform induction on Q→+
R ∪�. For a variable the result obviously holds, so let

t = f(t1, . . . , tn). As t ∈ NF (Q) implies ti ∈ NF (Q) for every i we know by the
induction hypothesis that I(ti) ∈ NF (Q). Then t′ = f(I(t1), . . . , I(tn)) must also
be Q-normal. The reason is that the only possible redex of t′ w.r.t. Q can be at the
root level. However, if t′ = qµ for some q ∈ Q then t is also an instance of Q as I is
injective and whenever a subterm of t is replaced by c(. . . , . . .) then this part can
only be matched by a variable in q.

Using the induction hypothesis again we see that I(s) ∈ NF (Q) for all s with
t Q→+

R s and s ∈ NF (Q). Thus, the terms t′ and c(t′,Comp(Red(t))) are both Q-
normal. Here, we have used the observation that Comp(M) ∈ NF (Q) whenever
M ⊆ NF (Q). Hence, regardless whether I(t) = t′ or I(t) = c(t′,Comp(Red(t))) we
obtain I(t) ∈ NF (Q).

(ii) We perform induction on t. If t is a variable x then by definition I(tσ) = I(xσ) =
xI(σ) = tI(σ). Otherwise, let t = f(t1, . . . , tn). Then we obtain N SR,Q(ti) ⊆
N SR,Q(t) ⊆ N . Hence, by induction we conclude I(tiσ) = tiI(σ). If I(tσ) is built by
the second case we obtain I(tσ) = f(t1I(σ), . . . , tnI(σ)) = tI(σ). In the other case
there must be a rule ` → r ∈ R \ N such that f(CapSallσR,Q (t1σ), . . . ,CapSallσR,Q (tnσ))
unifies with ` by some mgu µ with (Sallσ ∪ {`|1, . . . , `|n})µ ⊆ NF (Q). The re-
quirement S ⊆ Sall allows us to use Lemma 4.10 (where we choose T = Sallσ) and
we obtain CapSallσR,Q (tiσ) = ECapSR,Q(ti)σδ where δ only instantiates fresh variables
introduced by ECap.

Now, we extend µ to behave like δµ on the fresh variables of ECap. In this way
we do not change the set (Sallσ ∪ {`|1, . . . , `|n})µ and obtain ECapSR,Q(ti)σµ =

ECapSR,Q(ti)σδµ = CapSallσR,Q (tiσ)µ = `|iµ. As ` and t are variable disjoint we

know that f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) and ` are unifiable by some mgu τ .
By construction τ instantiates the terms in Sall less than σµ does and τ instan-
tiates the terms in {`|1, . . . , `|n} less than µ does. Therefore, we conclude (S ∪
{`|1, . . . , `|n})τ ⊆ NF (Q) which further implies `→ r ∈ N SR,Q(t) by Definition 4.5.
This is a contradiction to `→ r /∈ N .

166 Appendix A. Proofs

(iii) By (i) we know that I(tσ) ∈ NF (Q). We prove the result by induction on t. If t is
a variable then we use (ii) with S = ∅ to conclude I(tσ) = tI(σ).

Otherwise, if t = f(t1, . . . , tn) then by the induction I(tiσ) Q→∗Cε tiI(σ) ∈ NF (Q)
and hence, f(I(t1σ), . . . , I(tnσ)) Q→∗Cε f(t1I(σ), . . . , tnI(σ)) = tI(σ). With the
same argumentation as in (i) we conclude tI(σ) ∈ NF (Q).

Finally, if I(tσ) is built by the second case we are done. Otherwise, we first reduce
I(tσ) = c(f(I(t1σ), . . . , I(tnσ)),Comp(. . .)) to the term f(I(t1σ), . . . , I(tnσ)) in
one step. Note that this first reduction step respects the evaluation strategy given
by Q as I(tσ) ∈ NF (Q).

(iv) The proof is a consequence of the definitions of Red and Inv , and of Lemma 4.7.
Using Inv(I(t)) we conclude I(t) = c(. . . ,Comp(Red(t))) ∈ NF (Q). And if t Q→+

R s
with s ∈ NF (Q) then I(s) ∈ Red(t) ∩ NF (Q) due to (i). Thus, Lemma 4.7 yields
I(t) Q→∗Cε c(. . . , I(s)) Q→Cε I(s).

(v) Let t = `σ Q→R rσ = s for some rule ` = f(`1, . . . , `n) → r ∈ R. We first want to
show that `→ r ∈ N . Due to Definition 3.7 we easily obtain a substitution δ with
CapSallσR,Q (`iσ)δ = `iσ: whenever Cap replaces a subterm by a fresh variable then δ
replaces this fresh variable by the subterm. We rename the variables in `→ r to fresh
ones to obtain the rule `′ = f(`′1, . . . , `

′
n)→ r′ and we define δ on V(`′) to be like σ

is defined on V(`). In this way we achieve f(CapSallσR,Q (`iσ), . . . ,CapSallσR,Q (`iσ))δ = `′δ
which shows that these two terms are unifiable by some mgu µ. As δ is only defined
on fresh variables and on the variables of `′ we conclude (Sallσ ∪ {`′1, . . . , `′n})δ =
Sallσ ∪ {`1σ, . . . , `nσ} ⊆ Sallσ ⊆ NF (Q). The set inclusions can be derived from
the construction of Sall and σ. Hence, when using the mgu µ instead of δ we also
obtain (Sallσ ∪ {`′1, . . . , `′n})µ ⊆ NF (Q). Finally using the fact that I(t) is built by
the second case we know that `′ → r′ and thus `→ r is contained in N .

Now by the closure properties of N we know that N {`1,...,`n}R,Q (r) ⊆ N . Moreover,
by the construction of Sall we obtain {`1, . . . , `n} ⊆ Sall. Hence, (iii) and (ii) yield
I(t) = I(`σ) Q→∗Cε `I(σ) Q→N rI(σ) = I(rσ). Note that really all reductions respect
the evaluation strategy given by Q. Finally, as xσ ∈ NF (Q) for all x ∈ V(`) ⊇ V(r)
we know by (i) that xI(σ) ∈ NF (Q) for all x ∈ V(r). Together with rI(σ) =
I(rσ) = I(s) this proves Inv(I(s)) as every subterm of I(s) which is rooted by c is
contained in I(σ).

(vi) We perform induction on first the length of the reduction and then on the structure
of t. If t = s then there is nothing to show. So, let t Q→R t′ Q→∗R s. Obviously t cannot
be a variable. If I(t) is built by the third case we use (iv). So, let t = f(t1, . . . , tn)
where I(t) = f(I(t1), . . . , I(tn)). If we have a root reduction we use (v) to obtain
I(t) Q→+

N∪Cε I(t′) and Inv(I(t′)). Thus, by induction we conclude I(t′) Q→∗N∪Cε I(s).

Otherwise, we know that for some i we have a reduction ti
Q→R t′i and t′ =

f(t1, . . . , t
′
i, . . . , tn). W.l.o.g. in the reduction of t′ to s we first reduce t′i to a Q-

normal form si, i.e., t′ Q→+
R f(t1, . . . , si, . . . , tn) = t′′ Q→∗R s. We obtain I(ti)

Q→∗N∪Cε
I(si) and thus, I(t)→∗N∪Cε f(I(t1), . . . , I(si), . . . , I(tn)) = s′.

Next, we show I(t′′) = s′, i.e., we have to prove that there is no rule `→ r ∈ R\N
such that f(CapSallσR,Q (t1), . . . ,CapSallσR,Q (si), . . . ,CapSallσR,Q (tn)) unifies with ` by an mgu
µ such that (Sallσ ∪ {`|1, . . . , `|n})µ ⊆ NF (Q). As I(t) is built by the second
case it suffices to show that CapSallσR,Q (si) is an instance of CapSallσR,Q (ti). However,

A.4. Proofs of Chapter 4 167

as Sallσ ⊆ NF (Q) and ti
Q→+
R si it suffices to apply Lemma 3.8. Hence, we have

constructed the reduction I(t) Q→∗N∪Cε s′ = I(t′′) but in order to apply the induction
hypothesis on t′′ we have to guarantee Inv(I(t′′)). For this aim we use Inv(I(t))
to conclude Inv(I(tj)) for every j 6= i, and Inv(I(si)) follows from si ∈ NF (Q)
and (i). Thus, Inv(I(t′′)) is proven and by the induction hypothesis we conclude
I(t) Q→∗N∪Cε I(t′′) Q→∗N∪Cε I(s).

(vii) To prove that termination is preserved requires some more additional notions and
definitions which are given in Definition A.1. The main problem is that in an infinite
derivation of I(t) w.r.t.M∪Cε one can produce arbitrary terms u which are not of
the form I(s) for some s. Then it is unclear how to mimic the reductions of such a
term u.

To this end, in Lemma A.2 we first prove that every infinite reduction of I(t) one
can reorder the reductions in such a way that only certain rewrite steps are per-
formed (Lemma A.2 (iv) and Lemma A.2 (viii)). Then for these rewrite steps in
Lemma A.3 it is shown that a certain structure is kept (all terms are of the form
t[I(t|p1)]p1 . . . [I(t|pn)]pn for pairwise independent positions pi) and that it is possible
to map reduction of such a term w.r.t.M∪Cε back to a reduction of t w.r.t.R. Then
finally in Lemma A.3 (iv) we conclude the desired result that I(t) is terminating
w.r.t. M∪ Cε if t is terminating w.r.t. R.

(viii) As u1 → v1, u2 → v2, . . . is a minimal chain for every i we know that viσ
Q→∗R ui+1σ

and uiσ ∈ NF (Q). Using the previous results we can now exchange R by N ∪ Cε
and σ by I(σ) as illustrated in Figure 4.8.

By construction of N we know that N {ui}R,Q (vi) ⊆ N and ui ∈ Sall for every i. Hence,
using (ii) we obtain I(viσ) = viI(σ). Remember that σ instantiates every term by a
Q-normal form. Thus, in the same way as in the proof of (v) we obtain Inv(I(viσ))
by applying (i). From (iii) we conclude I(uiσ) Q→∗Cε uiI(σ) and uiI(σ) ∈ NF (Q).
By (vi) we glue everything together and obtain

u1I(σ)→P v1I(σ) = I(v1σ) Q→∗N∪Cε I(u2σ) Q→∗Cε u2I(σ)→P v2I(σ) . . .

AsM⊇ N we know by Lemma 2.4 that u1 → v1, u2 → v2, . . . also is a (P ,Q,M∪
Cε)-chain.

Moreover, if M ⊆ R, Q = ∅, and if M is left-linear then by (vii) we know that
every I(viσ) is terminating w.r.t. M∪ Cε and we obtain a minimal chain.

Definition A.1 (c-D, >→, <→, =→, ≤→, =!→). Let Σ be a signature, let c /∈ Σ be a fresh binary
symbol. We define the c-depth of a term t ∈ T (Σ ∪ {c},V) as c-D(t) where

• c-D(x) = 0

• c-D(f(t1, . . . , tn)) = max{c-D(t1), . . . , c-D(tn)} for f ∈ Σ

• c-D(c(t1, t2)) = 1 + max{c-D(t1), c-D(t2)}

Here, the maximum of the empty set is 0.

For any rewrite relation → we define
>→, <→, =→ as follows:

• t >→ u iff t→piq u and t|p = c(t1, t2). (Reduction strictly below a c)

168 Appendix A. Proofs

• t <→ u iff t→p u and root(t|q) ∈ Σ for all q ≤ p. (Reduction above all c’s)

• t =→ u iff t →p u and root(t|p) = c and root(t|q) ∈ Σ for all q < p. (Reduction at
top-most c)

We define
≤→ as

<→ ∪ =→, and t
=!→ u iff t

=→+

p u and root(u|p) ∈ Σ.

Clearly,
>→,

<→, and
=→ build a partition of →. This allows us to perform case-

distinctions on →.
We now show that if R is left-linear then any infinite reduction of t w.r.t. R∪Cε implies

that there also is an infinite reduction of t only using
≤→ steps (i-iv). We further show

that we also have an infinite reduction only using
=!→ and

<→ reductions (v-viii). And
reductions of this kind will allow us later on to construct an infinite reduction from t from
an infinite I(t) reduction.

Lemma A.2. Let R be a left-linear TRS over Σ. Let c /∈ Σ and let Cε = {c(x, y) →
x, c(x, y)→ y}. All terms are from T (Σ ∪ {c},V) and all rewrite steps are w.r.t. R∪ Cε.

(i) If t→∗ u then c-D(t) ≥ c-D(u).

(ii) If t
>→
∗ <→ u then t

<→ >→
∗
u.

(iii) If t
>→
∗ =→ u then t

=→ ≤→
∗ >→
∗
u.

(iv) If t is not terminating w.r.t. → then t is not terminating w.r.t.
≤→.

(v) If t
=→p u

<→ s then root(u|p) ∈ Σ or t
<→ =→∗ s.

(vi) If t
=→n =!→

∗
u then t

=!→
∗ =→k

u where k ≤ n.

(vii) If t
=→∗ <→ u then t

=!→
∗ <→ =→∗ u.

(viii) If t is not terminating w.r.t. → then t is not terminating w.r.t.
<→ ∪ =!→.

Proof. (i) It obviously suffices to consider one-step reductions, so let t→ u. We perform
structural induction on t where the only interesting case is a reduction at the root
where t = `σ → rσ = u. But then c-D(`σ) ≥ max{c-D(xσ) | x ∈ V(`)} ≥
max{c-D(xσ) | x ∈ V(r)} = c-D(rσ) since V(`) ⊆ V(r) and since r does not
contain the symbol c.

(ii) Let t
>→
∗
s

<→p u. We perform induction on the position p. If p = ε then t =
t[c(v1, w1)]q1 . . . [c(vn, wn)]qn where the t|qi are the maximal subterms of t which are

rooted by c. Hence, s = t[c(v′1, w
′
1)]q1 . . . [c(v′n, w

′
n)]qn where c(vi, wi)

>→
∗

c(v′i, w
′
i).

Let s = `σ
<→ rσ = u. As `→ r must be from R we know that ` does not contain

any c and that ` is linear. Hence, all terms c(v′i, w
′
i) must be part of the substitution.

Due to linearity we can define δ to be like σ but all terms c(v′i, w
′
i) are replaced by

c(vi, wi). Thus, t = `δ
<→ rδ. From our construction we obtain xδ

>→
∗
xσ and hence

t
<→ rδ

>→
∗
rσ = u.

If p = ip′ then t = f(t1, . . . , tn) where f ∈ Σ. Thus, in the reduction from t
to u there are only non-root steps involved. Then of course we can exchange all

A.4. Proofs of Chapter 4 169

reduction on positions below i with reductions below j 6= i such that the reduc-

tions below i will come first. Hence, we obtain t = f(t1, . . . , ti, . . . , tn)
>→
∗
>i

<→ip′

f(t1, . . . , ui, . . . , tn)
>→
∗
>j u, where ti

>→
∗ <→p′ ui. By induction we obtain ti

<→ >→
∗
ui

and hence t
<→ >→

∗
f(t1, . . . , ui, . . . , tn)

>→
∗
u.

(iii) Let t
>→
∗ =→p u. We perform induction on c-D(t). First, we can shift all steps at

independent positions of p to the back, i.e., t
>→
∗
>p t[v]p

=→p t[w]p
>→
∗
u. Hence,

t|p = c(t1, t2)
>→
∗

c(t′1, t
′
2) = v

=→ t′i = w for some i ∈ {1, 2} with ti →∗ w. Thus,

t
=→ t[ti]p →∗ t[w]p

>→
∗
u. We now show by an inner induction on the reduction

length that for every w′ with ti →∗ w′ there also is the reduction ti
≤→
∗ >→
∗
w′ (?).

This directly proves (iii) as then we have t|p =→ ti
≤→
∗ >→
∗
w and hence, t

=→ ≤→
∗ >→
∗

t[w]p
>→
∗
u.

Property (?) is obviously satisfied if ti = w′, so let ti →∗ r′ → w′. By the inner

induction we obtain ti
≤→
∗
r

>→
∗
r′ → w′. We distinguish three cases: First, if

r′
>→ w′ we are done. Second, if r′

<→ w′ then we use (ii) to obtain r
<→ >→

∗
w′ and

are done. Finally, if r′
=→ w′ then note that c-D(t) > c-D(ti) ≥ c-D(r) due to (i).

Hence, we can use the outer induction hypothesis to obtain r
=→ ≤→

∗ >→
∗
w′ which

finishes this case.

(iv) Let s be a minimal terminating subterm of t. As the only c-rules are the two
rules of Cε we know that root(s) ∈ Σ. Hence, all subterms of s with root(s) = c are
terminating. As no rule introduces a c-symbol we know that in the infinite reduction

of s there must be infinitely many
≤→-steps. Thus, s

>→
∗ ≤→ s1

>→
∗ ≤→ s2

>→
∗ ≤→

We define v0 = s and obtain from (ii) and (iii) some v1 with v0
≤→

+

v1
>→
∗
s1. Hence,

v1
>→
∗
s1

>→
∗ ≤→ s2. Again using (ii) and (iii) we obtain some v2 with v1

≤→
+

v2
>→
∗
s2

and v2
>→
∗
s2

>→
∗ ≤→ s3. Continuing in this way we obtain the infinite reduction

s = v0
≤→

+

v1
≤→

+

v2 . . . which proves that s is not terminating w.r.t.
≤→.

Now, if in t there is no c above s we can do the same reduction and obtain an infinite

reduction of t w.r.t.
≤→. In the other case all reductions of s are

>→ reductions.
However, using some initial

=→ reductions one can eliminate all c-symbols of t that

are above s and then start the infinite
≤→ reduction of s.

(v) We perform induction on t. If t = c(t1, t2)
=→p u

<→ s then p must be ε and from

u
<→ s we know that root(u) = root(u|p) ∈ Σ.

Otherwise we have t = f(t1, . . . , tn)
=→ip′ f(t1, . . . , t

′
i, . . . , tn) = u

<→q s where
ti

=→p′ t
′
i. If ip′ and q are independent we can easily exchange the two reduc-

tions and are done. If q = iq′ we know ti
=→p′ t

′
i
<→q′ ui and u = f(t1, . . . , ui, . . . , tn).

Using induction yields root(t′i|p′) ∈ Σ or ti
<→ =→∗ ui. In the latter case we also

have t = f(t1, . . . , ti, . . . , tn)
<→ =→∗ f(t1, . . . , ui, . . . , tn) = u and in the former case

root(t|ip′) = root(ti|p′) ∈ Σ. Hence, in both case we obtain our required result.

It remains the case q = ε where t
=→>ε u = `σ

<→ rσ = s. Of course, as we have a
<→-reduction the rule `→ r must be from R. If root(u|p) ∈ Σ then there is nothing

170 Appendix A. Proofs

to show. So, let root(u|p) /∈ Σ, i.e., u|p ∈ V or u|p = c(. . .). As c does not occur
in R the term u|p must be part of σ, i.e., there is a variable x such that u|p is a
subterm of σ(x). We define the substitution δ to be like σ except that δ(x) differs
from σ(x) where the subterm u|p has been replaced by t|p. As x occurs at most
once in ` we know that t = `δ. Finally, from the reduction δ(x)

=→ σ(x) we obtain

t = `δ
<→ rδ

=→∗ rσ = s.

(vi) Let t
=→n

v
=!→
m

u. We perform an outer induction on n and an inner reduction on
m. If n = 0 or m = 0 then there is nothing to show.

Otherwise, let t
=→n−1

s
=→p `

=!→q w
=!→
m−1

u. We consider four cases to proof

s
=!→
∗ =→?

w. If p = q then by the definition of
=!→ we also have s

=!→ w. If p and
q are independent then we can exchange the two reductions between s and w and
are done. If p is below q, i.e., p = qiq′, then root(`|q) = root(s|q) = c. Hence,
the reduction from s to ` was below a c which contradicts s

=→p `. Finally, if q is

below p, i.e., q = pip′, then from `
=!→q w we know that root(`|p) ∈ Σ and hence

s
=!→ `

=!→ w.

At this point we have shown that there is some term v with s
=!→
∗
v

=→?
w. Now using

the inner induction hypothesis yields v
=!→
∗
r

=→?
u. Finally, the outer induction

hypothesis results in t
=!→
∗ =→k′

r with k′ ≤ n − 1. Hence, t
=!→
∗ =→k

u with k′ ≤
k′ + 1 = k.

(vii) We perform an induction on the number of
=→-reductions. If there is no

=→-reduction

we are done. Otherwise, let t
=→n

s
=→p v

<→ u. We use (v) to obtain s
<→ w

=→∗ u or

root(v|p) ∈ Σ. In the former case we just have to use induction to obtain t
=!→
∗ <→ =→∗

w
=→∗ u and are done. In the latter case we know by the definition of

=!→ that s
=!→ v

and hence t
=→n

s
=!→ v

<→ u. Using (vi) we obtain t
=!→
∗
w

=→k
v

<→ u where k ≤ n.

Thus, by induction we conclude t
=!→
∗
w

=!→
∗ <→ =→∗ u.

(viii) The proof is analogous to the proof of (iv). Suppose, t is not terminating w.r.t. →.

Then by (iv) the term t is not terminating w.r.t.
≤→, too.

As
=→⊆→Cε we know that in an infinite reduction w.r.t.

≤→ there must be infinitely

many
<→-steps. Hence, t

=→∗ <→ s1
=→∗ <→ s2

=→∗ <→ We define v0 = t and obtain

from (vii) some v1 with v0
=!→
∗ <→ v1

=→∗ s1. Thus, v1
=→∗ s1 =→∗ <→ s2. Again using

(vii) we obtain some v2 with v1
=!→
∗ <→ v2

=→∗ s2 and v2
=→∗ s2 =→∗ <→ s3. Continuing

in this way we obtain the infinite reduction t = v0
=!→
∗ <→ v1

=!→
∗ <→ v2 . . . which

proves that t is not terminating w.r.t.
<→ ∪ =!→.

Lemma A.3. Let M ⊆ R be some set of left-linear rules. We use t, s for terms of

T (Σ,V). The reductions
<→, =!→ are used w.r.t. →M∪Cε. The notation t[·]p1 . . . [·]pn always

induces that the pi are independent positions.

(i) For every u = t[I(t|p1)]p1 . . . [I(t|pn)]pn there are positions qi such that u = t[I(t|q1)]q1
. . . [I(t|qm)]qm], root(I(t|qi)) = c, and for each qi there is some pj which is (non-
strictly) above qi.

A.4. Proofs of Chapter 4 171

(ii) If t[I(t|p1)]p1 . . . [I(t|pn)]pn
<→ u then t→R s and u is a term of the form s[I(s|q1)]q1

. . . [I(s|qm)]qm.

(iii) If t[I(t|p1)]p1 . . . [I(t|pn)]pn
=!→ u then t→R∗ s and u is a term of the form s[I(s|q1)]q1

. . . [I(s|qm)]qm.

(iv) If t is terminating w.r.t. R then I(t) is terminating w.r.t. M∪ Cε.

Proof. (i) We perform induction on t. If n = 0 there is nothing to show. If some pi = ε
then n = 1 and we have u = I(t). If root(u) = c we are done.

If all pj are below the root then t must be of the form f(t1, . . . , tk), u = f(u1, . . . , uk),
and p1, . . . , pn = p1,1, . . . , p1,n1 , . . . , pk,1, . . . , pk,nk where each pi,j = ip′i,j. Hence, each
ui = ti[I(t|pi,1)]p′i,1 . . . [I(t|pi,ni)]p′i,ni = ti[I(ti|p′i,1)]p′i,1 . . . [I(ti|p′i,ni)]p′i,ni . Thus, we can

apply the induction hypothesis to obtain ui = ti[I(ti|qi,1)]qi,1 . . . [I(ti|qi,mi)]qi,mi where
all the roots of all I(ti)|qi,j are c. Hence,

u = f(. . . , ui, . . .)

= f(. . . , ti[I(ti|qi,1)]qi,1 . . . [I(ti|qi,mi)]qi,mi , . . .)
= f(. . . , ti[I(t|iqi,1)]qi,1 . . . [I(t|iqi,mi)]qi,mi , . . .)
= t . . . [I(t|iqi,1)]iqi,1 . . . [I(t|iqi,mi)]iqi,mi . . .

shows the required result.

In the other case, there is only one position p = ε and thus, u = I(t). If root(u) = c
or if t = u is a variable, then we are directly done. Otherwise, t = f(t1, . . . , tk)
and u = f(I(t1), . . . , I(tk)) = t[I(t1)]1 . . . [I(tk)]k. Hence, it suffices to apply the
previous case where all positions 1, . . . , k are below the root.

(ii) As we have a
<→-reduction the rule used must be from M and hence, left-linear.

We perform induction on the position of the reduction. For a reduction at the root

we have t[I(t|p1)]p1 . . . [I(t|pn)]pn = `σ
<→ rσ = u. Using (i) we can assume that the

roots of all I(t|pi) are c. Hence, all these parts must be matched from variables in
`. As ` is linear we can define δ to be like σ where all I(t|pi) are replaced by t|pi .
Thus t = t[t|p1]p1 . . . [t|pn]pn = `δ →M rδ = s. Moreover, by replacing in s those
subterm s|qj which correspond to a previously term t|pi back to I(t|pi) = I(s|qj) we
obtain u.

For a non-root reduction all pj must be of the form ip′j for some 1 ≤ i ≤ k and
the left-hand side w = t[I(t|p1)]p1 . . . [I(t|pn)]pn is a term of the form f(t1 . . . , . . . ,

ti[I(ti|p′j)]p′j . . . , . . . , tk . . .) with ti[I(ti|p′j)]p′j . . .
<→ ui and u = w[ui]i. Hence, by in-

duction we obtain some si such that ti →R si with ui = si[I(si|q1)]q1 . . . [I(si|qm)]qm .
We define s = f(t1, . . . , si, . . . , tk). Then t→R s and

u = w[ui]i

= f(t1[I(t1|p′1)]p′1 . . . , . . . , ui, . . . , tk[I(tk|p′j)]p′j . . .)
= s[I(t1|p′1)]1p′1 . . . [I(si|q1)]iq1 . . . [I(si|qm)]iqm . . . [I(tk|p′j)]kp′j . . .
= s[I(s|1p′1)]1p′1 . . . [I(s|iq1)]iq1 . . . [I(s|iqm)]iqm . . . [I(s|kp′j)]kp′j . . .

172 Appendix A. Proofs

(iii) We perform induction over first the number of
=→-steps in the

=!→-reduction and
then on the term t. We first consider the case of a root reduction. Then the root
of w = t[I(t|p1)]p1 . . . must be c. Thus, w = I(t), t = f(t1, . . . , tk) and I(t) =

c(xt,Comp({f(I(t1), . . . , I(tk))} ∪ Red(t))). If I(t)
=!→ f(I(t1), . . . , I(tk)) = u then

we choose t = s and are done as u = t[I(t|1)]1 . . . [I(t|k)]k. Otherwise, if I(t)
=!→ I(s)

for some s ∈ Red(t) then we know that t→R+ s and are done as I(s) = s[I(s|ε)]ε.
The only missing case is I(t)

=→+

ε I(r)
=!→ u where r ∈ Red(t). Again we know

that t →R+ r and can use the induction to obtain some s with r →R∗ s and
u = s[I(s|q1)]q1 . . . [I(s|qm)]qm .

We can deal with non-root reductions in completely the same way as in (ii).

(iv) Suppose, I(t) is not terminating w.r.t. M∪ Cε. Then by Lemma A.2 (iv,viii) we

know that I(t) is not terminating w.r.t.
<→ ∪ =!→. Of course, as

=!→ is terminating

we must have infinitely many
<→-steps. But as I(t) = t[I(t|ε)]ε we can use (ii, iii)

to obtain an infinite R-reduction of t.

Proof of Theorem 4.12. Just use Lemma 4.11 (viii).

Proof of Theorem 4.18. Completeness is a consequence of Lemma 2.17. For the soundness
we just have to adapt the proof of Theorem 4.2 and integrate Lemma 4.11. Let s1 →
t1, s2 → t2, . . . be an infinite minimal (P ,Q,R)-chain. We distinguish two cases. If there
is some n ∈ IN such that for every i ≥ n the pair si → ti is contained in P \ �π then
sn → tn, sn+1 → tn+1, . . . clearly is an infinite minimal (P \ �π,Q,R, f) chain. Then we
are immediately done.

Otherwise, there is some si → ti ∈ �π which occurs infinitely often in the chain.
By Lemma 4.11 (viii) s1 → t1, s2 → t2, . . . is also an infinite (P ,Q,N (P ,Q,R) ∪ Cε)-
chain. We extend π by defining π(c) = [1, 2]. Then in the same way as in the proof of
Theorem 4.2 the constraints of the theorem yield an infinite decrease w.r.t. �π. This is
in contradiction to the well-foundedness of �π.

Proof of Theorem 4.20. Completeness is a consequence of Lemma 2.17. For soundness
we consider an infinite minimal (P ,Q,R)-chain s1 → t1, s2 → t2, . . . where σ is the
substitution with tiσ

Q→∗R si+1σ. We distinguish two cases. If there is some n ∈ IN
such that for every i ≥ n in the reductions tiσ

Q→∗R si+1σ only rules of N are used then
sn → tn, sn+1 → tn+1, . . . is an infinite minimal (P ,Q,N , f) chain by Lemma 2.4.

Otherwise, there is some unneeded rule ` → r ∈ R \ N which is used infinitely often
in reductions of the chain. By Lemma 4.11 (viii) s1 → t1, s2 → t2, . . . is also an infinite
(P ,Q,N ∪Cε)-chain where I(σ) is the corresponding substitution. A closer inspection of
Lemma 4.11 (iv)-(vi) reveals that any application of an unneeded rule in the original chain
with σ is transformed to at least one application of a rule of Cε in the transformed chain
with I(σ) as substitution. Due to the monotonicity of � we can show as in Theorem 4.2
that there is an infinite decrease w.r.t. � as the unneeded rule ` → r is used infinitely
often. This is in contradiction to the well-foundedness of �.

Proof of Theorem 4.22. Completeness follows by Lemma 2.17. For soundness the proof
is completely analogous to the proof of Theorem 4.2.

Proof of Lemma 4.26. By a straightforward induction on the position p one can show that
if t→{`→r},p u and p ∈ RegPosπ(t) then π(t)→{π(`→r)} π(u). (?)

A.4. Proofs of Chapter 4 173

We now prove the following property which directly implies the lemma by (?): if sσ ∈
NF (Q) and tσ Q→∗R u then π(tσ)→∗π(U) π(u) where U = EU{s},πR,Q (t).

To prove the property we perform induction on the reduction length. If there are no
reductions then π(tσ) = π(u) and we are done. Otherwise, tσ Q→∗R v Q→R,p u. By the
induction hypothesis we already obtain π(tσ)→∗π(U) π(v). If p ∈ RegPosπ(v) then by the

definition of usable rules w.r.t. π the rule ` → r is contained in U{s},πR,Q (t) ⊆ U . Thus, we
can apply (?) to obtain π(v)→π(U) π(u). Otherwise, if p /∈ RegPosπ(v) then π(v) = π(u)
which also implies π(v)→∗π(U) π(u).

Proof of Theorem 4.27. The proof is similar to the proof of Theorem 4.18. One just has
to replace the application of Lemma 4.11 (viii) by Lemma 4.26.

Proof of Theorem 4.30. If a rule `→ r ∈ US,πR,Q(t) then there is a substitution σ such that
Sσ ⊆ NF (Q) and tσ Q→∗R v Q→{`→r},p u and p ∈ RegPosπ(v). We show that ` → r ∈
IUSR,Q(t) by induction on the lexicographic combination of first the reduction length and
then the structure of t.

If t is a variable and tσ can be reduced then tσ /∈ NF (R). If t does not occur as
a subterm of a term in S or NF (Q) 6⊆ NF (R) then IUS,πR,Q(t) = R and we are done.
Otherwise, as Sσ ⊆ NF (Q) we obtain tσ ∈ NF (Q) ⊆ NF (R) which is a contradiction to
tσ /∈ NF (R).

So, in the remaining proof we let t = f(t1, . . . , tn). If any reduction step in tσ Q→∗R v is
performed at a position q ≤ p, i.e., p = qq′ then we choose q to be the highest such position.
Note that q ∈ RegPosπ(v) and q′ ∈ RegPosπ(v|q). Hence, tσ Q→∗R w = w[`′τ]q

Q→R
w[r′τ]q

Q→∗R v Q→{`→r},qq′ u and moreover, r′τ Q→∗R v|q Q→{`→r},q′ u|q for some rule `′ → r′

with `′ = g(`′1, . . . , `
′
m). Thus, all terms `′iτ are in Q-normal form. Therefore, we can use

the induction hypothesis and obtain `′ → r′ ∈ IUS,πR,Q(t) and `→ r ∈ IU{`
′
1,...,`

′
m},π

R,Q (r′). By

Definition 4.29 the rule `→ r is an element of IUS,πR,Q(t), too.
Otherwise, there is no reduction above p in the reduction of tσ to v. If p = ip′ then

obviously π(f) = i or π(f) = [. . . , i, . . .], p′ ∈ RegPosπ(ti), and tiσ
Q→∗R v|i Q→{`→r},p′ u|i.

As ti is smaller than t and as the reduction of tiσ to v|i is not longer than the reduction
of tσ to v we know by induction that ` → r ∈ IUS,πR,Q(ti) ⊆ IUS,πR,Q(t). Finally, if p = ε
then the final reduction is the only reduction at root level. Hence, tσ Q→∗R f(v1, . . . , vn) =
v = `τ Q→R rτ = u where tiσ

Q→∗R vi for every i. Using Lemma 3.8 we know that
v = f(ECapSR,Q(t1)µ, . . . ,ECapSR,Q(tn)µ) = f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn))µ, where µ
differs from σ only on the free variables that are introduced by ECap. W.l.o.g. we may as-
sume that µ is equal to τ on the variables of `. Thus, f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn))µ =
`µ where all direct subterms of `µ are in Q-normal form. Moreover, as σ differs from µ
only on the fresh variables, all terms in Sµ are Q-normal, too. Hence, ` is unifiable
with f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) and the mgu δ also instantiates all direct sub-
terms of ` and all terms in S to Q-normal forms. A final look at Definition 4.29 reveals
`→ r ∈ IUS,πR,Q(t).

Proof of Theorem 4.32. Completeness is proven by Lemma 2.17. The soundness proof is
similar to the one of Theorem 4.18. Let N = N (P ,Q,R, π). Given a minimal chain
s1 → t1, s2 → t2, . . . either from some point all pairs are in P \ �π or there is a strictly
decreasing pair which occurs infinitely often. In the former case there is nothing to show
and in the latter we use Lemma 4.35 (vi) to obtain

π(s1)σ →π(P) π(t1)σ →∗π(N)∪Cε π(s2)σ →π(P) π(t2)σ . . .

174 Appendix A. Proofs

If we extend π by defining π(c) = [1, 2] then π(Cε) = Cε. Hence, by the constraints of
Theorem 4.32 and stability and monotonicity we obtain

π(s1)σ (
%

)
π(t1)σ % π(s2)σ (

%
)
π(t2)σ . . .

with an infinite number of strict decreases. This is a contradiction to the well-foundedness
of �.

Proof of Lemma 4.35. Note that by construction of Sall and σ all terms in Sallσ are Q-
normal.

(i) We perform induction on t. If t is a variable x then by definition Iπ(tσ) = Iπ(xσ) =
xIπ(σ) = tIπ(σ). Otherwise, let t = f(t1, . . . , tn). Then we obtain N S,πR,Q(ti) ⊆
N S,πR,Q(t) ⊆ N for all i ∈ RegPosπ(t). Hence, we may apply the induction hypothesis
and know Iπ(tiσ) = tiIπ(σ) for all i ∈ RegPosπ(t). If Iπ(tσ) is built by the second
case we immediately obtain Iπ(tσ) = π(t)Iπ(σ) by the definition of Iπ. To show
that Iπ(tσ) cannot be built by the third case can be shown in the same way as in
the proof of Lemma 4.11 (ii).

(ii) We prove the result by induction on t. If t is a variable then we use (i) with S = ∅
to conclude Iπ(tσ) = π(t)Iπ(σ).

Otherwise, if t = f(t1, . . . , tn) we obtain by the induction hypothesis Iπ(tiσ) →∗Cε
π(ti)Iπ(σ) and hence, tσ →∗Cε π(t)Iπ(σ). Finally, if Iπ(tσ) is built by the second
case we are done and otherwise we perform one additional reduction step to obtain
Iπ(tσ) = c(tσ,Comp(. . .))→Cε tσ →∗Cε π(t)Iπ(σ).

(iii) The proof is a direct consequence of the definitions of Redπ(t) and of Lemma 4.7. As
Iπ(t) = c(. . . ,Comp(Redπ(t))), Iπ(s) ∈ Redπ(t), and as every term is in normal form
w.r.t. the empty set we conclude Iπ(t)→∗Cε c(. . . , Iπ(s))→Cε Iπ(s) by Lemma 4.7.

(iv) Let t = `σ Q→R rσ = s for some rule ` = f(`1, . . . , `n)→ r ∈ R. As in the proof of
Lemma 4.11 (v) one can show that `→ r ∈ N . Now by the closure properties of N
we know that N {`1,...,`n},πR,Q (r) ⊆ N . Moreover, by the construction of Sall we obtain
{`1, . . . , `n} ⊆ Sall. Hence, (ii) and (i) yield Iπ(t) = Iπ(`σ) →∗Cε π(`)Iπ(σ) →π(N)

π(r)Iπ(σ) = Iπ(rσ).

(v) We perform induction on t. Obviously t cannot be a variable and if t is built by
the third case we use (iii). So let t = f(t1, . . . , tn) and as Iπ(t) is built by the
second case we obtain Iπ(t) = t. If the reduction is at the root position we use (iv).
Otherwise, there is some ti such that ti

Q→R si and s = f(t1, . . . , si, . . . , tn). By
induction we obtain Iπ(ti)→∗π(N)∪Cε Iπ(si). Hence, Iπ(t) = t→∗π(N)∪Cε s. Note that

if i /∈ RegPosπ(t) then the i-th argument is dropped and we perform zero reduction
steps from Iπ(t) to s. To prove that Iπ(s) = s is done in the same way as in the
proof of Lemma 4.11 (vi).

(vi) As u1 → v1, u2 → v2, . . . is a minimal chain for every i we know that viσ
Q→∗R ui+1σ.

Using the previous results we can now exchange P by π(P), R by π(N) ∪ Cε, and
σ by Iπ(σ).

A.4. Proofs of Chapter 4 175

By construction of N we know that N {ui},πR,Q (vi) ⊆ N and ui ∈ Sall for every i.
Hence, using (i) we obtain Iπ(viσ) = π(vi)Iπ(σ). From (ii) we conclude Iπ(uiσ)→∗Cε
π(ui)Iπ(σ). By (v) we glue everything together and construct the new chain.

π(u1)Iπ(σ)→π(P) π(v1)Iπ(σ) = Iπ(v1σ)→∗π(N)∪Cε

Iπ(u2σ)→∗Cε π(u2)Iπ(σ)→π(P) π(v2)Iπ(σ) = Iπ(v2σ) . . .

Proof of Lemma 4.37. We first define the two measures rank and Rank . Intuitively, rank
counts the maximal nesting of head symbols in a term. Similarly, Rank also counts the
maximal nesting of head symbols, but disregards the root-symbol of the given term. More
formally, we define rank and Rank as follows.

rank(t) =

0, if t is a variable
max{rank(t1), . . . , rank(tn)}+ 1, if t = f(t1, . . . , tn), f ∈ H
max{rank(t1), . . . , rank(tn)}, if t = f(t1, . . . , tn), f /∈ H

Rank(t) =

{
0, if t is a variable
max{rank(t1), . . . , rank(tn)}, if t = f(t1, . . . , tn)

Here, we define the maximum of the empty set to be 0. We use the following properties
of rank and Rank .

(i) rank(t) ≥ Rank(t) for all terms t.

(ii) If t ∈ T (F \ H,V) then rank(tσ) = max{rank(xσ) | x ∈ V(t)}.

(iii) If t→R s then rank(t) ≥ rank(s)

(iv) If t→R s then Rank(t) ≥ Rank(s)

(v) If s→ t ∈ P then Rank(sσ) ≥ Rank(tσ).

(vi) If t→R∗ s, root(t) /∈ H and root(s) ∈ H then Rank(t) > Rank(s).

(vii) If s→ t ∈ P , t ∈ V and root(tσ) ∈ H then Rank(sσ) > Rank(tσ).

Using these properties it is now easy to prove the lemma. If we have an infinite chain
s1 → t1, s2 → t2, . . . then we obtain tiσ →R∗ si+1σ for every i. Obviously whenever
root(ti) ∈ H then root(si+1) ∈ H, because there is no rule in R to rewrite a head symbol.
For the converse direction we first conclude by (iv), (v), and the fact that > is well-
founded on the natural numbers that there must be numbers n and c such that for all
i ≥ n we have c = Rank(siσ) = Rank(tiσ). Let us assume root(si+1) = root(si+1σ) ∈ H.
Due to (vi) we know that root(tiσ) ∈ H. If root(ti) ∈ H we are done. Otherwise, ti must
be a variable but this is a contradiction to (vii).

It remains to show that the listed properties of the measures are correct.

(i) Obvious.

(ii) We perform induction on t. If t is a variable then the result clearly holds. Otherwise,
let t = f(t1, . . . , tn). By the precondition f /∈ H and thus we get rank(tσ) =
max{rank(tiσ) | 1 ≤ i ≤ n)}. Induction yields rank(tσ) = max{max{rank(xσ) |
x ∈ V(ti)} | 1 ≤ i ≤ n} = max{rank(xσ) | x ∈ V(t)}.

176 Appendix A. Proofs

(iii) We perform induction on the position of the reduction. If t = `σ →R rσ = s then
by the definition of H both ` and r are terms from T (F \H,V). Thus, rank(`σ) =
max{rank(xσ) | x ∈ V(`)} ≥ max{rank(xσ) | x ∈ V(r)} = rank(rσ). Other-
wise, t = f(t1, . . . , tn) →R f(t1, . . . , si, . . . , tn) where ti →R si. Induction yields
rank(ti) ≥ rank(si) and hence, rank(t)− rank(s) = max{rank(t1), . . . , rank(ti), . . . ,
rank(tn)} −max{rank(t1), . . . , rank(si), . . . , rank(tn)} ≥ rank(ti)− rank(si) ≥ 0.

(iv) If the reduction is below the root then the result is easily obtained from (iii). Oth-
erwise, let `σ →R rσ. By the definition of H we know that root(`) /∈ H and hence
Rank(`σ) = rank(`σ) ≥ rank(rσ) ≥ Rank(rσ) by (iii) and (i).

(v) By the definition of H all proper subterms of s and t are of T (F \ H,V). Thus,
by (ii) Rank(sσ) = max{rank(xσ) | x ∈ V(s)} ≥ max{rank(xσ) | x ∈ V(t)} =:
m. We show that m ≥ Rank(tσ). If t ∈ T (F \ H,V) then by (ii) and (i) m =
rank(tσ) ≥ Rank(tσ). In the other case t must be of the form f(t1, . . . , tn) where
by the construction of H the function symbol f is contained in H but all ti ∈
T (F \H,V). Thus, Rank(tσ) = max{rank(tiσ) | 1 ≤ i ≤ n} = max{rank(xσ) | x ∈
V(ti), 1 ≤ i ≤ n} = m by (ii).

(vi) AsR does not contain anyH symbols and as we get from t with root(t) /∈ H to some
term s with root(s) ∈ H we must have t →R∗ t′ = `σ →R xσ = s′ →R∗ s where t′

has no root of H, s′ has a root of H and ` → x is the collapsing rule that brings
some head symbol to the root position. Thus, Rank(t′) = Rank(`σ) ≥ rank(xσ) =
1+ Rank(xσ) > Rank(xσ) = Rank(s′). Using (iv) we also have Rank(t) > Rank(s).

(vii) Let t = x and root(xσ) = f(t1, . . . , tn) where f ∈ H. Thus, rank(xσ) = Rank(xσ)+
1 > Rank(xσ) = Rank(tσ). On the other hand s is of the form g(s1, . . . , sn) where
x must occur in some si. Hence, Rank(sσ) ≥ rank(siσ) = max{rank(xσ) | x ∈
V(si)} ≥ rank(xσ) by (ii). Thus, Rank(sσ) > Rank(tσ).

Proof of Theorem 4.39. Completeness follows from Lemma 2.17 and soundness is an im-
mediate consequence of Lemma 4.37.

Proof of Theorem 4.38. First note that the requirement of π(P) being a TRS is only to
ensure that (π(P),Q,R,m) really is a DP problem.

To prove soundness, let s1 → t1, s2 → t2, . . . be an infinite (minimal) (P ,Q,R)-chain.
Then there is a substitution σ such that for every i there is the reduction tiσ

Q→∗R si+1σ,
siσ ∈ NF (Q), and if the chain is minimal then every tiσ is terminating w.r.t. Q→R.

We prove that π(s1) → π(t1), π(s2) → π(t2), . . . is an infinite chain using the same
substitution σ. Therefore, we first show that each π(si)σ is in Q-normal form, and that
π(ti)σ is terminating whenever tiσ is terminating. We consider two cases. If si � π(si)
then obviously π(si)σ ∈ NF (Q). Otherwise, root(si) ∈ H, si = f(u1, . . . , um) and π(si) =
f(uj1 , . . . , ujk). Since siσ ∈ NF (Q), the only possible Q-redex of π(si)σ can be at the
root. But since the filtered, k-ary symbol f is a new symbol, it does not occur in Q
and hence, π(si)σ ∈ NF (Q). In the same way one can prove that π(ti)σ is terminating
whenever tiσ is terminating.

It remains to prove π(ti)σ
Q→∗R π(si+1)σ. Due to Lemma 4.37 we can assume that

for every i the equivalence root(si) ∈ H ⇔ root(ti+1) ∈ H is valid. If root(ti) /∈ H
then π(ti) = ti and due to the above equivalence, π(si+1) = si+1 is satisfied. In that
case the result is immediately obtained from tiσ

Q→∗R si+1σ. Otherwise, root(ti) ∈ H,

A.5. Proofs of Chapter 5 177

ti = f(u1, . . . , um), and since f does not occur in R, we know that si+1 = f(v1, . . . , vm)
and ujσ

Q→∗R vjσ for all j. As both π(ti) = f(uj1 , . . . , ujk) and π(si+1) = f(vj1 , . . . , vjk) or
both π(ti) = uj and π(si+1) = vj, this directly implies π(ti)σ

Q→∗R π(si+1)σ.

Proof of Theorem 4.41. Completeness follows from Lemma 2.17. For soundness consider
an infinite chain s1 → t1, s2 → t2, Let H = H(P ,R). Using Theorem 4.39 we can
w.l.o.g. assume that root(ti) ∈ H ⇔ root(si+1) ∈ H. We consider two cases.

If NF (Q) ⊆ NF (R) then it suffices to apply Theorem 4.27 with π and as reduction pair
(%,�) we use the embedding order and its reflexive closure for � and %, respectively.
Then obviously the constraints for the pairs in P in Theorem 4.27 are satisfied and allow
to delete the pairs in �π ⊆ �π. Moreover, we will show that IU(P ,Q,R, π) is empty
where we use ICap as estimated Cap-function. Thus, there are no constraints for R
which finishes this case. To conclude that there are no usable rules w.r.t. π we show
that IU{s},πR,Q (t) = ∅ for every s → t ∈ P . By a straight-forward induction on p one

can show that ICap
{s}
R,Q(s|p) = s|p and IU{s}R,Q(s|p) = ∅ for every subterm s|p of s. If

root(t) /∈ H this suffices to prove ICap
{s}
R,Q(t) = ∅ as s � π(s) � π(t) = t. In the

other case t = g(t1, . . . , tn) for a head symbol g. As g does not occur in R obviously the

term g(ICap
{s}
R,Q(t1), . . . , ICap

{s}
R,Q(tn)) does not unify with a left-hand side of R. Thus,

as π(g) = i for some i the only usable rules are those of IU{s},πR,Q (ti). But as s � π(s) �

π(t) = ti again there are no usable rules.

If we are not in the innermost case then by the requirement of the theorem we know that
f = m and hence, we can assume that the terms t1σ is terminating w.r.t. Q→R. As π only
filters head symbols this directly implies that the term π(t1)σ is also terminating w.r.t.
Q→R. The reason is that for every term t that occurs in P the term π(t)σ is either tσ itself
(in the case that root(t) /∈ H) or π(t)σ is a subterm of tσ (in the case that root(t) ∈ H).
Additionally π(ti)σ

Q→∗R π(si+1)σ must be valid, too: If the roots of ti and si+1 are not
in H then π(ti)σ = tiσ

Q→∗R si+1σ = π(si+1)σ. Otherwise, both terms ti and si+1 must
be rooted with the same head symbol g. Let π(g) = j. Then from tiσ

Q→∗R si+1σ we can
conclude ti|jσ Q→∗R si+1|jσ as the head symbol at the root position cannot be reduced.

As � is stable and the conditions of the processor are satisfied we finally obtain
π(t1)σ

Q→∗R π(s2)σ � π(t2)σ
Q→∗R π(s3)σ � If a pair s → t with π(s) � π(t) oc-

curs infinitely often in this chain we obtain an infinite (Q→R ∪ �)-reduction starting in
π(s1)σ. This is a contradiction to the termination of π(t1)σ w.r.t. Q→R as every term is
terminating w.r.t. Q→R iff it is terminating w.r.t. Q→R ∪�.

A.5. Proofs of Chapter 5

Proof of Theorem 5.3. Note that due to our semantic Cap-function this proof is even
simpler than the original proof in [GA01, Theorem 20].

If . . . u1 → v1, s→ t, u2 → v2, . . . is a (P ,Q,R)-chain, then there exists a substitution
σ such that

(i) v1σ
Q→∗R sσ, tσ Q→∗R u2σ

(ii) {u1σ, sσ, u2σ} ⊆ NF (Q)

(iii) (u1 → v1, s→ t) ∈ E and (s→ t, u2 → v2) ∈ E

178 Appendix A. Proofs

First we use Lemma 3.8 to see that sσ = ECap
{u1,s}
R,Q (v1)µ for some substitution µ that

differs from σ at most on the variables that are introduced by ECap. W.l.o.g. we can
assume that σ is equal to µ on all these fresh variables. Hence, sσ = ECap

{u1,s}
R,Q (v1)σ

shows there is an mgu δ of s and ECap
{u1,s}
R,Q (v1) with σ = δτ for some substitution τ .

Moreover, the property {sσ, u1σ} ⊆ NF (Q) must remain true when replacing σ by the
more general substitution δ, i.e., {sδ, u1δ} ⊆ NF (Q). Hence, sδ → tδ ∈ N ′ and we obtain

(i) v1σ
Q→∗R sσ = (sδ)τ , (tδ)τ = tσ Q→∗R u2σ

(ii) {u1σ, sσ = (sδ)τ, u2σ} ⊆ NF (Q)

(iii) (u1 → v1, sδ → tδ) ∈ E ′ and (sδ → tδ, u2 → v2) ∈ E ′

Thus, by renaming the variables in sδ → tδ to fresh ones we can extend σ to behave
like τ on these fresh variables. In this way we can use σ to obtain the chain . . . u1 →
v1, sδ → tδ, u2 → v2, Moreover, when the original chain with s → t is minimal then
by construction the new chain with sδ → tδ is minimal, too. The reason is that tσ is
terminating iff tδσ is terminating as tσ = tδτ = tδσ.

In this way, one can replace all occurrences of s→ t in (minimal) chains except for the
very first pair in the chain. However, if s→ t, v1 → w1, v2 → w2, . . . is an infinite minimal
chain, then v1 → w1, v2 → w2, . . . is an infinite minimal chain as well.

For completeness, let . . . , sδ → tδ, . . . be a chain. Then by the construction of the graph
P [s→ t/N ′] the sequence . . . , s→ t, . . . is also a path in P . And as different occurrences
of pairs in P may be assumed variable disjoint, we can extend every substitution σ to
behave like δσ on the variables of s. Hence, this direction of the theorem is immediately
proved.

Proof of Theorem 5.5. If . . . , u1 → v1, s→ t, u2 → v2, . . . is a (P ,Q,R)-chain, then there
exists a substitution σ such that

(i) v1σ
Q→∗R sσ and tσ Q→∗R u2σ

(ii) {u1σ, sσ, u2σ} ⊆ NF (Q)

(iii) (u1 → v1, s→ t) and (s→ t, u2 → v2) ∈ E
Let R′′ = EU{s,u2}R,Q (t) and let R′ = R′′−1. First we use Definition 3.24 to see that

tσ →∗R′′ uσ and hence, u2σ →∗R′ tσ. By Lemma 3.8 one obtains tσ = ECap∅
R′,∅(u2)µ for

some substitution µ that differs on σ at most on the variables that are introduced by
ECap. W.l.o.g. we can assume that σ is equal to µ on all these fresh variables. Hence,
tσ = ECap∅

R′,∅(u2)σ shows there is an mgu δ of t and ECap∅
R′,∅(u2) with σ = δτ for some

substitution τ .
The remainder of the soundness proof and the completeness proof is now completely

analogous to the proof of Theorem 5.3.

Proof of Lemma 5.7. Let t Q→R,p1 t1 and t Q→R,p2 t2 by rules `i → ri ∈ R for 1 ≤ i ≤ 2
where by renaming of the variables we can assume that both rules are instantiated by the
same substitution σ. Since t|p1 and t|p2 are no R-normal forms and thus no Q-normal
forms (by NF (Q) ⊆ NF (R)), p2 cannot be strictly above p1 and p1 cannot be strictly
above p2. If p1 = p2, then for 1 ≤ i ≤ 2 we know t = C[`iσ]p1 and ti = C[riσ]p1 . Hence,
by the requirements of the lemma we directly conclude r1σ = r2σ and thus, t1 = t2.
Otherwise, p1 and p2 are independent and thus, t1 and t2 can obviously be joined in one
step.

A.5. Proofs of Chapter 5 179

Proof of Theorem 5.10. Let t = t[`µ]p →R t[rµ]p = t′ for some ` → r ∈ R and substitu-
tion µ.

We first prove the soundness and only consider the case where f = m. The case f = a is
analogous. Let s→ t, u→ v be a minimal (P ,Q,R)-chain. Thus, tσ Q→∗R uσ, both sσ and
uσ are in Q-normal form, and tσ is terminating w.r.t. Q→R. We want to show t′σ Q→∗R uσ
and that t′σ is also terminating w.r.t. Q→R. Then we can exchange all occurrences of s→ t
in chains by s→ t′.

We consider the reduction tσ = tσ[`µσ]p
Q→∗R uσ. As uσ is inQ-normal form and as Q→R-

reductions cannot take place strictly above Q-redexes, w.l.o.g. we first reduce `µσ to some
Q-normal form w. Thus, tσ = tσ[`µσ]p

Q→∗R tσ[w]p
Q→∗R uσ where `µσ Q→∗R w. The only

rules applicable to t|pσ = `µσ or its reducts are from U{s}R,Q(t|p) ⊆ U . Hence, `µσ Q→∗U w.
As w is a Q-normal form, w.l.o.g. one first reduces all terms xµσ with x ∈ V(`) to Q-
normal forms. As Q→U is confluent these normal forms are unique. Thus, `µσ Q→∗U `δ Q→∗U w
for some Q-normal substitution δ and for all x ∈ V(`) we have xµσ Q→∗U xδ. Note that `δ is
not yet a Q-normal form as `→ r ∈ R and NF (Q) ⊆ NF (R). Thus, we need at least one
more step to get from `δ to w. As δ is aQ-normal substitution, the reduction is above δ and
as all critical pairs between `→ r and U are trivial joinable, the only possible reduction
is `δ Q→U rδ Q→∗U w. This finally proves t′σ = tσ[rµσ]p

Q→∗R tσ[rδ]p
Q→∗R tσ[w]p

Q→∗R uσ.

Now minimality (i.e., termination of t′σ w.r.t. Q→R), can be proved in an analogous way.
As before, w.l.o.g. any infinite Q→R-reduction of t′σ = tσ[rµσ]p first reduces all redexes in
xµσ for x ∈ V(r). These reductions either lead to non-termination or they end in some
Q→R-normal forms. Since x ∈ V(r) ⊆ V(`), all xµ are contained in t|p. Thus, for every
x ∈ V(r) the term xµσ is terminating w.r.t. Q→R and the possible rules to rewrite are
all contained in U . Hence, by Lemma 2.4 all these steps can also be done by Q→U and
as Q→U is confluent, the reduction must begin with rµσ Q→∗R rδ. Thus, whenever t′σ is
non-terminating w.r.t. Q→R then so is tσ[rδ]p. But this would contradict the termination
of tσ w.r.t. Q→R as we know that tσ Q→∗R tσ[rδ]p.

The completeness of the rewriting processor is obvious if Q→R is not terminating. Oth-
erwise, we show that if there is a reduction t′σ Q→∗R uσ such that sσ and uσ are in
Q-normal form, then tσ Q→∗R uσ also holds. We use the same way of reasoning as for
the soundness proof. So if t′σ = tσ[rµσ]p

Q→∗R uσ, we may assume that we first reduce
rµσ to some Q-normal form w which is again started with reducing every subterm xµσ
with x ∈ V(r) to a Q-normal form by Q→U reductions. By the confluence of Q→U , we have
rµσ Q→∗U rδ Q→∗R w for some Q-normal substitution δ. In the same way as before we obtain
t′σ = tσ[rµσ]p

Q→∗R tσ[rδ]p
Q→∗R tσ[w]p

Q→∗R uσ. It remains to show that `µσ Q→∗R rδ, as
this implies tσ = tσ[`µσ]p

Q→∗R tσ[rδ]p
Q→∗R tσ[w]p

Q→∗R uσ.

We know that xµσ Q→∗R xδ for all x ∈ V(r), where xδ is in Q-normal form. By
NF (Q) ⊆ NF (R), xδ is in normal form w.r.t. Q→R, too. As Q→R is terminating, we can
extend δ such that xδ is a normal form of xµσ w.r.t. Q→R for every variable x ∈ V(`)\V(r).
Then we have `µσ Q→∗R `δ for the Q→R-normal substitution δ. To prove the desired result
`δ Q→R rδ, we prove that for every position p′ of ` there is the reduction `δ Q→R rδ at a
position below p′ or the term `δ|p′ is in Q-normal form. This suffices to prove `δ Q→R rδ
as for p′ = ε we know that `δ|p′ = `δ /∈ NF (R) ⊇ NF (Q).

We perform induction on `|p′ . If `|p′ is a variable then by the requirements of the
processor we know nfc

{s}
R,Q(`|p′µ). Thus, `|p′µσ Q→∗R `|p′δ is a reduction to a normal form

w.r.t. Q→R and by Definition 5.8 we can infer `|p′δ = `δ|p′ ∈ NF (Q). Otherwise, `|p′ =
f(`1, . . . , `n). If by induction there is an 1 ≤ i ≤ n such that `δ Q→R rδ at a position below
p′i then we are done immediately. In the other case we know that for every 1 ≤ i ≤ n the

180 Appendix A. Proofs

term `δ|p′i is in Q-normal form and hence, every reduction of `δ at position p′ respects
the strategy. If there is a reduction of `δ Q→R,p′ v then this gives rise to a critical pair
and by the requirements of the processor we know v = rδ. In the final case, there is no
reduction at position p′ possible. Hence, `δ|p′ is in normal form w.r.t. Q→R. This case
obviously cannot occur for p′ = ε. Thus, by the requirements of the processor we know
nfc
{s}
R,Q(`|p′µ) and conclude `δ|p′ ∈ NF (Q) by Definition 5.8 as in the variable case.

Proof of Theorem 5.17. If nfcSR,Q(t) = false then there is a substitution σ such that Sσ ⊆
NF (Q) and tσ Q→∗R u for some u /∈ NF (Q) which is in normal form w.r.t. Q→R. We
perform induction on first the length of this reduction and then the structure of t to show
that enfcSR,Q(t) = false.

First we consider the case that t is a variable. Hence, due to V(t) ⊆ V(s) and Sσ ⊆
NF (Q) the term tσ is in Q-normal form. Moreover, tσ is also in normal form w.r.t. Q→R
as NF (Q) ⊆ NF (R). Thus, u = tσ which contradicts u /∈ NF (Q). So, in the remaining
proof we may assume t = f(t1, . . . , tn).

In the second case there is at least one reduction at the root position. Hence, tσ =
f(t1σ, . . . , tnσ) Q→∗R f(u1, . . . , un) = `σ Q→R rσ Q→∗R u for some rule f(`1, . . . , `n) =
` → r ∈ R. We define S ′ = {`1, . . . , `n} as the direct subterms of ` and conclude
S ′σ ⊆ NF (Q) as there is a root reduction. Thus, nfcS

′

R,Q(r) = false and by induc-

tion enfcS
′

R,Q(r) = false. Moreover, using Lemma 3.8 we know that f(u1, . . . , un) =

f(ECapSR,Q(t1)δ, . . . ,ECapSR,Q(tn)) for some δ that differs from σ at most on the vari-
ables that are introduced by ECap. Therefore, we may assume σ = δ which shows that
f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) and ` are unifiable by some mgu µ with σ = µτ for
some substitution τ . Hence, Sµ ∪ S ′µ ⊆ NF (Q) and by Definition 5.16 the required fact
that enfcSR,Q(t) = false follows from enfcS

′

R,Q(r) = false.
Finally, it may be the case that there are no root reductions at all in the rewrite sequence

tσ Q→∗R u. As in the second case we obtain tσ Q→∗R f(u1, . . . , un) where tiσ
Q→∗R ui for every

i. Here, every ui is in normal form w.r.t. Q→R as u itself is a normal form w.r.t. Q→R. If some
ui is not in Q-normal form then obviously nfcSR,Q(ti) does not hold and by induction we

obtain enfcSR,Q(ti) = false which shows enfcSR,Q(t) = false by Definition 5.16. It remains
the case that every ui is in Q-normal form. As u /∈ NF (Q) the only possible redex can
be at the root position, i.e., u = qσ for some q ∈ Q. Similar to the second case we
obtain f(ECapSR,Q(t1)σ, . . . ,ECapSR,Q(tn)σ) = f(u1, . . . , un) = u = qσ and hence q and

f(ECapSR,Q(t1), . . . ,ECapSR,Q(tn)) are unifiable by some mgu µ with σ = µτ for some
substitution τ . Then clearly Sµ ⊆ NF (Q) but we also have qµ ∈ NF (R). The reason is
that otherwise u = qσ = qµτ would be reducible by R and this contradicts the fact that
u is in Q→R-normal form and hence in R-normal form as all subterms of u are in Q-normal
form. Thus, by Definition 5.16 we obtain enfcSR,Q(t) = false and are done.

Proof of Theorem 5.19. The proof is an extension of the corresponding proofs of [AG00,
Theorems 27 and 42]. For soundness, we prove that if there is an infinite minimal
(P ,Q,R)-chain, then there is also an infinite minimal (P [s → t/N ′],Q,R)-chain. To
this end, it suffices to show that if

. . . u1 → v1, s→ t, u2 → v2 . . .

is a minimal chain, then there is a pair s′ → t′ ∈ N ′ such that

. . . u1 → v1, s
′ → t′, u2 → v2 . . .

A.5. Proofs of Chapter 5 181

is also a minimal chain. Here, s → t resp. s′ → t′ may also be the first pair in the chain
(i.e., u1 → v1 may be missing). If this has been proved then all occurrences of s→ t in an
infinite minimal chain may be replaced by its narrowings. The result for arbitrary chains
can be achieved in the same way.

There must be a substitution σ such that

(i) v1σ
Q→∗R sσ, tσ Q→∗R u2σ

(ii) u1σ, sσ, and u2σ are in Q-normal form

(iii) v1σ, tσ, and v2σ are terminating w.r.t. Q→R.

Let σ be such a substitution where the length of the reduction tσ Q→∗R u2σ is minimal.
Note that we have to perform at least one step below position p which is w.l.o.g. the first
step in the reduction. To see this, we consider two cases.

In the one case t|p /∈ NF (Q). Hence, if one only reduces tσ at positions independent
of p then the resulting term will still contain t|pσ which is not in Q-normal form. As
u2σ ∈ NF (Q) there must be some first reduction at a position which is not independent
of p. And since t|pσ /∈ NF (Q) this reduction must be below p. By reordering the reduction
tσ Q→+

R u2σ w.l.o.g. one can assume that the reduction below p is the first step.

In the other case remark that p ∈ Pos(ECap
{s}
R,Q(t)) implies that there can be no

reductions strictly above p as otherwise ECap would have replaced a position strictly
above p with a fresh variable. Second, if there is no reduction step below p then σ would
be a unifier of t|p and u2|p, i.e., there would be an mgu µ of t|p and u2|p such that σ = µτ .
But since sµ or u2µ is no Q-normal form, then sσ or u2σ would not be a Q-normal form
either, which contradicts (ii). As there are no reductions above p w.l.o.g. we assume that
the first step in the reduction is at a position below p.

Hence, we have tσ Q→R q Q→∗R u2σ for some term q and the first reduction is below the
position p. There are two possibilities for the reduction tσ Q→R q. Let us first assume
that this reduction takes place ‘in σ’. Hence, there is a variable x in t (i.e., t|p′ = x
for some position p′) such that σ(x) Q→R r and w = t[r]p′ . Clearly, this cannot happen
if NF (Q) ⊆ NF (R). Otherwise, we have sσ ∈ NF (Q) ⊆ NF (R) due to (ii) and as
V(t) ⊆ V(s) we obtain xσ ∈ NF (Q) being a contradiction. Hence, NF (Q) 6⊆ NF (R).

Thus, the variable x only occurs once in t (as t is linear) and therefore, we have q = tσ′,
where σ′ is the substitution with σ′(x) = r and σ′(y) = σ(y) for all y 6= x. As all
(occurrences of) dependency pairs are variable disjoint, σ′ behaves like σ for all pairs
except s→ t. Thus, we have

(i) v1σ
′ = v1σ

Q→∗R sσ Q→∗R sσ′, tσ′ = q Q→∗R u2σ = u2σ
′

(ii) uiσ
′ and sσ′ are in Q-normal form (since Q = ∅). Here is the reason for requiring

Q = ∅ if NF (Q) 6⊆ NF (R). Otherwise, we could not conclude that sσ′ is in
Q-normal form.

(iii) viσ
′ = viσ are terminating w.r.t. Q→R. Moreover, since tσ terminates and tσ Q→∗R tσ′,

tσ′ is also terminating w.r.t. Q→R.

But as the reduction from tσ′ to u2σ
′ is shorter than the reduction from tσ to u2σ, this

is a contradiction to the minimality of σ.

182 Appendix A. Proofs

So the reduction tσ Q→R q cannot take place ‘in σ’. Hence, t contains some non-variable
subterm w at a position p′ below p such that a rule ` → r has been applied to wσ. In
other words, ` matches wσ (i.e., `ρ = wσ). Hence, the reduction has the following form:

tσ = tσ[wσ]p′ = tσ[`ρ]p′
Q→R tσ[rρ]p′ = q.

We again assume that the variables of `→ r have been renamed to fresh ones. Therefore
we can extend σ to ‘behave’ like ρ on the variables of ` and r (but it still remains the
same on the variables of all pairs in the chain). Now σ is a unifier of ` and w and hence,
there also exists a most general unifier µ. By the definition of most general unifiers, then
there must be a substitution τ such that σ = µτ . Note that since `σ = `ρ Q→R rρ = rσ,
all proper subterms of `σ must be in Q-normal form. But then all proper subterms of `µ
are in Q-normal form as well. Similarly, sσ and thus, sµ are in Q-normal form as well.

Let t′ be the term tµ[rµ]p′ and let s′ be sµ. Then s→ t narrows to s′ → t′ at position p′

(since sµ and the proper subterms of `µ are in Q-normal form) and hence, s′ → t′ ∈ N ′.
As we may assume s′ and t′ to be variable disjoint from all other pairs, we may extend σ
to behave like τ on the variables of s′ and t′. Then we have

(i) v1σ
Q→∗R sσ = sµτ = s′τ = s′σ and t′σ = t′τ = tµτ [rµτ]p′ = tσ[rσ]p′ = tσ[rρ]p′ =

q Q→∗R u2σ.

(ii) uiσ and s′σ = sσ are in Q-normal form

(iii) viσ are terminating. Moreover, since tσ terminates and tσ Q→R q = t′σ, t′σ termi-
nates as well.

The completeness proof for Q = ∅ is completely analogous to the one of [AG00, The-
orem 27] since we do not have to consider minimal, but ordinary chains. The reason is
that if R is not terminating then completeness is immediately satisfied.

Now, let us consider the case NF (Q) ⊆ NF (R). Here we mainly refer to the com-
pleteness proofs of the instantiation and the rewriting processors. The important fact
is that narrowing is just a sequence of an instantiation and a rewrite step. To be more
precise, s′ → t′ ∈ N ′ implies that s′ = sµ and tµ Q→R,p′ t′. Hence, we can first argue as in
Theorem 5.3 that replacing s → t by sµ → tµ is complete. The next step from sµ → tµ
to sµ = s′ → t′ is nothing but a rewrite step at position p′ as analyzed in Theorem 5.10,
and thus, is also complete.

A.6. Proofs of Chapter 6

Proof of Lemma 6.4. (i) The claim is proved by straightforward structural inductions.
For t = x the result is obtained by the definition of A(σ). In the case t =
f ?1t1

?2 . . . ?ntn we conclude

A(tσ) = A(f ?1t1σ
?2 . . . ?ntnσ)

= f?1 ...?n (A(t1σ), . . . ,A(tnσ))

(by ind.) = f?1 ...?n (A(t1)A(σ), . . . ,A(tn)A(σ))

= f?1 ...?n (A(t1), . . . ,A(tn))A(σ)

= A(t)A(σ)

A.6. Proofs of Chapter 6 183

For u = x the result is obtained by the definition of A−1(δ). In the case u =
f?1 ...?n (u1, . . . , un) we conclude

A−1(uδ) = A−1(f?1 ...?n (u1δ, . . . , unδ))

= f ?1A−1(u1δ)?2 . . . ?nA−1(unδ)
(by ind.) = f ?1A−1(u1)A−1(δ)?2 . . . ?nA−1(un)A−1(δ)

= (f ?1A−1(u1)?2 . . . ?nA−1(un))A−1(δ)
= A−1(u)A−1(δ)

(ii) We perform induction on t. As R is proper in the rule ` → r that is used for
the reduction both terms ` and r are proper. If we have a root reduction then
t = `σ →R rσ = s. Hence, by Definition 6.2 all terms xσ with x ∈ V(`) are proper.
As V(r) ⊆ V(`) we conclude that rσ = s is proper, too.

Otherwise, t = f ?1t1
?2 . . . ?ntn and the reduction is below the root. AsR is proper the

reduction must be inside some ti. Thus, ti →R si and s = f ?1t1
?2 . . . ?isi

?i+1 . . . ?ntn.
By induction we conclude that si is proper and therefore, s is proper, too.

(iii) We perform induction on t. If t is a variable then there is nothing to show. Oth-
erwise, t = f ?1t1

?2 . . . ?ntn and as Q is proper the only possible way that t is not in
Q-normal form is that t = qσ for some q ∈ Q or that some ti is not in Q-normal
form. Thus, we obtain

t /∈ NF (Q)
⇔ some ti /∈ NF (Q) or t = qσ for some q ∈ Q

(ind.) ⇔ some A(ti) /∈ NF (A(Q)) or t = qσ for some q ∈ Q
(i) ⇔ some A(ti) /∈ NF (A(Q)) or A(t) = A(q)A(σ) for some q ∈ Q
⇔ some A(ti) /∈ NF (A(Q)) or A(t) = q′σ′ for some q′ ∈ A(Q)
⇔ A(t) = f?1 ...?n (A(t1), . . . ,A(tn)) /∈ NF (A(Q))

(iv) It suffices to show that t Q→R s iff A(t)
A(Q)→A(R) A(s) by structural induction on t.

Then the claim for m > 1 follows by induction and (ii). This is sufficient, since A
is surjective.

We first prove the “only if” direction by induction on t. As t is no variable we
consider t = f ?1t1

?2 . . . ?ntn. If some ti is reduced to si then the induction hypothesis
yields A(ti)

A(Q)→A(R) A(si). Thus, A(t) = f?1 ...?n (A(t1), . . . ,A(ti), . . . ,A(tn))
A(Q)→A(R)

f?1 ...?n (A(t1), . . . ,A(si), . . . ,A(tn)) = A(s). Otherwise, we have t = `σ Q→R rσ = s
as R is proper. Then A(t) = A(`σ) = A(`)A(σ) →A(R) A(r)A(σ) = A(rσ) = A(s)
by (i). As each ti is a subterm of t and therefore in Q-normal form by (iii) we know
that every A(ti) is in A(Q)-normal form. Thus, every direct subterm of A(t) is in
A(Q)-normal form which proves A(t)

A(Q)→A(R) A(s).

For the other direction we assume A(t)
A(Q)→A(R) A(s). Again, we only consider t =

f ?1t1
?2 . . . ?ntn, since t can be no variable. Hence, A(t) = f?1 ...?n (A(t1), . . . ,A(tn)).

If A(s) is obtained by reducing A(ti)
A(Q)→A(R) A(si) then we obtain ti

Q→R si and
hence, f ?1t1

?2 . . . ?iti
?i+1 . . . ?ntn

Q→R f ?1t1
?2 . . . ?isi

?i+1 . . . ?ntn = s. If we have a root
reduction then A(t) = A(`)δ →R A(r)δ = A(s). By (i) one obtains the desired

184 Appendix A. Proofs

reduction.
t = A−1(A(t))

= A−1(A(`)δ)
= A−1(A(`))A−1(δ)
= `A−1(δ)
Q→R rA−1(δ)
= A−1(A(r))A−1(δ)
= A−1(A(r)δ)
= A−1(A(s))
= s

That the reduction really respects the evaluation strategy is due to the fact that Q
is proper and that every ti ∈ NF (Q) by (iii).

Proof of Lemma 6.6. We define ι as the substitution which inverses the effect of Y . The
domain of ι are those variables ⊥t of V ′ that are in the image of Y and it is defined by
ι(⊥t) = t.

(i) The claim can be proven by straightforward structural induction on t.

(ii) We perform structural induction on t. If t = x then Y(tσ) = Y(σ(x)) = Y(σ)(x) =
tY(σ). Otherwise, t = f ?1t1

?2 . . . ?ntn and we conclude

Y(tσ) = Y(f ?1t1σ
?2 . . . ?ntnσ)

= f ?1Y(t1σ)?2 . . . ?nY(tnσ)

(by ind.) = f ?1t1Y(σ)?2 . . . ?ntnY(σ)

= (f ?1t1
?2 . . . ?ntn)Y(σ)

= tY(σ)

(iii) Suppose Y(t) is not in Q-normal form. Then obviously no instance of Y(t) is in
Q-normal form. Thus, t = Y(t)ι is not in Q-normal form which proves (iii).

(iv) We only show that tσ Q→R s implies Y(tσ) Q→R Y(s) and s = uδ for a proper term
u and a Q-normal substitution δ. Then the required result follows by induction on
the number of reduction steps.

As σ is Q-normal and NF (Q) ⊆ NF (R), t is no variable. Thus, t = f ?1t1
?2 . . . ?ntn.

If s is obtained by reducing tiσ
Q→R si, i.e., s = f ?1t1

?2 . . . ?isi
?i+1 . . . ?ntn, then by the

induction hypothesis we conclude Y(tiσ) Q→R Y(si) and si = uiδ for some Q-normal
substitution δ and proper term ui. We may assume that ui is variable disjoint from
tj for all j 6= i. Then we can extend δ to behave like σ on the variables of tj for all
j 6= i. Hence, for u = f ?1t1

?2 . . . ?iui
?i+1 . . . ?ntn we obtain uδ = s. Moreover,

Y(tσ) = f ?1Y(t1σ)?2 . . . ?iY(tiσ)?i+1 . . . ?nY(tnσ)
Q→R f ?1Y(t1σ)?2 . . . ?iY(uiδ)

?i+1 . . . ?nY(tnσ)
= f ?1Y(t1δ)

?2 . . . ?iY(uiδ)
?i+1 . . . ?nY(tnδ)

= Y(f ?1t1δ
?2 . . . ?iuiδ

?i+1 . . . ?ntnδ)
= Y(uδ)
= Y(s).

Otherwise, the reduction is on the root position, i.e., tσ = `τ Q→R rτ = s where
` = f ?1`1

?2 . . . ?n`n. We choose u = r and δ = τ to obtain s = uδ. Then Y(tσ) =

A.6. Proofs of Chapter 6 185

Y(`τ) = `Y(τ) Q→R rY(τ) = Y(rτ) = Y(s) by (ii). This reduction indeed respects
the evaluation strategy given by Q since all `iτ are normal and by (iii) all Y(`iτ)
are normal, too.

(v) Suppose tσ would not be in Q-normal form. Then tσ can perform a Q-restricted
rewrite step w.r.t. the TRS R′ = {q → a | q ∈ Q} where a is some fresh constant.
Hence, by (iv) we know that Y(tσ) can also perform this rewrite step withR′. Thus,
Y(tσ) is not in Q-normal form in contradiction to the assumption.

(vi) It suffices to prove the one-step property that if σ is Q-normal and t is proper then
Y(tσ) Q→R u implies u = Y(sδ) for some proper s and some Q-normal substitution δ
such that tσ Q→R sδ. Then any infinite reduction of Y(tσ) can easily be transformed
into an infinite reduction of tσ: If Y(tσ) is not terminating w.r.t. Q→R then Y(tσ) Q→R
u1
Q→R u2 Q→R Using the one-step property we obtain proper terms si and Q-

normal substitutions δi such that ui = Y(siδi) and tσ Q→R s1δ1
Q→R s2δ2

Q→R . . .
proving that tσ is not terminating w.r.t. Q→R.

To prove the one-step property we perform induction on t. By (ii) we know that
Y(tσ) = tY(σ). Moreover, by (iii) Y(σ) is a Q-normal substitution. Thus, t /∈ V ,
but t = f ?1t1

?2 . . . ?ntn. We have Y(tσ) = f ?1Y(t1σ)?2 . . . ?nY(tnσ). If the reduction
was in the i-th argument (i.e., Y(tiσ) Q→R ui), then by the induction hypothesis we
know that there are si and δ such that tiσ

Q→R siδ and ui = Y(siδ). W.l.o.g. we
may assume that the variables of si do not occur in t. Thus, we can extend δ to
behave like σ on the variables of t. By choosing s = f ?1t1

?...?isi
?i+1 . . . ?ntn we obtain

tσ = f ?1t1σ
?2 . . . ?itiσ

?i+1 . . . ?ntnσ

= f ?1t1δ
?2 . . . ?itiσ

?i+1 . . . ?ntnδ
Q→R f ?1t1δ

?2 . . . ?isiδ
?i+1 . . . ?ntnδ

= sδ

Moreover, the equality u = Y(sδ) is also satisfied.

u = f ?1Y(t1σ)?2 . . . ?iui
?i+1 . . . ?nY(tnσ)

= f ?1Y(t1δ)
?2 . . . ?iY(siδ)

?i+1 . . . ?nY(tnδ)

= Y(sδ)

Otherwise, Y(tσ) = `τ Q→R rτ = u. Thus, ` = f ?1`1
?2 . . . ?n`n and Y(tiσ) =

`iτ . As we had an Q-restricted rewriting step all Y(tiσ) are Q-normal. By (v)
we know that all terms tiσ are Q-normal as well. Hence, as Q is proper every
reduction of tσ respects the evaluation strategy given by Q. As Y(tσ) = `τ we
obtain tσ = ι(Y(tσ)) = ι(`τ) = `τι. By choosing s = r and δ = τι, we obtain
tσ = `δ Q→R rδ = sδ. As the subterms of `δ are in Q-normal form we also know
that δ is aQ-normal substitution. Moreover, we know that Y(sδ) = Y(rτι) = Y(uι).

Hence, it remains to show that Y(uι) = u. To this end, we first prove that u is
proper. By (i) Y(tσ) is proper and as ` is proper and Y(tσ) = `τ we know that τ(x)
is proper for all x ∈ V(`) ⊇ V(r). Hence, as r is proper the term u = rτ must be
proper, too.

Now to finish the proof one can show Y(uι) = u for every proper term u by induc-
tion on u. First, if u is a variable then there are two cases. If u is not in the domain

186 Appendix A. Proofs

of ι then Y(uι) = Y(u) = u. Otherwise, u = ⊥v for some v with Y(v) = u. Hence,
Y(uι) = Y(v) = u. Finally, if u is no variable then u = f ?1u1

?2 . . . ?nun and we con-
clude Y(uι) = Y(f ?1u1ι

?2 . . . ?nunι) = f ?1Y(u1ι)
?2 . . . ?nY(unι) = f ?1u1

?2 . . . ?nun =
u by induction.

Proof of Theorem 6.8. We first prove soundness of the processor. Let s1 → t1, s2 → t2, . . .
be an infinite (minimal) (P ,Q,R)-chain using the substitution σ. Hence, all siσ are Q-
normal and tiσ

Q→∗R si+1σ. Using Lemma 6.6 (ii) and (iv) we conclude

tiY(σ) = Y(tiσ) Q→∗R Y(si+1σ) = si+1Y(σ)

where ti, si+1, and Y(σ) are proper by the requirements on the DP problem and by
Lemma 6.6 (i). Using Lemma 6.6 (iii) we know that all siY(σ) are in Q-normal form
and whenever tiσ is terminating then so is tiY(σ) by Lemma 6.6 (vi). Now we can apply
Lemma 6.4 to obtain

A(ti)A(Y(σ)) = A(tiY(σ))
A(Q)→ ∗
A(R) A(si+1Y(σ)) = A(si+1)A(Y(σ))

Moreover, using Lemma 6.4 (iii) and (iv) we know that every A(si)A(Y(σ)) is in A(Q)-
normal form and whenever tiY(σ) is terminating w.r.t. Q→R then A(ti)A(Y(σ)) is termi-
nating w.r.t.

A(Q)→A(R). Thus, A(s1) → A(t1),A(s2) → A(t2), . . . is an infinite (minimal)
(A(P),A(Q),A(R))-chain as desired.

For completeness we have to show two results. First, if
A(Q)→A(R) is non-terminating

then Q→R must be non-terminating. To prove this it suffices to apply Lemma 6.4 (iv): if
t1
A(Q)→A(R) t2

A(Q)→A(R) . . . is an infinite reduction then A−1(t1) Q→R A−1(t2) Q→R . . . is an
infinite reduction.

Second, if there is an infinite (A(P),A(Q),A(R))-chain, i.e., if there is a substitution σ
with A(ti)σ

A(Q)→ ∗
A(R) A(si+1)σ for pairs si → ti ∈ P with A(si)σ ∈ NF (

A(Q)→A(R)) then again
using Lemma 6.4 shows that s1 → t1, s2 → t2, . . . is an infinite (P ,Q,R)-chain using the
substitution A−1(σ).

Proof of Lemma 6.11. (i) We prove the claim by induction on t using the embedding
order as induction relation. If Z(t) is a variable then it is proper. Otherwise,
t = f ?1t1

?2 . . . ?ktk with n = a-ar(f) and k ≥ n. By the induction we know that
Z(ti

?n+1tn+1
?n+2 . . . ?ktk) is proper for every 1 ≤ i ≤ n. Thus, we also know that

Z(t) = f ?1Z(t1
?n+1tn+1

?n+2 . . . ?ktk)
?2 . . . ?nZ(tn

?n+1tn+1
?n+2 . . . ?ktk)

is proper.

(ii) We perform induction on t. If t is a variable x, then Z(σ(x)?n+1tn+1
?n+2 . . . ?ktk) =

Z(σ(x)) = xZ(σ) by definition of σ.

Otherwise, t = f ?1t1
?2 . . . ?ntn, and we conclude

Z(tσ?n+1tn+1
?n+2 . . . ?ktk)

= Z(f ?1t1σ
?2 . . . ?ntnσ

?n+1tn+1
?n+2 . . . ?ktk)

= f ?1Z(t1σ
?n+1tn+1

?n+2 . . . ?ktk)
?2 . . . ?nZ(tnσ

?n+1tn+1
?n+2 . . . ?ktk)

(ind.) = f ?1t1Z(σ)?2 . . . ?ntnZ(σ)

= tZ(σ)

A.6. Proofs of Chapter 6 187

(iii) It suffices to show that t→R s implies Z(t)→∗R Z(s). We use induction on t with
the embedding order as induction relation. Obviously, t /∈ V . First assume that
t = x?1t1

?2 . . . ?ktk or t = f ?1t1
?2 . . . ?ktk where k < a-ar(f). Here, s is obtained by

reducing ti →R si for some i, since R is proper. Thus, Z(t) = ⊥ = Z(s).

In the remainder we can assume t = f ?1t1
?2 . . . ?ktk, where a-ar(f) = n and k ≥ n.

First we consider the case that s is obtained by reducing ti to si. If i ≤ n,
then Z(ti

?n+1tn+1
?n+2 . . . ?ktk) →∗R Z(si

?n+1tn+1
?n+2 . . . ?ktk) by induction. Hence,

Z(t)→∗R Z(s) by the definition of Z:

Z(t)

= f ?1Z(t1
?n+1tn+1

?n+2 . . . ?ktk)
?2 . . . ?iZ(ti

?n+1tn+1
?n+2 . . . ?ktk)

?i+1

. . . ?nZ(tn
?n+1tn+1

?n+2 . . . ?ktk)

→∗R f ?1Z(t1
?n+1tn+1

?n+2 . . . ?ktk)
?2 . . . ?iZ(si

?n+1tn+1
?n+2 . . . ?ktk)

?i+1

. . . ?nZ(tn
?n+1tn+1

?n+2 . . . ?ktk)

= Z(s)

Otherwise, i > n and by the induction hypothesis we conclude that there is the
reduction Z(tj

?n+1tn+1
?n+2 ...?iti

?i+1 ...?ktk)→∗R Z(tj
?n+1tn+1

?n+2 ...?isi
?i+1 ...?ktk) for all

1 ≤ j ≤ n. By the definition of Z we again get Z(t)→∗R Z(s):

Z(t) = f ?1Z(t1
?n+1tn+1

?n+2 . . . ?iti
?i+1 . . . ?ktk)

?2 . . .
?nZ(tn

?n+1tn+1
?n+2 . . . ?iti

?i+1 . . . ?ktk)

→∗R f ?1Z(t1
?n+1tn+1

?n+2 . . . ?isi
?i+1 . . . ?ktk)

?2 . . .
?nZ(tn

?n+1tn+1
?n+2 . . . ?isi

?i+1 . . . ?ktk)

= Z(s)

Finally we have to consider the case that the reduction is not in one of terms
ti. Then, t = `σ?n+1tn+1

?n+2 ...?ktk →R rσ?n+1tn+1
?n+2 ...?ktk = s. Let σ be the

substitution with σ(x) = σ(x)?n+1tn+1
?n+2 . . . ?ktk. Hence,

Z(t) = Z(`σ?n+1tn+1
?n+2 . . . ?ktk)

(by (ii)) = `Z(σ)

→R rZ(σ)

(by (ii)) = Z(rσ?n+1tn+1
?n+2 . . . ?ktk)

= Z(s)

Proof of Theorem 6.12. We first prove soundness of the processor. If s1 → t1, s2 → t2, . . .
is an infinite (P ,Q,R)-chain then there is a substitution σ with tiσ

Q→∗R si+1σ for all i.
Hence, by Lemma 2.4 we also have tiσ →∗R si+1σ. Thus, using Lemma 6.11 we know that
tiZ(σ) = Z(tiσ) →∗R Z(si+1σ) = si+1Z(σ) where Z(σ) instantiates all variables with
proper terms. Now we can use Lemma 6.4 to conclude

A(ti)A(Z(σ)) = A(tiZ(σ))→∗A(R) A(si+1Z(σ)) = A(si+1)A(Z(σ))

Thus, A(s1)→ A(t1),A(s2)→ A(t2), . . . is an infinite (A(P),∅,A(R))-chain as desired.
For completeness we have to show two results. First, if A(R) is non-terminating then R

must be non-terminating. This was already proven in [KKSV96] and can also be shown

188 Appendix A. Proofs

by using Lemma 6.4 (iv): if t1 →A(R) t2 →A(R) . . . is an infinite A(R)-reduction then
A−1(t1)→R A−1(t2)→R . . . is an infinite reduction w.r.t. A−1(A(R)) = R.

Second, if there is an infinite (A(P),∅,A(R))-chain, i.e., if there is a substitution σ
with A(ti)σ →∗A(R) A(si+1)σ for pairs si → ti ∈ P then again using Lemma 6.4 shows that
s1 → t1, s2 → t2, . . . is an infinite (P ,∅,R)-chain using the substitution A−1σ.

Proof of Lemma 6.16. Note that by construction of Sall and σ all terms in Sallσ are Q-
normal. The proof is very similar to the proof of Lemma 4.11. Therefore it is often just
referred to that proof. The main new difficulty is to show that if a term f ?1t1

?2 . . . ?ntn
is transformed by the second case that then every reduction is either on the root level or
inside some ti.

(i) We perform induction on t. If t is a variable x then by definition I ′(tσ) = I ′(xσ) =
xI ′(σ) = A(t)I ′(σ). Otherwise, let t = f ?1t1

?2 . . . ?ntn. Then we obtain N SR,Q(ti) ⊆
N SR,Q(t) ⊆ N and all ti are proper. Hence, by induction we conclude I ′(tiσ) =
A(ti)I ′(σ). If I ′(tσ) is built by the second case we immediately get I ′(tσ) =
f?1 ...?n (A(t1)I ′(σ), . . . ,A(tn)I ′(σ)) = A(t)I ′(σ). Otherwise, there must be a rule
` → r /∈ N and an i such that CapSallσR,Q (f ?1t1σ

?2 . . . ?i−1ti−1)
?iCapSallσR,Q (tiσ) unifies

with ` by some mgu µ with (Sallσ ∪{`1, . . . , `k})µ ⊆ NF (Q). In the same way as in
the proof of Lemma 4.11 one can show that ` → r ∈ N SR,Q(f ?1t1

?2 . . . ?iti). Hence,
by Definition 4.5 the rule ` → r is also contained in N SR,Q(t) ⊆ N as f ?1t1

?2 . . . ?iti
is a subterm of t. This is a contradiction to `→ r /∈ N .

(ii) The claim is proven in the same way as in Lemma 4.11.

(iii) As in Lemma 4.11 the proof is a direct consequence of Lemma 4.7.

(iv) Let t = `σ Q→R rσ = s for some rule `→ r ∈ R. In the same way as in Lemma 4.11
one can show that `→ r ∈ N . Hence, ` = f ?1`1

?2 . . . ?n`n and r are proper because
N is proper.

Now by the closure properties of N we obtain N {f?1`1?2 ...
?n−1`n−1,`n}

R,Q (r) ⊆ N . And

by the construction of Sall we get {f ?1`1
?2 . . . ?n−1`n−1, `n} ⊆ Sall. Hence, (ii) and

(i) yield I ′(t) = I ′(`σ)→∗Cε A(`)I ′(σ)→A(N) A(r)I ′(σ) = I ′(rσ).

(v) We perform induction on the structure of t. Obviously t cannot be a variable. If
I ′(t) is built by the third or forth case we use (iii). So, let t = f ?1t1

?2 . . . ?ntn where
I ′(t) = f?1 ...?n (I ′(t1), . . . , I ′(tn)). If we have a root reduction we use (iv) to obtain
I ′(t)→+

N∪Cε I ′(s). If the reduction is below the root then we consider two cases.

First, the reduction can be inside some tj. Then tj
Q→R sj and if we define si = ti for

all i 6= j then s = f ?1s1
?2 . . . ?jsj

?j+1 . . . ?nsn. Induction yields I ′(tj)→+
A(N)∪Cε I ′(sj)

and hence, I ′(t) →+
A(N)∪Cε f?1 ...?n (I ′(s1), . . . , I ′(sj), . . . , I ′(sn)) =: w. It remains to

show I ′(s) = w, i.e., we have to prove that I ′(s) is built by the second case. To
this end we use ti

Q→∗R si and f ?1t1
?2 . . . ?i−1ti−1

Q→∗R f ?1s1
?2 . . . ?i−1si−1 for all i to

conclude by Lemma 3.8 that CapSallσR,Q (f ?1s1
?2 . . . ?i−1si−1)

?iCapSallσR,Q (si) is an instance

of CapSallσR,Q (f ?1t1
?2 . . . ?i−1ti−1)

?iCapSallσR,Q (ti) where only variables that are introduced
by Cap are instantiated. Thus, as t is transformed by the second case this must
also be the case for s.

Finally, if the reduction is not in some tj and also not at the root level then there
is some i < n such that f ?1t1

?2 . . . ?iti is the redex `σ and s = rσ?i+1ti+1
?i+2 . . . ?ntn

A.6. Proofs of Chapter 6 189

for some rule ` → r. Note that ` → r cannot be contained in the proper TRS N
as ` is not proper because i < n. This results in a contradiction as one can prove
similarly as in (iv) that `→ r ∈ N . The reason is that I ′(t) is built by the second
case, that CapSallσR,Q (f ?1t1

?2 . . . ?i−1ti−1)
?iCapSallσR,Q (ti) unifies with `, and that the mgu

satisfies the required normal form conditions.

(vi) As u1 → v1, u2 → v2, . . . is a minimal chain for every i we know that viσ
Q→∗R ui+1σ

and uiσ ∈ NF (Q). Moreover, as P is proper every ui and vi are proper. Using the
previous results we can now exchange R by A(N) ∪ Cε and σ by I ′(σ) similar to
Figure 4.8.

By construction of N we know that N {ui}R,Q (vi) ⊆ N and ui ∈ Sall for every i.
Hence, using (i) we obtain I ′(viσ) = A(vi)I ′(σ). From (ii) we conclude I ′(uiσ)→∗Cε
A(ui)I ′(σ). By (v) we glue everything together and obtain

A(vi)I ′(σ) = I ′(viσ)→∗A(N)∪Cε I ′(ui+1σ)→∗Cε A(ui+1)I ′(σ)

Thus, A(u1) → A(v1),A(u2) → A(v2), . . . is an infinite (A(P),∅,A(N) ∪ Cε)-
chain.

Proof of Theorem 6.17. We first consider completeness. In the cases (B) and (D) we
just have to apply Lemma 2.17. In case (C) an additional application of Lemma 6.4 is
sufficient to prove completeness.

For soundness we consider an infinite minimal (P ,Q,R)-chain s1 → t1, s2 → t2, . . .
where σ is the substitution with tiσ

Q→∗R si+1σ. As P ∪ N is proper we just have to
apply Lemma 6.16 (vi) to show that A(s1) → A(t1),A(s2) → A(t2), . . . is an infinite
(A(P),∅,A(N) ∪ Cε)-chain. Hence, we have already proven soundness of case (A).

Next we consider case (D). Due to the constraints on the well-founded order there must
be some n such that there is no pair si → ti with i ≥ n and A(si) � A(ti). Hence,
sn → tn, sn+1 → tn+1, . . . is an infinite (P \ {s→ t | A(s) � A(t)},Q,R, f)-chain.

For case (B) we just have to adapt and combine the proofs of Theorem 4.20 and
4.22. Due to the constraints there is some n such that in every reduction A(ti)I ′(σ) =
I ′(tiσ)→∗A(N)∪Cε I ′(si+1σ)→∗Cε A(si+1)I ′(σ) only reductions with A(N ′) are performed.
As in Theorem 4.20 we look a bit more careful at Lemma 6.16 to conclude that even in
the original chain sn → tn, sn+1 → tn+1, . . . only rules of N ′ have been used. Moreover, if
a term tiσ is terminating w.r.t. Q→R then it is also terminating w.r.t. Q→N ′ by Lemma 2.4.
Thus, sn → tn, sn+1 → tn+1, . . . is a minimal (P ,Q,N ′, f)-chain.

Finally, to prove soundness of case (C) we again argue over details of the proof of
Lemma 6.16. It turns out that there are no reductions below a c-symbol. Thus, even in
the original chain sn → tn, sn+1 → tn+1, . . . one never reduced a term which is improper
at the root-position, i.e., which is of the form x?1u1

?2 . . . ?un or f ?1u1
?2 . . . ?nun where in the

second case a-ar(f) 6= n. Thus, these terms u which are improper at the root-position can
be seen as normal forms and can be replaced by fresh variables ⊥u. This is exactly done
by the Y-transformation. We give two arguments to prove that sn → tn, sn+1 → tn+1, . . .
is also a (P ,Q,N ′)-chain using the substitution Y(σ).

First, we show that all reductions with R are still possible: We already know that no
subterm u that has been replaced by a fresh variable ⊥u is reduced. Additionally these
terms u can only be matched by variables, i.e., all reductions above are also possible
after applying Y . And second, Y does not introduce additional Q-redexes and thus, the
strategy is still respected after Y-transformation, cf. Lemma 6.6 (iii).

190 Appendix A. Proofs

A more detailed proof of the desired result tiY(σ) Q→∗N ′ si+1Y(σ) can be obtained by
an adaptation of Lemma 6.6 (iv). One has to replace the requirement NF (Q) ⊆ NF (N ′)
by the requirement that there are no reductions inside improper terms.

Finally, by Lemma 6.6 (ii) and (vi) we know that all terms tiY(σ) = Y(tiσ) are ter-
minating w.r.t. Q→N ′ . Hence, sn → tn, sn+1 → tn+1, . . . is an infinite minimal (P ,Q,N ′)-
chain using the substitution Y(σ). Since Y(σ) instantiates all variables with proper terms,
we can apply Lemma 6.4 to obtain that A(sn)→ A(tn),A(sn+1)→ A(tn+1), . . . is an in-
finite minimal (A(P),A(Q),A(N ′))-chain using the substitution A(Y(σ)).

Proof of Theorem 6.22. One can reuse the proof of Theorem 4.32 where one has to replace
Lemma 4.35 (vi) by Lemma 6.24 (vi).

Proof of Lemma 6.24. Note that by construction of Sall and σ all terms in Sallσ are Q-
normal. The proof is very similar to the proof of Lemma 6.16. Therefore we only show
the proofs of properties (i) and (v) which need additional argumentation.

(i) One can handle the variable case as in Lemma 6.16 (i) and one can also show as
before that I ′π(t) cannot be build by the third or forth case.

So, let t = f ?1t1
?2 . . . ?ntn where I ′π(t) is build by the second case. Then we know that

N ′S,πR,Q(ti) ⊆ N ′S,πR,Q(t) ⊆ N and that ti is π-proper for every i ∈ RegPosπ(f?1 ...?n).
Hence, by the induction hypothesis we obtain I ′π(tiσ) = Aπ(ti)I ′π(σ) for all i ∈
RegPosπ(f?1 ...?n). Concluding I ′π(tσ) = f?1 ...?n (Aπ(t1)I ′π(σ), . . . ,Aπ(tn)I ′π(σ)) =
Aπ(t)I ′π(σ)46 finishes this case.

(v) We perform induction on t. As in Lemma 6.16 (v) the only interesting case is
when I ′π(t) is build by the second case. So, let t = f ?1t1

?2 . . . ?ntn where I ′π(t) =
f?1 ...?n (I ′π(t1), . . . , I ′π(tn)). If we have a root reduction then we apply (iv) to obtain
I ′π(t) →+

N∪Cε I ′π(s). If the reduction is below the root then as in Lemma 6.16 one
can show that the reduction must be in some tj as N is π-proper. Then tj

Q→R sj
and if we define si = ti for all i 6= j then s = f ?1s1

?2 . . . ?jsj
?j+1 . . . ?nsn.

The induction hypothesis yields I ′π(tj)→∗Aπ(N)∪Cε I ′π(sj) and hence, I ′π(t)→∗Aπ(N)∪Cε
f?1 ...?n (I ′π(s1), . . . , I ′π(sj), . . . , I ′π(sn)) =: w. It remains to show that I ′π(s) = w, i.e.,
we have to prove that I ′π(s) is built by the second case. This can be done as in
Lemma 6.16.

A.7. Proofs of Chapter 7

Proof of Lemma 7.3. We consider the TRS R = {q → q | q ∈ Q}. Then clearly M is a
model of R. We conclude

t /∈ NF (Q)⇔ t→R t
(Lemma 7.2)⇒ Lab(t, β)→R Lab(t, β)

⇔ Lab(t, β) /∈ NF (R) = NF (Q)

46Note that here we apply Aπ on possibly non π-proper terms ti, if i /∈ RegPosπ(f?1 ...?n). However, as
these terms are not occurring in the resulting term f?1 ...?n (. . .), we can ignore these applications.

A.7. Proofs of Chapter 7 191

and moreover,

Lab(t, β) /∈ NF (Q)⇔ Lab(t, β)→R Lab(t, β)

(Lemma 7.2)⇒ t = Unlab(Lab(t, β))→R Unlab(Lab(t, β))

⇔ t /∈ NF (R) = NF (Q)

Proof of Theorem 7.5. Let s1 → t1, s2 → t2, . . . be an infinite (P ,Q,R)-chain. Thus,
there is a substitution σ such that tiσ

Q→∗R si+1σ for every i ∈ IN. Let β be an arbitrary
but fixed variable assignment. By Lemma 7.4 we obtain Lab(tiσ, β) Q→∗R Lab(siσ, β) and

by Lemma 7.3 all terms Lab(siσ, β) are in normal form w.r.t.Q. We define the substitution
σ as as σ(x) = Lab(σ(x), β) and the variable assignment β as β(x) = [β](σ(x)). Then by
[Zan95, Lemma 2] all equations Lab(siσ, β) = Lab(si, β)σ and Lab(tiσ, β) = Lab(ti, β)σ
are satisfied and hence, Lab(s1, β)→ Lab(t1, β),Lab(s2, β)→ Lab(t2, β), . . . is an infinite
(P ,Q,R)-chain.

Proof of Lemma 7.9. (i) We perform induction on t. Let t = f(t1, . . . , tn) and let ti be
a subterm which contains x. If ti = x then Lab(t, β)σ = f(...,β(x),...)(. . . , x, . . .)σ 6=
f(...,β′(x),...)(. . . , x, . . .)σ

′ = Lab(t, β′)σ′. Otherwise, ti is not a variable. By induction
we know that Lab(ti, β)σ 6= Lab(ti, β

′)σ′. Hence, we can finish this part as follows.

Lab(t, β)σ = f(...)(. . . ,Lab(ti, β)σ, . . .)

6= f(...)(. . . ,Lab(ti, β
′)σ′, . . .)

= Lab(t, β′)σ′

(ii) Let Lab(t, β) →R s at position p by some rule Lab(`, β′) → Lab(r, β′) ∈ R. Then
by Lemma 7.2 Unlab(Lab(t, β)) = t→`→r t

′ is a reduction at position p and hence,
again by Lemma 7.2 we obtain the reduction Lab(t, β)→Lab(`,β′′)→Lab(r,β′′) Lab(t′, β)
at position p47. Thus, Lab(t, β)|p = Lab(`, β′)µ1 = Lab(`, β′′)µ2. As ` is not a
variable by (i) the variable assignments β′ and β′′ must be identical on V(`) ⊇ V(r).
This finally proves that the rules Lab(`, β′)→ Lab(r, β′) and Lab(`, β′′)→ Lab(r, β′′)
are identical and hence, s = Lab(t′, β).

Proof of Theorem 7.10. It suffices to extend the proof of Theorem 7.5 by showing for
every term t that Q-termination of t w.r.t. R implies Q-termination of Lab(t, β) w.r.t. R.
Therefore, suppose that Lab(t, β) Q→R s1

Q→R s2
Q→R . . . is an infinite reduction. By

Lemma 7.9 (ii) every si is of the form Lab(ti, β) and t→R t1 →R t2 →R Then using
Lemma 7.3 finally proves that t is not Q-terminating w.r.t. R as t Q→R t1

Q→R t2
Q→R

. . . .

Proof of Lemma 7.13. We consider both directions separately. If Lab(t, β) /∈ NF (Q) then
Lab(t, β)|p = qµ for some q ∈ Q. By the definition of Q the term Unlab(q) is contained
in Q. As t|p = Unlab(Lab(t, β)|p) = Unlab(qµ) = Unlab(q)Unlab(µ) we have proven
t /∈ NF (Q).

For the other direction assume that Unlab(t) /∈ NF (Q), i.e., Unlab(t|p) = Unlab(t)|p =
qµ for some q ∈ Q. If we can show that t|p = q′µ′ for some q′ ∈ Q then we are done as
this implies t /∈ NF (Q).

47Note that in Lemma 7.2 the position of the reduction is the same for the reduction of the labeled terms
and for the reduction of the unlabeled terms.

192 Appendix A. Proofs

To this end we prove by induction that for every linear term s ∈ T (F ,V) and every
term r ∈ T (F ,V) that whenever Unlab(r) = sµ then there is a substitution µ′ such that
r = s′µ′ for some s′ with Unlab(s′) = s. Then we use this result for s = q, r = t|p, and
s′ = q′.

If s is a variable then we just choose s′ = s and µ′ = {s/r}. Otherwise, s = f(s1, . . . , sn)
and hence, Unlab(r) = f(Unlab(r1), . . . ,Unlab(rn)) with Unlab(ri) = siµ for every i.
By induction we obtain terms s′i and µ′i with Unlab(s′i) = si and ri = s′iµ

′
i. As s is

linear we can combine all substitutions µ′i to one shared substitution µ′ such that ri =
s′iµ
′ for every i. It remains to construct s′. As r has the form fl(r1, . . . , rn) we just

have to choose s′ = fl(s
′
1, . . . , s

′
n). In this way obviously s′µ′ = r and Unlab(s′) =

f(Unlab(s′1), . . . ,Unlab(s′n)) = s are both valid.

Proof of Theorem 7.15. For soundness one can prove in the same way as in the proof
of Theorem 7.5 that if s1 → t1, s2 → t2, . . . is an infinite (P ,Q,R)-chain by using the
substitution σ then Lab(s1 → t1, β) is an infinite (P ,Q,R)-chain by using the substitution
σ. To this end one just has to exchange Lemma 7.4 with Lemma 7.14 and Lemma 7.3
with Lemma 7.13, respectively.

To carry over minimality if Q is linear, suppose that some Lab(ti, β)σ = Lab(tiσ, β) is
not Q-terminating w.r.t. R. Then by Lemma 7.14 the term Unlab(Lab(tiσ, β)) = tiσ is
not Q-terminating w.r.t. R.

In the same way one can prove completeness for a linear Q. If R is not Q-terminating,
then there is some t which starts an infinite reduction. By Lemma 7.14 the term Unlab(t)
shows that then R is not Q-terminating. Moreover, suppose Lab(s1 → t1, β1),Lab(s2 →
t2, β2), . . . is an infinite (P ,Q,R)-chain, i.e., there is some σ such that Lab(ti, βi)σ

Q→∗R
Lab(si+1, βi+1)σ and Lab(si, βi)σ ∈ NF (Q) for all i. Then using Lemma 7.14 we obtain the
reductions tiUnlab(σ) = Unlab(Lab(ti, βi)σ) Q→∗R Unlab(Lab(si+1, βi+1)σ) = si+1Unlab(σ)
and by Lemma 7.13 all terms siUnlab(σ) = Unlab(Lab(si, βi)σ) are in Q-normal form.
Thus, s1 → t1, s2 → t2, . . . is an infinite (P ,Q,R)-chain.

Proof of Lemma 7.18. We use ↪→∗ as a shortcut for
Q→∗R∪Decr.

For the first claim we extend the proof of [Zan95, Lemma 7] and integrate Lemma 7.13.
So, let t Q→n

R t
′ with t′ ∈ NF (Q). We perform an outer induction on the reduction length

n and an inner induction on t. If n = 0 then there is nothing to show. Otherwise, there
is at least one reduction step.

If all reductions are below the root, then t = f(t1, . . . , tn) Q→∗R f(t′1, . . . , t
′
n) = t′ where

ti
Q→∗R t′i. By the inner induction hypothesis we obtain Lab(ti, β) ↪→∗ Lab(t′i,). Let l =

λf ([β](t1), . . . , [β](tn)). Then Lab(t, β) = fl(Lab(t1, β), . . . ,Lab(tn, β)) ↪→∗ fl(Lab(t′1, β),
. . . ,Lab(t′n, β)). As M is a quasi-model of R we can derive [β](ti) ≥ [β](t′i). By weak
monotonicity we also obtain l ≥ λf ([β](t′1), . . . , [β](t′n)) =: l′. If l = l′ then we are
done. Otherwise, if l > l′ then there is a corresponding decreasing rule fl(x1, . . . , xn) →
fl′(x1, . . . , xn). Thus, we obtain Lab(t, β) ↪→∗→Decr Lab(t′, β). As t′ is in normal form
w.r.t. Q by Lemma 7.13 every term Lab(t′i,) is in normal form w.r.t. Q. Hence, this last
reduction step with the decreasing rule respects the evaluation strategy given by Q and
we are done with this case.

It remains to consider the case that there is at least one root reduction, i.e., we have
t Q→∗R `σ Q→R rσ Q→∗R t′ where the step from `σ to rσ with rule ` → r ∈ R is the
first reduction at the root. Note that all direct subterms of `σ are in Q-normal form.
Thus, by the inner induction hypothesis we can reason as in the previous case to obtain
Lab(t, β) ↪→∗ Lab(`σ, β). Moreover, by the outer induction hypothesis we know that

A.7. Proofs of Chapter 7 193

Lab(rσ, β) ↪→∗ Lab(t′, β,). Hence, it suffices to prove Lab(`σ, β)
Q→R Lab(rσ, β). But this

step directly follows from Lemma 7.13 and [Zan95, Lemma 2] as shown in the proof of
Theorem 7.5.

Proof of Theorem 7.19. The proof is similar to the one in Theorem 7.15 where one re-
places Lemma 7.14 by Lemma 7.18. However, to carry over minimality and to prove
completeness one now has to construct infinite reductions w.r.t. Q→R from infinite reduc-
tions w.r.t.

Q→R∪Decr. Using Lemma 7.18 we only get an infinite Q→R-reduction if there
are infinitely many

Q→R steps. But this must always be the case as Decr is terminating
due to the well-foundedness of >.

Proof of Theorem 7.23. Completeness is proven as in Theorem 7.19. For soundness con-
sider a (P ,Q,R)-chain s1 → t1, s2 → t2, . . . , i.e., there is a substitution σ such that
tiσ

Q→∗R si+1σ and siσ ∈ NF (Q) for every i. Moreover, if the chain is minimal, then every
tiσ is terminating w.r.t. Q→R.

We define ↪→∗ :=
Q→∗R∪Decr¬H . We first prove Lab(tiσ, β) ↪→∗ Lab(si+1σ, β). Unfortu-

nately, by Lemma 7.18 it is only possible to conclude Lab(tiσ, β)
Q→∗R∪Decr Lab(si+1σ, β),

i.e., up to now the rules DecrH cannot be dropped. Therefore we use an alternative la-
beling Lab ′ where the corresponding set Decr′H is empty. We define the labels and the
label maps for Lab ′ to be like those for Lab but for each f ∈ H we define L′f = { } and
λ′f (. . .) = . Then, for all terms t ∈ T (F \ H,V) we have Lab(t, β) = Lab ′(t, β). Hence,

by the definition of head symbols we obtain the same sets R and Q, regardless whether
we use Lab or Lab ′ to produce the labeled systems. Moreover, the decreasing rules Decr′
for the labeling Lab ′ are exactly Decr¬H. Thus, by Lemma 7.18 we conclude for all terms
t with t Q→∗R s that there is the reduction Lab ′(t, β) ↪→∗ Lab ′(s, β).

Now we show that from some point onwards every reduction siσ → tiσ
Q→∗R si+1σ

can be simulated in the labeled system when using the substitution σ as in the proof of
Theorem 7.5. By Theorem 4.37 we obtain some n such that for all i ≥ n the equivalence
root(si+1) ∈ H iff root(ti) ∈ H is satisfied. W.l.o.g. we may assume n = 1 and we fix some
variable assignment β. Using [Zan95, Lemma 2] we obtain the substitution σ which is
defined as σ(x) = Lab ′(σ(x), β) and the variable assignment β with β(x) = [β](σ(x)) such
that for all terms t ∈ T (F \ H,V) the equation Lab ′(tσ, β) = Lab ′(t, β)σ = Lab(t, β)σ is
satisfied. We consider two cases.

If root(ti) /∈ H then root(si+1) /∈ H and by the definition of head symbols we know that
{ti, si+1} ⊆ T (F \ H,V). As si+1σ ∈ NF (Q) we can apply Lemma 7.18 and obtain

Lab(si, β)σ → Lab(ti, β)σ

= Lab ′(tiσ, β)

↪→∗ Lab ′(si+1σ, β)

= Lab(si+1, β)σ

where by construction Lab(si, β)→ Lab(ti, β) ∈ P .
In the other case root(ti) ∈ H, i.e., ti is of the form f(`1, . . . , `n) and si+1 = f(r1, . . . , rn).

As tiσ
Q→∗R si+1σ we know that `iσ

Q→∗R riσ for all i. Moreover, by the definition of head
symbols all terms `1, . . . , `n, r1, . . . , rn are from T (F \ H,V). Hence, as in the previous
case we obtain Lab(`i, β)σ ↪→∗ Lab(ri, β)σ. Additionally, asM is a quasi-model we obtain
[β](`iσ) ≥ [β](riσ). Using weak monotonicity of ≥ and the result of [Zan95, Lemma 1]
that [β](`iσ) = [β](`i) and [β](riσ) = [β](ri) we obtain λf ([β](`1), . . . , [β](`n)) ≥ l′ for

194 Appendix A. Proofs

l′ = λf ([β](r1), . . . , [β](rn)). Thus, Lab(si, β) → fl′(Lab(`1, β), . . . ,Lab(`n, β)) ∈ P . We
conclude

Lab(si, β)σ →P fl′(Lab(`1, β), . . . ,Lab(`n, β))σ

= fl′(Lab(`1, β)σ, . . . ,Lab(`n, β)σ)

↪→∗ fl′(Lab(r1, β)σ, . . . ,Lab(rn, β)σ)

= Lab(f(r1, . . . , rn), β)σ

= Lab(si+1, β)σ

So, in both cases we get the reduction Lab(si, β)σ →P ↪→∗ Lab(si+1, β)σ. Since every
siσ ∈ NF (Q), by Lemma 7.13 every Lab(siσ, β) = Lab(si, β)σ ∈ NF (Q). This finally
shows that we have constructed an infinite (P ,Q,R∪Decr¬H)-chain. A direct consequence
of Lemma 7.18 is the fact that this chain is minimal if Q is linear and if all terms tiσ are
terminating w.r.t. Q→R.

Proof of Theorem 7.30. We only consider the case where we use a processor Procquasi of
Theorem 7.19 and where Q is linear. Then (P ′,Q′,R′, f ′) = (P ,Q,R ∪ Decr, f). The
remaining cases are completely identical. Let s1 → t1, s2 → t2, . . . be an infinite chain
where the pairs are instantiated by the substitution σ and the where the intermediate
steps are done with the rules `i,j → ri,j. By Theorem 7.19 we know that Lab(s1, β) →
Lab(t1, β),Lab(s2, β) → Lab(t2, β), . . . is an infinite (P ,Q,R ∪ Decr, f)-chain. In more
detail, for every reduction step with `i,j → ri,j in the original chain we used one reduction
step with Lab(`i,j, β) → Lab(ri,j, β) together with some additional Decr-steps in the
labeled chain.

By Definition 7.29 there are numbers n and m such that Lab(sn, β) → Lab(tn, β),
Lab(sn+1, β) → Lab(tn+1, β), . . . is an infinite path in Pm where all rules Lab(`i,j, β) →
Lab(ri,j, β) with i ≥ n are from Rm \ Decr.48 Thus, even for the original chain we know
that from point n onwards, only rules `i,j → ri,j have been used where the labeled version
of the rule is in Rm \ Decr, i.e., `i,j → ri,j ∈ Unlab(Rm \ Decr). And as the infinite path
Lab(sn, β)→ Lab(tn, β),Lab(sn+1, β)→ Lab(tn+1, β), . . . only uses edges from Pm we also
know that in the original chain from point n onwards, only edges si → ti, si+1 → ti+1

with Lab(si, β)→ Lab(ti, β),Lab(si+1, β)→ Lab(ti+1, β) ∈ Pm are used. Hence, all these
edges of the original chain are present in Unlab(Pm).

Thus, we have proven that sn → tn, sn+1 → tn+1, . . . is an infinite path in Unlab(Pm)
and that all rules `i,j → ri,j with i ≥ n are from Unlab(Rm \ Decr), i.e., we have proven
the characterizing property of a chain identifying processor.

Proof of Lemma 7.31. The proof is trivial using the definition of a chain identifying pro-
cessor.

A.8. Proofs of Chapter 8

Proof of Theorem 8.5. If (P ,Q,R, f) is looping then there are the following reductions
where we use the terms tni to identify the intermediate results.

sµn = tn1
Q→`1→r1,p1 t

n
2
Q→`2→r2,p2 t

n
3 . . .

Q→`m→rm,pm= tnm+1 = sµn+1

48Note that the TRSsR and Decr are disjoint even if some rule of the form f(x1, . . . , xn)→ f(x1, . . . , xn)
is contained in R.

A.8. Proofs of Chapter 8 195

Let I = {i1, . . . , ik} ⊆ {1, . . . ,m} be the set of indices such that for all ij ∈ I the rule
`ij → rij is taken from P . Then

sµ0 Q→∗R t0i1 →P,ε t0i1+1
Q→∗R t0i2 →P,ε t0i2+1

Q→∗R . . . Q→∗R t0ik →P,ε t0ik+1
Q→∗R

sµ1 Q→∗R t1i1 →P,ε t1i1+1
Q→∗R t1i2 →P,ε t1i2+1

Q→∗R . . . Q→∗R t1ik →P,ε t1ik+1
Q→∗R

. . .

is an infinite reduction where all tnij are in Q-normal form. Since all P steps are at the
root, this clearly corresponds to an infinite chain. Thus, completeness is proven and for
soundness there is nothing to show.

Proof of Theorem 8.6. Let P = DP(R).
We first prove the difficult direction of the theorem that Q-loopingness implies loop-

ingness of (P ,Q,R). So, let there be m, s, C, µ, `i → ri, p, and p1, . . . , pm such that
p = i1 . . . ik is the position of the hole in C and that for all n we have the following looping
reduction.

sµn Q→`1→r1,p1 ◦ Q→`2→r2,p2 ◦ · · · ◦ Q→`m→rm,pm Cµn[sµn+1]p

Then clearly, if we define �i to be the direct subterm relation of the i-th argument then
we additionally obtain

Cµn[sµn+1]p �i1 ◦ · · · ◦�iksµ
n+1

Hence, if R is Q-looping then for every n there is a reduction from sµn to sµn+1 using
every time the same sequence of Q→R ∪ {�i | i ∈ IN}-reductions. W.l.o.g. we consider
such a reduction with a minimal number m of Q→R-steps and under all these minimal
reductions we assume that s is a smallest term.

We first show that we can reorder the reduction such that after a Q→R-step at a non-
root position there never is a �i-step. To this end, notice that whenever we have the
reductions tµn Q→`→r,p tn for all n then tn = t0µ

n, and similarly whenever tµn �i sn then
sn = s0µ

n. Hence, we know that in the reduction sequence we only have to consider terms
of the form tµn.

To reorder the whole reduction we use the following auxiliary property for every local
reduction uµn Q→`→r,p vµ

n �i wµ
n where p is a non-root position.

p = ip′ and uµn �i ◦ Q→`→r,p′ wµ
n. (?)

To prove (?) we first investigate the structure of u and v. Let p = jp′. Since u Q→`→r,p v we
know that u = f(u1, . . . , uj, . . . , uk) and v = f(u1, . . . , vj, . . . , uk) where ujµ

n Q→`→r,p′ vjµ
n

for all n. We distinguish two cases. If i 6= j then clearly w = ui and hence, uµn �i wµ
n.

This is a contradiction to the minimality of m since now we have loop with m − 1 Q→R-
steps. In the other case i = j. Then w = vj and we conclude uµn �i uiµ

n = ujµ
n Q→`→r,p′

vjµ
n = wµn which finishes the proof of (?).

Using (?) repeatedly, we can reorder the sequence until there is no �-reduction directly
after a Q→R-reduction at a non-root position. Hence, we have proven that there is some
s′ such that sµn � s′µn ((Q→R,ε ◦�) ∪ Q→R,>ε)m sµn+1 where for every n the same rules
are applied at the same positions.

One can argue that s′ = s, because otherwise s′µn ((Q→R,ε ◦�) ∪ Q→R,>ε)m sµn+1 �

s′µn+1 is a loop with minimal number of Q→R steps which contradicts the minimality of
s. Thus, from now on we only have to consider looping reductions using the relation
(Q→R,ε ◦�) ∪ Q→R,>ε. Later in this proof we will see that the first kind of reduction
corresponds to a dependency pair and the latter are the reductions that are used to go
from one dependency pair to the next.

196 Appendix A. Proofs

In order to prove that (P ,Q,R) is looping we need at least one P-step. Therefore, we
now show that there must be at least one reduction step at the root. We perform a proof
by contradiction. Suppose, there is no reduction at the root. Then we obtain sµn Q→m

R,>ε
sµn+1. Hence, s = f(s1, . . . , sk) and sµn = f(s1µ

n, . . . , skµ
n) Q→m

R,>ε f(s1, . . . , sk)µ
n+1 =

f(s1µ
n+1, . . . , skµ

n+1). Since, m > 0 there must be at least one i such that siµ
n Q→m′

R
siµ

n+1 with 0 < m′ ≤ m. This is a contradiction to the minimality of m or, if m = m′, to
the minimality of s.

As we want to map Q→R,ε ◦ �-steps to dependency pairs we must know that in the
looping reduction we only take subterms with � which have a defined root symbol. This
is proven as follows. First note that the root of s must be defined, since s starts a
reduction w.r.t. ((Q→R,ε ◦�) ∪ Q→R,>ε) that contains a root step. Moreover, for any term
s′ with s′ ((Q→R,ε ◦�) ∪ Q→R,>ε)∗ sµ, the root of s′ must also be defined. The reason is
that otherwise, s′ can only be reduced by Q→R,>ε-steps, but then one cannot reduce to the
term sµ which has a defined root.

So, for s0 = s and sm = sµ we know that

sµn = s0µ
n ((Q→R,ε ◦�) ∪ Q→R,>ε) s1µ

n

((Q→R,ε ◦�) ∪ Q→R,>ε) . . .
((Q→R,ε ◦�) ∪ Q→R,>ε) smµ

n = sµn+1

where all si have a defined root symbol and where at least one root-reduction is used. We
show that the DP problem (P ,Q,R) is looping by proving that the following reduction
exists.

s]0µ
n (Q→P,ε ∪ Q→R) s]1µ

n (Q→P,ε ∪ Q→R) . . . (Q→P,ε ∪ Q→R) s]mµ
n

Therefore, it suffices to show that whenever siµ
n ((Q→R,ε ◦�) ∪ Q→R,>ε) si+1µ

n then

s]iµ
n (Q→P,ε ∪ Q→R) s]i+1µ

n. If siµ
n Q→R,>ε si+1µ

n then s]iµ
n Q→R s]i+1µ

n is obviously sat-
isfied, since] only changes the root symbol. Next we show that siµ

n (Q→R,ε ◦�) si+1µ
n

implies s]iµ
n Q→P,ε s]i+1µ

n. So, let si = `σ → rσ �p si+1 for some rule ` → r ∈ R and
some position p. First note that due to the minimality of m, the term si+1 cannot be
a proper subterm of si. Hence, p is a non-variable position of r and r|p is not a proper
subterm of `. Thus, si+1 = r|pσ. As the root of si+1 is defined this shows that `] → r|]p
is a dependency pair of R. Thus, s]iµ

n = `]σµn →P,ε r|]pσµn = s]i+1µ
n. Since all proper

subterms of siµ
n are in Q-normal form and since the tuple-symbols are fresh symbols not

occurring in Q we also know that s]iµ
n is in Q-normal form. Thus we have successfully

proven that (P ,Q,R) is looping.
For the other direction of the theorem let (P ,Q,R) be looping. Then there is a term

s, a substitution µ, rules `1 → r1, . . . , `m → rm ∈ P ∪ R, and positions p1, . . . , pm such
that

sµn = s0µ
n Q→`1→r1,p1 s1µ

n Q→`2→r2,p2 . . .
Q→`m→rm,pm smµ

n = sµn+1

Since there is at least one P-reduction at the root and since both sides of a dependency pair
have a tuple-symbol as root, we know that at least one term si in the reduction has a tuple-
symbol as root. But since the tuple-symbols are fresh and do not occur in R, all terms
si in the reductions have a tuple-symbol as root, and the R-steps are only possible below
the root. Hence, when replacing all these tuple-symbols by their corresponding defined
symbols, i.e., we consider the terms s[i where (t])[= t, then we can still perform allR-steps
on the terms s[i. To be more precise, siµ

n Q→R si+1µ
n implies s[iµ

n Q→R s[i+1µ
n. Moreover,

whenever we reduce with a dependency pair `] → r|]p then there is a corresponding rule

` → r ∈ R. Thus, whenever siµ
n Q→P,ε si+1µ

n then s[iµ
n Q→R r[s[i+1µ

n]p. Collecting all

A.8. Proofs of Chapter 8 197

these contexts r[·]p for all the P-steps in the loop results in one combined context C and
we obtain s[µn Q→m

R Cµn[s[µn+1] where in every iteration the same rules are applied at
the same positions. Thus, R is Q-looping.

Proof of Theorem 8.9. Soundness is due to Lemma 2.4 and NF (Q) ⊆ NF (∅).

For the completeness we consider two cases. First, if R is not Q-terminating, then there
is nothing to show. In the other caseR isQ-terminating. Thus, using the last requirement
of the processor we also know that R must be terminating. Now, if (P ,∅,R, f) is infinite
then due to termination of R there must be an infinite minimal (P ,∅,R)-chain. Using
the soundness of the processor to switch to innermost termination (Theorem 3.14) we
obtain an infinite (P , lhs(R),R)-chain. Thus, again using Lemma 2.4 and NF (lhs(R)) =
NF (R) ⊆ NF (Q) one can finally conclude that there must be an infinite (P ,Q,R)-
chain.

Proof of Theorem 8.13. If q is a variable then the result is obviously true, so let q /∈ V .
We consider both directions separately.

First, let (u m q, µ) be solvable, i.e., there are σ and n such that uµn = qσ. If u is
a subterm of s, i.e., u = s|p then sµn|p = s|pµn = uµn = qσ proves that (s |m q, µ)
is solvable. Otherwise, if u is a subterm of some xµ with x ∈ W then there is some
i such that x ∈ V(sµi). Hence, there is a position p such that sµi+1|p = u. Again,
sµi+1+n|p = uµn = qσ proves that (s |m q, µ) is solvable.

For the other direction of the equivalence we assume that (s |m q, µ) is solvable, so let
n, p, σ be given with sµn|p = qσ. If p is a non-variable position of s then we are done
as the matching problem (u m q, µ) for the corresponding subterm u = s|p is obviously
satisfiable.

Otherwise, there must be a number 0 ≤ i < n such that p is a non-variable position
of sµi+1 and either p is a variable position of sµi or p /∈ Pos(sµi). In both cases there
must be a variable x and a position p′ such that x ∈ V(sµi) ⊆ W and xµ|p′ = sµi+1|p.
We choose the non-variable subterm u = xµ|p′ of xµ. Then indeed the matching problem
(um q, µ) is solvable since

uµn−(i+1) = xµ|p′µn−(i+1) = sµi+1|pµn−(i+1) = sµn|p = qσ.

Proof of Theorem 8.17. (i) To prove confluence one can show that⇒ has the diamond-
property by a simple case-distinction.

To show termination of⇒ first note that no transformation rule increases the terms
in the right-hand sides of a matching problems. Thus, the last three rules can only
be applied finitely often. But since every sequence of transformations with rule (i)
in the end triggers an application of rule (iii) or (iv), also rule (i) cannot be used
infinitely often.

(ii) If M ⇒ ⊥ due to rule (iii) then s m q ∈ M with s = f(. . .) and q = g(. . .) with
f 6= q. But then for every n ∈ IN the terms sµn = f(. . .) and qσ = g(. . .) are
different. Hence, M is not solvable.

If M⇒ ⊥ due to rule (ii) then xm q ∈ M with x ∈ V \ Vincr and q = f(. . .). But
since x is not an increasing variable we know that xµn ∈ V for all n ∈ IN. Thus,
the terms xµn and qσ = f(. . .) are different for all n. Hence, M is not solvable.

198 Appendix A. Proofs

(iii) We first consider rule (i) for M = {s1 m q1, . . . , sk m qk}.

M is solvable⇔ ∃n, σ : s1µ
n = q1σ ∧ · · · ∧ skµn = qkσ

⇔ ∃n, σ′ : s1µn+1 = q1σ
′ ∧ · · · ∧ skµn+1 = qkσ

′

⇔ ∃n, σ′ : (s1µ)µn = q1σ
′ ∧ · · · ∧ (skµ)µn = qkσ

′

⇔M′ = {s1µm q1, . . . , s1µm q1} is solvable

For rule (iv) the result follows from the fact that f(s1, . . . , sk)µ
n = f(q1, . . . , qk)σ

iff siµ
n = qiσ for all 1 ≤ i ≤ k.

(iv) If M is solvable then due to (ii) and (iii) M cannot be reduced to ⊥ by ⇒. So,
let M′ be a normal form of M w.r.t. ⇒. Then, obviously M′ has the form {s1 m
x1, . . . , sk m xk} and M′ is solvable due to (iii). Thus, there is a number n and a
substitution σ such that for all 1 ≤ i ≤ k the equality siµ

n = xiσ is valid. Hence,
for all i 6= j with xi = xj the identity problem (si u sj, µ) is solvable.

For the other direction let M ⇒∗ M′ = {s1 m x1, . . . , sk m xk} where for every
i 6= j with xi = xj there is some nij with siµ

nij = sjµ
nij . Let n be the maximum

of all nij. Then, obviously siµ
n = sjµ

n for all these i and j. We define σ =
{x1/s1µn, . . . , xk/skµn}. First note, that by construction σ contains no conflicting
assignments. But as then siµ

n = xiσ is valid for all 1 ≤ i ≤ k we know that M′ is
solvable. Using (iii) we finally conclude that M is solvable.

Proof of Theorem 8.20. One can easily show that in the k-th iteration the set S contains
the elements of the set Sk.

Sk = {(x, p, u) | x ∈ Vincr ∧ x 6= u ∧ ∃m ≤ k :
(sµm|p = x ∧ u = tµm|p) ∨ (tµm|p = x ∧ u = sµm|p)}

Since the correctness of steps (i)-(vi) was already explained in the explanation of the
algorithm, we only prove the correctness of step (viii). So, let (x, p1, u1) and (x, p2, u2) be
elements of some Sk and let m1, m2 be given such that w.l.o.g. for both i = 1 and i = 2
we have sµmi|pi = x and tµmi|pi = ui where x is an increasing variable with x 6= ui. If
the identity problem (s u t, µ) is not solvable then there is nothing to show. Otherwise,
there is some n with sµn = tµn. Since, sµmi 6= tµmi we know that n > mi for both i.
Hence, we can conclude the following equalities.

xµn−mi = sµmi |piµn−mi = sµn|pi = tµn|pi = tµmi |piµn−mi = uiµ
n−mi

If we have applied (viii–a) then this directly leads to a contradiction since u1µ
n = xµn =

u2µ
n proves that u1 and u2 are unifiable.

Otherwise, we have applied (viii–b) where w.l.o.g. p1 < p2. Since sµm1|p1 is the variable
x we must apply µ at least one more time to reach the position p2 and thus, m1 < m2.
And as xµn−m1 = u1µ

n−m1 there must be some smallest number n′ such that xµn
′−m1 =

u1µ
n′−m1 is valid. From x 6= u1 we conclude n′ > m1 and from sµn

′|p1 = xµn
′−m1 =

u1µ
n′−m1 = tµn

′|p1 we derive that also the subterms sµn
′ |p2 of sµn

′|p1 and tµn
′ |p2 of tµn

′|p1
are identical. Again, n′ > m2 must hold and we obtain xµn

′−m2 = u2µ
n′−m2 . But this is

a contradiction to the minimality of n′ since u1 = u2 and n′ −m2 < n′ −m1.
To prove termination of the algorithm we already have argued in the explanation that

we can detect all solvable identity problems and all those problems which have a stationary

A.8. Proofs of Chapter 8 199

conflict. Thus, it remains to prove that all infinite problems can be detected. To this end
we start with giving three observations on infinite identity problems.

First, if (s u t, µ) is infinite then (sµ u tµ, µ) is infinite.
Second, if (s u t, µ) is infinite then there is no position p such that (s|p u t|p, µ) has a

stationary conflict. The reason is that one would obtain a stationary conflict of (s u t, µ)
in contradiction to (s u t, µ) being infinite.

And third, whenever (s u t, µ) is infinite then there is some position p such that
s|p 6= t|p, at least one of the terms s|p or t|p is an increasing variable, and (s|pµ u t|pµ, µ)
is infinite. This can be proven as follows. Since (s u t, µ) is not solvable there must be at
least one maximal shared position p of s and t such that (s|p u t|p, µ) is not solvable. Due
to the second observation we know that (s|p u t|p, µ) again is infinite. Moreover, using
the maximality of p we conclude that one of the terms s|p or t|p is a variable. And since
(s|p u t|p, µ) is infinite this variable must be increasing. Finally, by the first observation
(sµ|p u tµ|p, µ) is infinite.

Now we show that in a hypothetical infinite run of the algorithm we will put an infinite
sequence of triples into S where the corresponding positions p0, p0p1, p0p1p2, . . . are getting
longer and longer. Since (s u t, µ) is infinite due to the third observation we obtain a
position p0 such that a triple (x0, p0, s|p0) or (x0, p0, t|p0) will be added to S. Moreover,
(sµ|p0 u tµ|p0 , µ) is infinite. Hence, again using the third observation we obtain a position
p1 such that (sµ|p0µ|p1 u tµ|p0µ|p1 , µ) = (sµ2|p0p1 u tµ2|p0p1 ,) is infinite and such that
one of the (different) terms sµ2|p0p1 or tµ2|p0p1 is an infinite variable x1. Thus, again the
corresponding triple (x1, p0p1, . . .) is added to S. By iterating this reasoning we obviously
obtain the desired infinite sequence of triples in S.

As there are only finitely many increasing variables there must be some x which occurs
infinitely often in this sequence. Thus, we obtain an infinite subsequence (x, p0 . . . pi1 , ui1),
(x, p0 . . . pi2 , ui2), . . . where w.l.o.g. i1 < i2 < . . . and p0 . . . pi1 < p0 . . . pi2 < Due
to Kruskal’s tree theorem [Kru60] there must be some ij and ik such that ij < ik and
uij is embedded in uik . If uij = uik then this is a contradiction to an infinite run of
the algorithm since then step (viii–b) will trigger. Otherwise, uij is strictly embedded in
uik . But then uij cannot be unified with uik since the embedding relation is closed under
substitutions. Hence, in that case step (viii–a) will stop the algorithm.

Proof of Corollary 8.22. Let there be a looping reduction of a TRS R of the following
form.

s1 →R,p1 s2 →R,p2 . . . sm →R,pm sm+1 = C[s1µ]

To check whether this reduction is also Q-looping one has to check whether

s1µ
n Q→R,p1 s2µn Q→R,p2 . . . smµn Q→R,pm sm+1µ

n = Cµn[s1µ
n+1]

is a valid reduction for all n ∈ IN. This is the case iff all direct subterms u of all
siµ

n|pi = si|piµn with 1 ≤ i ≤ m are in Q-normal form. And this is the same as
demanding that for every q ∈ Q the redex problem (u |m q, µ) is not solvable. But
solvability of redex problems can be decided using Theorems 8.13, 8.17 (iv), and 8.20.

The reasoning for loops of DP problems is completely identical.

List of Processors

A-Transformation . 90, 92

Argument Filter . 62

Dependency Graph . 19

Edge Deletion by Head Symbols. .62

Forward Instantiation . 72

Full Labeling . 111

Graph Decomposition . 19

Instantiation . 71

Loop-Detection . 132

Needed Rules . 45

Needed Rules and Reduction Pairs . 51

Needed Rules for Applicative DP Problems. .95

Positional Narrowing .79

Q-Reduction . 33, 34

Reduction Pair. .38

Reduction Pair and Needed Rules . 50

Reduction Pair and Needed Rules w.r.t. an Argument Filter . 57

Reduction Pair and Needed Rules w.r.t. an Argument Filter for Applicative DP
Problems . 99

Reduction Pair and Usable Rules w.r.t. an Argument Filter . 55

Rewriting . 75

Rule Removal . 53

Semantic Labeling . 107, 113

Semantic Labeling and Unlabeling . 124

Semantic Labeling for Quasi-Models. .115, 117

202 Appendix A. Proofs

Subterm Criterion . 63

Switch to Innermost Termination . 24

Switch to Termination . 134

Usable Rules . 28

Index

a-ar(·), 88
A-Transformation, 88
Aπ-Transformation, 98
Algebra, 105
Applicative Arity, 87
Applicative DP Problem, 85
Applicative Signature, 85, 88
Applicative TRS, 85
ar(·), 7
Argument Filter, 38
Arity, 7

Cap-Function, 22
Improved Estimation, 23

Cε, 43
Chain, 11
Chain Identifying Processor, 124
Collapsing Rule, 7
Comp(·), 43
Cycle

of a Graph, 19
of a Substitution, 138

Decreasing Rules, Decr, 114
DecrH,Decr¬H, 116

Defined Symbol, 10
Dependency Graph, 18

Estimation, 18, 22
Star-Estimation, 31

Dependency Pair, 10
Domain, Dom(·), 7
DP(·), 10
DP Problem, 13

ECap(·), 22
enfc(·), 78
EU(·), 28, 55

Full Labeling, 110
Full Rewriting, 8

Generalized TRS, 22

H(·), 61
Head Symbol, 61

I-Transformation, 44
Iπ-Transformation, 58
I ′-Transformation, 94
I ′π-Transformation, 99
ICap(·), 23
Identity Problem, 135
Increasing Variable, 137
Infinite Identity Problem, 139
IU(·), 29, 56

Lab(·), 105
Labeling Function, 105
Labeling Map, 105
Left-Linear, 7
lhs(·), 7
Linear, 7
Loop, 130, 131

Matching Problem, 135, 136
Model, 105

N (·), 42, 57
N ′(·), 99
Narrowing, 79
Needed Rules, 42

w.r.t. an Argument Filter, 57
w.r.t. an Argument Filter for Applica-

tive DP Problems, 99
NF (·), 7, 8
nfc(·), 74
Normal Form, 7

P , 105
P , 117
Pair-Graph, 11
π-Proper, 98
Pos(·), 7
Processor, 13
Proper, 88

204 Index

Q, 105
Q, 112
Q-Looping, 131
Q-Normal Form, 8
Q-Restricted Rewriting, 8
Q−R Normal Form Condition, 74

Estimation, 78
Q-Termination, 8
Quasi-Labeled Pair-Graph, 117
Quasi-Model, 114
Quasi-Simplification Order, 41

R, 105
Redex, 7
Redex Problem, 135
Reduction Order, 37
Reduction Pair, 37
Regarded Position, 54
RegPosπ(·), 54
Right-Linear, 7
Root, root(·), 7

SCC, 19
Simplification Order, 37
Stationary Conflict, 139
Substitution, 7

Termination, 7
Tuple Symbol, 10

U(·), 28, 55
Unlab(·), 105
Usable Rules, 28

Improved Estimation, 29
Usable Rules w.r.t. an Argument Filter, 55

Improved Estimation, 56

V(·), 7
Variable Assignment, 105
Variable Condition, 7

Y-Transformation, 89

Z-Transformation, 91

Curriculum Vitae

Name René Thiemann

Geburtsdatum 2. November 1976

Geburtsort Stadtlohn

Bildungsgang

1987–1996 St. Pius Gymnasium Coesfeld
Abschluss: Allgemeine Hochschulreife

1996–1997 Zivildienst im Martinistift Nottuln

1997–2002 Studium der Informatik an der RWTH Aachen
Abschluss: Diplom

2002–2007 Wissenschaftlicher Angestellter am Lehr- und Forschungsgebiet
Informatik 2, RWTH Aachen

2007– Wissenschaftlicher Mitarbeiter am Institut für Informatik,
Computational Logic, Universität Innsbruck

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A complete list of

reports dating back to 1987 is available from http://aib.informatik.rwth-aachen.de/.

To obtain copies consult the above URL or send your request to: Informatik-Bibliothek,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.

de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmierspra-

chen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

http://aib.informatik.rwth-aachen.de/

208

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on

Functional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-

mation

209

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:

Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-

dural Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

210

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set

interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the

GI Work Group “Requirements Management Tools for Product Line

Engineering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

211

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle: 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-

lar, Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and current programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Bal-

ancing for Wireless Mesh Networks

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction
	The Dependency Pair Framework
	Q-Restricted Rewriting
	Dependency Pairs

	Processors Without Search
	Dependency Graph
	Switching to Innermost Termination
	Usable Rules
	Star-Estimation of the Dependency Graph
	Reducing Q

	Processors Based on Orders
	Reduction Pairs
	Needed Rules
	Rule Removal
	Usable Rules w.r.t. an Argument Filter
	Needed Rules w.r.t. an Argument Filter
	Subterm Criterion

	Processors Based on Pair Transformations
	Instantiation
	Forward Instantiation
	Rewriting
	Narrowing

	Processors for Applicative Rewriting
	From Applicative to Functional Form
	Needed Rules for Applicative DP Problems
	Argument Filters for Applicative DP Problems

	Processors Based on Semantic Labeling
	Semantic Labeling with Models
	Semantic Labeling with Quasi-Models
	Semantic Labeling and Unlabeling

	Processors for Non-Termination Analysis
	Looping Problems
	Switching to Termination
	Detecting Looping Problems

	Conclusion
	Bibliography
	Proofs
	Proofs of Chapter 2
	Proofs of Chapter 3
	Proofs of Chapter 4
	Proofs of Chapter 5
	Proofs of Chapter 6
	Proofs of Chapter 7
	Proofs of Chapter 8

	List of Processors
	Index

