
Formalizing Soundness and Completeness of
Unravelings?

Sarah Winkler and René Thiemann

Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
{sarah.winkler, rene.thiemann}@uibk.ac.at

Abstract. Unravelings constitute a class of program transformations to
model conditional rewrite systems as standard term rewrite systems. Key
properties of unravelings are soundness and completeness with respect to
reductions, in the sense that rewrite sequences in the unraveled system
correspond to rewrite sequences in the conditional system and vice versa.
While the latter is easily satisfied, the former holds only under certain
conditions and is notoriously difficult to prove. This paper describes an
Isabelle formalization of both properties. The soundness proof is based on
the approach by Nishida, Sakai, and Sakabe (2012) but we also contribute
to the theory by showing it applicable to a larger class of unravelings.
Based on our formalization we developed the first certifier to check output
of conditional rewrite tools. In particular, quasi-decreasingness proofs by
AProVE and conditional confluence proofs by ConCon can be certified.

1 Introduction

Conditional term rewriting is a natural extension of standard rewriting in that
it allows to specify conditions for rules to be applied. This is useful in many
applications, for instance to reason about logic programs [14, 16]. However, the
addition of conditions severely complicates the analysis of various properties. This
led to the development of transformations that convert conditional rewrite systems
(CTRSs) into standard rewrite systems (TRSs). Provided certain requirements
are fulfilled, one can then employ criteria for standard rewrite systems to infer
e.g. termination and confluence of the conditional system. Unravelings are the
most widely considered class of such transformations [2, 7, 11, 14].

Tools to analyze CTRSs often exploit unravelings. For example, the conditional
confluence tool ConCon [17] may unravel a given CTRS R into a TRS R′. It then
invokes a confluence tool for TRSs to get a confluence proof P for R′, in order to
eventually conclude confluence of R. Similarly, AProVE [3] generates operational
termination proofs for CTRSs by first applying an unraveling and then trying to
prove termination of the resulting TRSs.

Like all tools for program analysis, rewrite tools are inherently complex and
error-prone. In the following we describe our IsaFoR/CeTA [18]-based certifica-

? This research was supported by the Austrian Science Fund (FWF) projects I963 and
Y757.

tion approach to validate confluence and termination proofs for CTRSs, which
combines three different systems: an analyzer, a certifier, and a proof assistant.

1. A proof certificate is generated by an automatic analysis tool like AProVE or
ConCon. The certificate consists of a CTRS R, an unraveled TRS R′, and the
termination (or confluence) proof P .

2. Our certifier CeTA can then be invoked on (R,R′, P) to validate the certificate.
To this end, CeTA first checks that R′ = U(R) for some unraveling U . Next,
it verifies that P is a valid termination (or confluence) proof for R′, for
which it has a variety of techniques at its disposal [9, 18]. Finally, it checks
whether U satisfies certain syntactic criteria which ensure that termination
(or confluence) of R′ also implies termination (or confluence) of R.

3. Soundness of CeTA is guaranteed as it is based on the Isabelle [10] framework
IsaFoR (Isabelle Formalization of Rewriting). To that end we formalized1

two properties in IsaFoR: (a) if U satisfies the syntactic requirements then
termination (or confluence) of R′ implies termination (or confluence) of R;
and (b) CeTA, a functional program written within Isabelle, is sound.

To the best of our knowledge, our contribution constitutes the first work on
certified program verification for conditional rewriting. This paper describes the
formalization done for task (3), giving rise to a certifier for task (2). Here the
vast amount of effort goes into part (3a), after which (3b) can be achieved by
applying Isabelle’s code generator.

In the remainder of this paper we thus focus on (3a), primarily on formalizing
two properties of an unraveling U which are of crucial importance: (i) every
rewrite sequence admitted by the transformed TRS U(R) (among terms over the
original signature) should be possible with the CTRS R, and (ii) every rewrite
sequence allowed by R should be preserved in U(R). These properties are known
as soundness and completeness with respect to reductions. While completeness
imposes only mild restrictions on such a transformation, soundness is much harder
to satisfy, and the respective proofs in the literature are involved and technical.

The remainder of this paper is structured as follows. We first recall some
background on TRSs and CTRSs in § 2. In § 3 we describe our formalization
of basic results on conditional rewriting, before we introduce unravelings in § 4.
The formalization of completeness results of unravelings in combination with
the certifier for termination proofs for CTRSs is the topic of § 5. In § 6 we
describe the formalized soundness proof, covering a large class of unravelings.
Building upon these results, in § 7 we outline a result connecting confluence of
the unraveled system with confluence of the original system. Finally, in § 8 we
conclude and shortly mention the experimental results.

The full formalization and the certifier (IsaFoR and CeTA) as well as details on
the experiments are available on the following website:

http://cl-informatik.uibk.ac.at/software/ceta/experiments/unravelings/

For each lemma, theorem, and definition in this paper, the website also contains
a link to our Isabelle formulation (and proof) of that lemma, etc.

1 Here, the notion formalized always refers to a machine checked proof in Isabelle.

2

2 Preliminaries

We refer to [1] for the basics on term rewriting. In the sequel, letters `, r, s, t, . . .
are used for terms, f, g, . . . for symbols, σ, θ for substitutions, and C for contexts.
The set of terms over signature F and variables V is T (F ,V), and Sub(F ,V)
denotes the set of substitutions of type V → T (F ,V). The set of variables in a
term t is denoted by Var(t). We write B for the strict subterm relation. The rewrite
relation for some TRS R is denoted by →R, and the parallel rewrite relation
is ⇒R, where sometimes R is omitted if it is clear from the context. Rewrite
relations may be restricted by positions, such as root steps (→ε) or parallel
rewriting where all steps are below the root (⇒>ε). Given a binary relation →,
the reflexive transitive closure, the transitive closure, and the n-fold composition
of the relation are denoted by →∗, →+, and →n, respectively. A relation → is
confluent on A if for all y ∈ A and all x and z, whenever x ∗← y →∗ z, there is
some u such that x→∗ u ∗← z; and → is confluent if it is confluent on the set
of all elements. A TRS R is confluent if its rewrite relation →R is confluent. A
rewrite rule `→ r is left-linear if no variable occurs more than once in `, and a
TRS is left-linear if so are all its rules.

An (oriented) conditional rewrite rule ρ over signature F is of the form
` → r ⇐ s1 → t1, . . . , sk → tk where `, r, s1, t1, . . . , sk, tk ∈ T (F ,V). The
condition s1 → t1, . . . , sk → tk is sometimes abbreviated by c. Every standard
rewrite rule `→ r can be considered a conditional rewrite rule where k = 0. A
CTRS over F is a set R of conditional rules over F .

Definition 1 (Conditional rewriting [15, Def. 7.1.4]). Let R be a CTRS.
The unconditional TRSs Rn and the rewrite relation →R are defined as follows.

R0 = ∅
Rn+1 = {(`σ, rσ) | `→ r ⇐ s1 → t1, . . . , sk → tk ∈ R, ∀i. siσ →∗Rn

tiσ}

→R =
⋃
n∈N
→Rn

A CTRS R is of type 3 if every rule ` → r ⇐ c in R satisfies Var(r) ⊆
Var(`) ∪ Var(c). A CTRS of type 3 is deterministic if for every rule ` → r ⇐
s1 → t1, . . . , sk → tk ∈ R and every 1 6 i 6 k it holds that Var(si) ⊆ Var(`) ∪⋃i−1
j=1 Var(tj). In the sequel, we will only deal with deterministic CTRSs of type

3 (abbreviated 3DCTRSs).

Example 2. Let F be the signature consisting of constants 0,T,F, [], unary sym-
bols s, qs, and binary symbols 6, :,@, 〈·, ·〉, split. The following 3DCTRS R1 over
F encodes quicksort [15]:

0 6 x→ T s(x) 6 0→ F s(x) 6 s(y)→ x 6 y
[] @ x→ x (x : xs) @ ys→ x : (xs @ ys) split(x, [])→ 〈[], []〉
qs([])→ []

split(x, y : ys)→ 〈xs, y : zs〉 ⇐ split(x, ys)→ 〈xs, zs〉, x 6 y → T
split(x, y : ys)→ 〈y : xs, zs〉 ⇐ split(x, ys)→ 〈xs, zs〉, x 6 y → F

qs(x : xs)→ qs(ys) @ (x : qs(zs)) ⇐ split(x, xs)→ 〈ys, zs〉

3

3 Formalizing Conditional Rewriting

Instead of Def. 1, IsaFoR defines conditional rewriting as introduced in [12], where
intermediate rewrite relations are used rather than auxiliary unconditional TRSs.

Definition 3 (Conditional rewriting [12]). Let R be a CTRS. The rewrite
relation →R is defined as follows.

0→R = ∅
n+1→ R = {(C[`σ], C[rσ]) | `→ r ⇐ s1 → t1, . . . , sk → tk ∈ R, ∀i. siσ

n−→∗R tiσ}

→R =
⋃
n∈N

n→R

It is easy to see that
n→R =→Rn

, and therefore →R is the same relation in
both Def. 1 and Def. 3.

In IsaFoR we used Def. 3 since it constitutes a stand-alone inductive definition,
whereas Def. 1 additionally requires the notion of unconditional rewriting. The
use of Def. 3 thus simplified proofs in that it avoided auxiliary results involving
standard rewriting. In particular, every rewrite step according to Def. 1 is
associated with a rule, a context, and two substitutions, where the first substitution
originates from the definition of the unconditional TRS Rn+1, and the second one
stems from the rewrite relation →Rn+1

of this unconditional TRS. In contrast, a
rewrite step according to Def. 3 involves only one substitution.

Besides the definition of →R, based on
n→R defined as a recursive function

on n, we also added several basic results on →R to IsaFoR, which were mainly
established by first proving them component-wise for

n→R by induction on n. For
instance,

n→R is closed under contexts and substitutions,
n→R ⊆

m→R for n 6 m,
etc., and these properties are then easily transferred to →R. Moreover, we added
some extraction results, e.g., for finite derivations s →∗R t one can always find

a suitable n such that s
n−→∗R t. This made it easy to switch between the full

relation →R and some approximation
n→R in proofs.

Recall that the notion of termination is not as important for CTRSs as it
is for TRSs. For a CTRS R one is rather interested in operational termination
[6], where in addition to strong normalization of →R one ensures that there will
be no infinite recursion required when evaluating conditions. For example, the
CTRS R = {f(x) → f(x) ⇐ f(f(x)) → f(x)} terminates as it satisfies →R = ∅,
but it is not operationally terminating.

We formalized the following two sufficient criteria for operational termination.

Definition 4 (Quasi-Reductive). A CTRS R is quasi-reductive for � if � is
a strongly normalizing partial order which is closed under contexts, and for every
`→ r ⇐ s1 → t1, . . . , sk → tk in R, every σ, and 0 6 i < k it holds that

– if sjσ � tjσ for every 1 6 j 6 i, then lσ (� ∪B)
+
si+1σ, and

– if sjσ � tjσ for every 1 6 j 6 k, then lσ � rσ.

A CTRS R is quasi-reductive if it is quasi-reductive for some �.

4

Definition 5 (Quasi-Decreasing). A CTRS R is quasi-decreasing for � if �
is a strongly normalizing partial order, →R ∪ B ⊆ �, and for every ` → r ⇐
s1 → t1, . . . , sk → tk in R, every substitution σ, and 0 6 i < k it holds that if
sjσ →∗R tjσ for every 1 6 j 6 i then lσ � si+1σ. A CTRS R is quasi-decreasing
if there exists some � such that R is quasi-decreasing for �.

Definitions 4 and 5 are exactly the same as Definitions 7.2.36 and 7.2.39 in
[15], respectively, except that our definitions do not mention signatures. This
deviation is motivated by the fact that neither the conditional rewrite relation
nor the unconditional rewrite relation in IsaFoR take signatures into account.

IsaFoR further includes the crucial proof of [15, Lemma 7.2.40], namely that
whenever R is quasi-reductive for �, then R is also quasi-decreasing for (�∪B)+.
And since a 3DCTRS is quasi-decreasing if and only if it is operational terminating
[6, Thms. 2 and 3], we provide a criterion for operational termination.

4 Unravelings

An unraveling is a computable transformation U which maps a CTRS R over
some signature F to a TRS U(R) over some signature F ′ ⊇ F .2 An unraveling
U is sound with respect to reductions for R if s →∗U(R) t implies s →∗R t for all

terms s, t ∈ T (F ,V). It is complete with respect to reductions for R if s →∗R t
implies s→∗U(R) t for all s, t ∈ T (F ,V). In order to be independent of concrete
unravelings used by tools, our certifier is based on the following more flexible
notion of standard unravelings.

To that end, two conditional rules ` → r ⇐ s1 → t1, . . . , sk → tk and
`′ → r′ ⇐ s′1 → t′1, . . . , s

′
k′ → t′k′ are called prefix equivalent up to m if m 6 k,

m 6 k′, and there is a variable renaming τ such that `τ = `′, siτ = s′i for all
1 6 i 6 m, and tiτ = t′i for all 1 6 i < m. For instance, the first two conditional
rules in Ex. 2 are prefix equivalent up to 2, with τ being the identity. For a finite
set of variables V = {x1, . . . , xn}, let

#»

V denote the sequence x1, . . . , xn such that
x1 < · · · < xn for some arbitrary but fixed ordering < on V.

Definition 6 (Standard unraveling). A standard unraveling U maps a rule
ρ of the form `→ r ⇐ s1 → t1, . . . , sk → tk to the set of rules U(ρ) given by

U(ρ) =
{
`→ Uρ1 (s1,

»

Z1), Uρ1 (t1,
»

Z1)→ Uρ2 (s2,
»

Z2), . . . , Uρk (tk,
»

Zk)→ r
}

where Xi = Var(`, t1, . . . , ti−1), Yi = Var(r, ti, si+1, ti+1 . . . , sk, tk), and Zi is
an arbitrary set of variables satisfying Xi ∩ Yi ⊆ Zi, for all 1 6 i 6 k, and

Uρ1 , . . . U
ρ
k 6∈ F . Furthermore, we require that Uρi = Uρ

′

j only if i = j and ρ and
ρ′ are prefix equivalent up to i, for all ρ, ρ′ ∈ R.

The definition of U is extended to a CTRS R by setting U(R) =
⋃
ρ∈R U(ρ).

2 Definitions of unravelings in the literature typically demand that →R ⊆ →∗U(R) and
U(R]R′) = U(R) ∪R′ hold for any TRS R′. We do not require this by definition
but all considered transformations enjoy these properties.

5

Note that setting Zi = Xi yields Ohlebusch’s unraveling Useq [13, 15], while
by taking Zi = Xi ∩ Yi one obtains the optimized unraveling Uopt [2, 11], both of
which are thus standard unravelings in our setting.3 In addition, we allow—but
do not enforce—the reuse of U symbols as proposed for the variant of Ohlebusch’s
unraveling Uconf [4] (and already mentioned in [15, page 213]). The set of symbols
F ′ denotes the signature which extends F by all U iρ symbols introduced by U .

Example 7. Let R2 be Uconf(R1), where the standard unraveling Uconf is applied
to the CTRS R1 from Ex. 2. Then R2 contains all unconditional rules of R1, and
the following rules which replace the conditional rules of R1:

split(x, y : ys)→ U1(split(x, ys), x, y, ys)

U1(〈xs, zs〉, x, y, ys)→ U2(x 6 y, x, y, ys, xs, zs)

U2(T, x, y, ys, xs, zs)→ 〈xs, y : zs〉
U2(F, x, y, ys, xs, zs)→ 〈y : xs, zs〉

qs(x : xs)→ U3(split(x, xs), x, xs)

U3(〈ys, zs〉, x, xs)→ qs(ys) @ (x : qs(zs))

Note that the first four rules can simulate both of the first two conditional rules.
Alternatively, a standard unraveling may produce the TRS R3 where the

conditional rules are transformed into:

split(x, y : ys)→ U1(split(x, ys), x, y) U1(〈xs, zs〉, x, y)→ U2(x 6 y, y, xs, zs)

U2(T, y, xs, zs)→ 〈xs, y : zs〉 U2(F, y, xs, zs)→ 〈y : xs, zs〉
qs(x : xs)→ U3(split(x, xs), x) U3(〈ys, zs〉, x)→ qs(ys) @ (x : qs(zs))

Here, R3 corresponds to Uopt(R1), except that U symbols are reused for the
two prefix equivalent rules. For both R2 and R3, the extended signature is
F ′ = F ∪ {U1, U2, U3}.

Reusing U symbols is often essential to obtain confluent unraveled systems,
e.g., both Uopt(R1) and Useq(R1) are non-confluent TRSs, whereas the TRSs
R2 = Uconf(R1) and R3 in Ex. 7 are orthogonal and hence confluent. Also
termination provers can benefit from the repeated use of U symbols since for
locally confluent overlay TRSs it suffices to prove innermost termination [5].

5 Completeness of Unravelings

Completeness of an unraveling U demands that derivations of R can be simulated
by U(R), i.e., →∗R ⊆ →∗U(R) holds. This result is not hard to prove but has

limited applicability. For example, it does not entail that termination of U(R)
implies strong normalization of →R or quasi-reductiveness of R. Therefore, we
first formalized a more general, technical result (Lem. 9) which is helpful to
derive many of the other properties that we are interested in.

3 The unraveling UD proposed by Marchiori [8] differs from Useq in that it admits
multiple occurrences of the same variable in

»
Zi. In general, it is hence not a standard

unraveling, but UD and Useq coincide in the setting of left-linear unraveled systems.

6

The notion of a standard unraveling does not cover Marchiori’s unraveling
UD. In order to cover UD and also to keep our results as widely applicable as
possible, we introduce an even more general notion of unravelings: Instead of
demanding that the left- and right-hand-sides of unraveled rules are exactly of
the form Uρi (ti,

»

Zi) and Uρi (si,
»

Zi), we only assume that they are of the shape
C[ti] and C[si] for some context C.

Definition 8 (Generalized unraveling). A generalized unraveling U maps a
rule ρ of the form `→ r ⇐ s1 → t1, . . . , sk → tk to the set of rules U(ρ) given by

U(ρ) = {`→ Cρ1 [s1], Cρ1 [t1]→ Cρ2 [s2]), . . . , Cρk [tk]→ r}

where each Cρi is an arbitrary context. As in Def. 6, U(R) =
⋃
ρ∈R U(ρ).

In the remainder of this section, we assume that U is a generalized unraveling.

Lemma 9. Let `→ r ⇐ s1 → t1, . . . , sk → tk be a rule in R, and 1 6 i 6 k+ 1.
For i = k+1, define sk+1 := r and Cρk+1 = �. If sjσ →∗U(R) tjσ for all 1 6 j < i,

then `σ →+
U(R) C

ρ
i [si]σ. ut

Proof. `σ →U(R) Cρ1 [s1]σ →∗U(R) Cρ1 [t1]σ →U(R) Cρ2 [s2]σ →∗U(R) · · · →
∗
U(R)

Cρi−1[ti−1]σ →U(R) C
ρ
i [si]σ. ut

Theorem 10 (Completeness). →R ⊆ →+
U(R)

Proof. We prove
n→R ⊆ →+

U(R) by induction on n. The base case is trivial. So let

s
n+1→ R t, i.e., there is some `→ r ⇐ s1 → t1, . . . , sk → tk in R where s = C[`σ],

t = C[rσ] and siσ
n−→∗R tiσ for all 1 6 i 6 k. By the induction hypothesis, we

conclude siσ →∗U(R) tiσ for all i. Hence, `σ →+
U(R) rσ by applying Lem. 9 for

i := k + 1. But then s = C[`σ]→+
U(R) C[rσ] = t immediately follows. ut

Theorem 11 (Termination implies quasi-reductiveness). If U(R) is ter-
minating then R is quasi-reductive for � :=→+

U(R).

Proof. From termination of U(R) we conclude that � is a strongly normalizing
partial order, which is obviously also closed under contexts. Let `→ r ⇐ s1 →
t1, . . . , sk → tk be a rule in R, let i satisfy 0 6 i 6 k, and let sjσ � tjσ for
every 1 6 j 6 i. By definition of �, the preconditions can be reformulated as
1 6 i + 1 6 k + 1 and sjσ →∗U(R) tjσ for all 1 6 j < i + 1. Hence, by Lem. 9

we get `σ →+
U(R) C

ρ
i+1[si+1σ], i.e., `σ � Cρi+1[si+1σ] where in case i = k we have

Cρi+1 = � and si+1 = r. Thus, for i < k we obtain `σ � Cρi+1[si+1σ]D si+1σ, and
for i = k we get `σ � Cρi+1[si+1σ] = rσ, so all conditions of Def. 4 hold. ut

To model generalized unravelings within IsaFoR, we assume U to be given
as a function which takes a conditional rule ρ and an index i, and returns the
context Cρi . All proofs have been formalized as described above, with only a small
overhead: for example, in becoming explicit in the “· · · ” within the statement
and the proof of Lem. 9 (via quantifiers and inductive), or in manually providing
the required substitutions and contexts when performing conditional rewriting.

7

Example 12. The TRS R3 from Ex. 7 is terminating. According to Thm. 11, R1

is thus quasi-reductive. A corresponding proof is automatically generated by
AProVE and certified by CeTA.

6 Soundness of Unravelings

After having formalized simple proofs on unravelings like completeness, in this
section we describe the following more challenging soundness result.

Theorem 13 (Soundness of standard unravelings). Consider a 3DCTRS
R and a standard unraveling U such that U(R) is left-linear. Then U is sound
with respect to reductions for R.

Our formalization of this result follows the line of argument pursued in [12,
Theorem 4.3]. However, Thm. 13 constitutes an extension in several respects. First,
it is not fixed to the unraveling Uopt. Instead, it only assumes U to be a standard
unraveling, thereby in particular covering Useq, Uconf , and Uopt. Second, it does
not rely on the assumption that R is non-left variable or non-right variable, i.e.,
that either no left- or no right-hand side of R is a variable. In [12] this restriction
is used to simplify the decomposition of U(R)-rewrite sequences. Instead, we
introduced the notion of partial and complete ρ-step simulations below. Finally,
in contrast to the proof of [12, Lemma 4.2], we devised an inductive argument to
prove the Key Lemma 18 in its full generality, instead of restricting to rules with
only two conditions.

A number of preliminary results were required in order to prove Thm. 13.

Definition 14 (Complete and partial simulation). Let ρ = `→ r ⇐ s1 →
t1, . . . , sk → tk. A rewrite sequence s ⇒n

U(R) t contains a complete ρ-step

simulation if it can be decomposed into a U(R)-rewrite sequence

s⇒n0 `σ1 −→ε U
ρ
1 (s1,

»

Z1)σ1

⇒n1
>ε U

ρ
1 (t1,

»

Z1)σ2 −→ε U
ρ
2 (s2,

»

Z2)σ2

...

⇒nk
>ε U

ρ
k (tk,

»

Zk)σk+1 −→ε rσk+1 ⇒
nk+1 t

(1)

for some n0, . . . , nk+1 and substitutions σ1, . . . , σk+1 such that n = nk+1 +∑k
i=0(ni + 1). Moreover, s ⇒n

U(R) t contains a partial ρ-step simulation up
to m if it can be decomposed as

s⇒n0 `σ1 −→ε U
ρ
1 (s1,

»

Z1)σ1

⇒n1
>ε U

ρ
1 (t1,

»

Z1)σ2 −→ε U
ρ
2 (s2,

»

Z2)σ2

...

⇒nm−1
>ε Uρm−1(tm−1,

»

Zm−1)σm −→ε U
ρ
m(sm,

»

Zm)σm ⇒
nm
>ε t

(2)

for some m 6 k as well as n0, . . . , nm and substitutions σ1, . . . , σm such that
n = nm +

∑m−1
i=0 (ni + 1).

8

The proof of the following result is technical but straightforward, applying
induction on the length of the rewrite sequence A.

Lemma 15. Suppose s ∈ T (F ,V) admits a rewrite sequence A : s⇒n
U(R) t which

contains a root step. Then A contains a complete or a partial ρ-step simulation
for some ρ ∈ R. ut

Lemma 16 ([12, Lemma A.1]). Consider a 3DCTRS R, a rule ρ ∈ R of the
form `→ r ⇐ s1 → t1, . . . , sk → tk such that U(ρ) is left-linear, and substitutions

θ1, . . . , θk+1. If siθi →∗R tiθi+1 and
»

Ziθi →∗R
»

Ziθi+1 for all 1 6 i 6 k then
`θ1 →∗R rθk+1. ut

Here
»

Ziθi →∗R
»

Ziθi+1 denotes zjθi →∗R zjθi+1 for all 1 6 j 6 n, given
Zi = {z1, . . . , zn}. The following lemma follows from the properties of 3DCTRSs.

Lemma 17. A rule `→ r ⇐ s1 → t1, . . . , sk → tk in a 3DCTRS satisfies

1. Var(sm+1) ⊆ Var(tm) ∪ (Xm ∩ Ym) for all m < k, and
2. Var(r) ⊆ Var(tk) ∪ (Xk ∩ Yk). ut

Lemma 18 (Key Lemma). Consider a 3DCTRS R and a standard unraveling
U such that U(R) is left-linear. Let s, t ∈ T (F ,V) and t be linear such that
s⇒n

U(R) tσ for some substitution σ ∈ Sub(F ′,V). Then there is some substitution

θ such that (i) s→∗R tθ, (ii) xθ ⇒n
U(R) xσ and xθ ∈ T (F ,V) for all x ∈ Var(t),

and (iii) if tσ ∈ T (F ,V) then tθ = tσ.

Before proving the key lemma, we show that it admits a very short proof of
the main soundness result. The lemma will also be used in § 7 to prove confluence.

Proof (Proof of Thm. 13). Consider s, t ∈ T (F ,V) such that s →∗U(R) t. Let

x ∈ V and σ := {x 7→ t}. Hence s⇒∗U(R) xσ holds, and from Lem. 18 it follows
that s→∗R xσ = t. ut

The following four pages describe a complete paper proof of the key lemma. We
present it for the following reasons: In contrast to the proof of [12, Theorem 3.8], it
devises an argument for the general case instead of restricting to two conditions. It
is also structured differently, as it makes use of the notion of complete and partial
ρ-step simulations and prefix equivalence. The latter differences in particular
allowed us to show a more general result. And finally, the paper proof served
as a detailed and human-readable proof plan for the proof within IsaFoR: the
formalized proof contains even more details and is over 800 lines long.

At this point we want to emphasize the advantage of having a formalized proof
within a proof assistant like Isabelle: in order to verify the proof’s correctness,
one can simply check whether the statement of the key lemma from the paper
corresponds to the one in the formalization, because the (even more detailed)
formalized proof is validated automatically.

9

Proof (of key lemma). The proof is by induction on (n, s), compared lexicograph-
ically by > and B. If n = 0 then s = tσ ∈ T (F ,V), and one can set θ = σ. The
remainder of the proof performs a case analysis on a rewrite sequence

s⇒n+1
U(R) tσ (3)

To enhance readability, the subscript in ⇒U(R) will be omitted; all steps denoted
⇒ and −→ε are in U(R).

Case (i): The sequence (3) does not contain a root step. Then s cannot be a
variable so, s = f(s1, . . . , sm) for some f ∈ F . In this case, the result will easily
follow from the induction hypothesis. Still, we have to consider two cases.

1. Suppose t 6∈ V. As (3) does not contain a root step we may write t =
f(t1, . . . , tm), and have si ⇒n+1 tiσ for all 1 6 i 6 m. (Here we employ
the fact that ⇒k ⊆ ⇒n+1 for all k 6 n + 1, which will be freely used in
the sequel of this proof.) For all i such that 1 6 i 6 m, si, ti ∈ T (F ,V)
and ti is linear. Hence the induction hypothesis yields a substitution θi such
that si →∗R tiθi, xθi ⇒n+1 xσ and xθi ∈ T (F ,V) for all x ∈ Var(ti), and
tiθi = tiσ if tiσ ∈ T (F ,V). By linearity of t, θ :=

⋃m
i=1 θi|Var(ti) ∈ T (F ,V)

is a substitution which satisfies tiθi = tiθ for all i. Hence we obtain

s = f(s1, . . . , sm)→∗R f(t1, . . . , tm)θ = tθ ⇒n+1 f(t1, . . . , tm)σ = tσ

and if tσ ∈ T (F ,V) then tiσ ∈ T (F ,V) implies tiθ = tiθi = tiσ, such that
tθ = tσ.

2. We have t = x ∈ V, hence xσ = f(t1, . . . , tm). Let x1, . . . , xm be distinct
variables and σ′ be a substitution such that xiσ

′ = ti for all 1 6 i 6 m. As
s = f(s1, . . . , sm) and (3) does not contain a root step, we have si ⇒n+1

ti = xiσ
′. For all i such that 1 6 i 6 m, the induction hypothesis yields a

substitution θi such that si →∗R xiθi, xiθi ⇒n+1 xiσ
′ and xiθi ∈ T (F ,V),

where xiθi = xiσ
′ if xiσ

′ ∈ T (F ,V). Let θ := {x 7→ f(x1θ1, . . . , xmθm)}.
One thus obtains

s = f(s1, . . . , sm)→∗R f(x1θ1, . . . , xmθm) = xθ ⇒n+1 f(x1, . . . , xm)σ′ = xσ

and if tσ ∈ T (F ,V) then ti = xiσ
′ ∈ T (F ,V) implies xiθi = xiσ

′, so tθ = tσ.

Case (ii): The sequence (3) contains a root step. Then according to Lem. 15, (3)
contains a partial or a complete ρ-step simulation for some ρ ∈ R where ρ is of
the shape `→ r ⇐ s1 → t1, . . . , sk → tk, and s⇒n0 `σ1 for some n0 < n+ 1. As
` ∈ T (F ,V) is linear by the assumption of left-linearity, the induction hypothesis
yields a substitution θ1 such that s→∗R `θ1, xθ1 ⇒n0 xσ1 and xθ1 ∈ T (F ,V) for
all x ∈ Var(`), and if `σ1 ∈ T (F ,V) then `θ1 = `σ1 (?).

1. Suppose (3) contains a partial ρ-step simulation up to m of the form

s⇒n0 `σ1 −→ε U
ρ
1 (s1,

»

Z1)σ1 ⇒
n1
>ε · · · −→ε U

ρ
m(sm,

»

Zm)σm ⇒
nm
>ε tσ

10

for m ≤ k, such that root(tσ) = Um. Since t ∈ T (F ,V) by assumption it
must be the case that t = x ∈ V. Let θ = {x 7→ `θ1}. In combination with
(?) it follows that s→∗R `θ1 = xθ, xθ = `θ1 ⇒n0 `σ1 ⇒n+1−n0 tσ = xσ and
consequently xθ ⇒n+1 xσ, xθ = `θ1 ∈ T (F ,V) and xσ 6∈ T (F ,V) which
shows the claim.

2. Suppose (3) contains a complete ρ-step simulation

s⇒n0 `σ1 −→ε U
ρ
1 (s1,

»

Z1)σ1 ⇒
n1
>ε U

ρ
1 (t1,

»

Z1)σ2 −→ε U
ρ
2 (s2,

»

Z2)σ2 ⇒
n2
>ε · · ·

−→ε U
ρ
k (sk,

»

Zk)σk ⇒
nk
>ε U

ρ
k (tk,

»

Zk)σk+1 (4)

−→ε rσk+1 ⇒
nk+1 tσ

The key step is now to establish existence of a substitution θ′ such that

s→+
R rθ

′, rθ′ ∈ T (F ,V), and rθ′ ⇒n tσ (5)

First, suppose ρ is an unconditional rule `→ r. Then one can take θ′ := θ1:
By (?) one has s→∗R `θ1, and for all x ∈ Var(`) it holds that xθ1 ∈ T (F ,V),
xθ1 ⇒n0 xσ1 and xθ1 ∈ T (F ,V). Obviously there is also the rewrite sequence
s →∗R rθ1. As Var(r) ⊆ Var(`) because R is a DCTRS, the properties of
θ1 imply rθ1 ∈ T (F ,V). Together with (?), Var(r) ⊆ Var(`) also implies
rθ1 ⇒n0 rσ1. Combined with the complete simulation, rθ1 ⇒n tσ holds.
Second, in the case of a conditional rule the following claim is used: there are
substitutions θ1, . . . , θk+1 such that θ1 is as derived in (?), and it holds that

(a) siθi →∗R tiθi+1 (c) θj |Vj
∈ Sub(F ,V)

(b)
»

Ziθi →∗R
»

Ziθi+1 (d) xθi+1 ⇒
Ni xσi+1 ∀x ∈ Var(ti) ∪ Zi

for all 1 6 i 6 k and 1 6 j 6 k + 1. Here Ni =
∑i
j=0 nj , and Vj denotes the

variable set defined by V1 = Var(`) and Vj+1 = Var(tj) ∪ (Xj ∩ Yj) for j > 0.
We conclude the main proof before showing the claim. In particular, the
claim yields substitutions θ1, . . . , θk+1 with properties (a)–(d). Due to (a),
(b), and Lem. 16, there is a rewrite sequence `θ1 →∗R rθk+1. In combination
with (?) it follows that s →∗R `θ1 →∗R rθk+1. According to Lem. 17 (2),
Var(r) ⊆ Var(tk)∪(Xk∩Yk) = Vk+1, so with (c) it holds that rθk+1 ∈ T (F ,V).
Moreover, in combination with (d) and the fact that Xk ∩ Yk ⊆ Zk one has
xθk+1 ⇒Nk xσk+1 for all x ∈ Var(r), and hence rθk+1 ⇒Nk rσk+1 ⇒nk+1 tσ.
Now since Nk + nk+1 6 n one has rθk+1 ⇒n tσ, so the substitution θk+1

satisfies all properties of θ′ as demanded in (5).

So suppose there is a substitution θ′ which satisfies the properties (5). Ap-
plying the induction hypothesis to the rewrite sequence rθ′ ⇒n tσ yields a
substitution θ such that rθ′ →∗R tθ (and hence s →∗R tθ), xθ ⇒n xσ and
xθ ∈ T (F ,V) for all x ∈ Var(t), and if tσ ∈ T (F ,V) then tθ = tσ. This
concludes the case of a complete ρ-step simulation, it only remains to prove
the above claim.

Proof of the claim. We perform an inner induction on k. In the base where k =
0, the singleton substitution list containing θ1 vacuously satisfies properties
(a), (b), and (d), and (c) holds as θ1|V1 ∈ Sub(F ,V) according to (?).

11

So consider the case for k = m+1. From the induction hypothesis one obtains
substitutions θ1, . . . , θk which satisfy properties (a)–(d) for all 1 6 i 6 m
and 1 6 j 6 k. In the sequel, they will be referred to by (a’)–(d’). Let θ′k be
defined as follows:

θ′k(x) =

{
xθk if k = 1 and x ∈ Var(`), or x ∈ Var(tm) ∪ Zm
xσk otherwise

In the first place

skθ
′
k ⇒

Nm skσk and skθ
′
k ∈ T (F ,V) (6)

is established by means of a case analysis. First, suppose k = 1. As R
is deterministic, Var(s1) ⊆ Var(`). According to (?), xθ1 ⇒n0 xσ1 and
xθ1 ∈ T (F ,V) hold for all x ∈ Var(`). By definition of θ′1 and Var(s1) ⊆
Var(`) we get s1θ

′
1 = s1θ1. Hence s1θ

′
1 ⇒

n0 s1σ1 and thus s1θ
′
1 ⇒

N0 s1σ1,
and s1θ

′
1 ∈ T (F ,V). Second, suppose k > 1. By Lem. 17 (1) one has

Var(sk) ⊆ Var(tm) ∪ (Xm ∩ Ym) = Vk. Due to Xm ∩ Ym ⊆ Zm it also holds
that Var(sk) ⊆ Var(tm) ∪ Zm. By (d’), xθk ⇒Nm xσk and xθk ∈ T (F ,V) for
all x ∈ Var(tm) ∪ Zm, such that also skθk ⇒Nm skσk holds. From Var(sk) ⊆
Var(tm)∪Zm it also follows that skθk = skθ

′
k such that skθ

′
k ⇒

Nm skσk holds.
Moreover, Var(sk) ⊆ Vk and (c’) imply skθ

′
k ∈ T (F ,V), so (6) is satisfied.

According to derivation (4) skσk ⇒nk tkσk+1 holds, so with (6) it follows
that skθ

′
k ⇒

Nk tkσk+1. Now the outer induction hypothesis can be applied to
this rewrite sequence: as U(R) is left-linear also tk must be linear, skθ

′
k, tk ∈

T (F ,V), and Nk < n+ 1 so one obtains a substitution θs such that

skθ
′
k →∗R tkθs, xθs ⇒

Nk xσk+1, and xθs ∈ T (F ,V) (7)

for all x ∈ Var(tk).
Next, we show that for every z ∈ Zk there is a substitution θz such that

zθ′k →∗R zθz, zθz ⇒
Nk zσk+1, and z(θz|Vk

) ∈ T (F ,V). (8)

holds, by a case analysis. First, in the case where either k = 1 and z 6∈ Var(`),
or k > 1 and z 6∈ Var(tm) ∪ Zm, it suffices to take θz = {z 7→ zθ′k} =
{z 7→ zσk} as according to derivation (4) one has zσk ⇒nk zσk+1 and hence
zσk ⇒Nk σk+1. Both z(θz|Vk

) ∈ T (F ,V) and zθ′k →∗R zθz trivially hold, so
(8) is satisfied.
Second, if k = 1 and z ∈ Var(`), or k > 1 and z ∈ Var(tm) ∪ Zm. Then

zθ′k ⇒
Nm zσk and z(θ′k|Vk

) ∈ T (F ,V) (9)

holds, as can be seen by a case analysis on k. If k = 1 and z ∈ Var(`), then
by (?) it holds that zθ1 ⇒n0 zσ1 and zθ1 ∈ T (F ,V), so also zθ1 ⇒N0 zσ1 is
satisfied, and zθ′1 = zθ1 holds by definition. If k > 1 then zθ′k ⇒

Nm zσk and
z(θ′k|Vk

) ∈ T (F ,V) hold according to (c’), (d’) and as zθ′k = zθk.

12

So in both cases (9) is satisfied. Now the derivation (4) implies zσk ⇒nk zσk+1,
and together with (9) it holds that zθ′k ⇒

Nk zσk+1. Applying the outer
induction hypothesis to this rewrite sequence yields a substitution θz that
satisfies (8).

Since U(R) is left-linear, Var(tk) and Zk are disjoint. Therefore, θk+1 :=
θs|Var(tk) ∪

⋃
z∈Zk
{z 7→ zθz} is a well-defined substitution. It can be verified

that the sequence of substitutions θ1, . . . , θm, θ
′
k, θk+1 satisfies all desired

properties (a)–(d):
First, note that θ1, . . . , θm, θ

′
k also satisfy the properties corresponding to

(a’)–(d’): from (a’) one has smθm →∗R tmθ′k because tmθk = tmθ
′
k;

#»

Zmθm →∗R
#»

Zmθ
′
k and θ′k|Vk

∈ Sub(F ,V) hold by (b’), (c’), and the definition of θ′k. By
the definition of θ′k, xθ′k = xθk for all x ∈ Var(tm) ∪ Zm, so (d’) also holds
for θ1, . . . , θm, θ

′
k.

In summary, one can conclude

(a) siθi →∗R tiθi+1 (c) θj |Vj ∈ Sub(F ,V)

(b)
»

Ziθi →∗R
»

Ziθi+1 (d) xθi+1 ⇒
Ni xσi+1 ∀x ∈ Var(ti) ∪ Zi

for all 1 6 i 6 k and 1 6 j 6 k + 1, where (a) follows from (a’) and
as skθ

′
k →∗R tkθk+1 follows from (7). Next, (b) holds because of (b’) and

(8), which entails
»

Zkθ
′
k →∗R

»

Zkθk+1 as zθz = zθk+1 for all z ∈ Zk. Finally,
(7) and (8) imply θk+1|Vk+1

∈ Sub(F ,V) and xθk+1 ⇒Nk xσk+1 for all
x ∈ Var(tk) ∪ Zk, which together with (c’) and (d’) induce (c) and (d). ut

Thm. 13 and its preliminary lemmas are formalized in IsaFoR as presented
in the proofs above. As already mentioned, the notions of partial and complete
ρ-step simulations are used to circumvent the restriction to non-left or non-right
variable CTRSs (and a respective duplication of the main proof steps). At some
places the formalization induces some technical overhead, for instance to construct
a substitution by taking the union of a set of domain-disjoint substitutions.

7 Applying Unravelings to Confluence

It is known that confluence of an unraveled system U(R) implies confluence of
the conditional system R under certain conditions [4]. In order to verify proof
certificates by ConCon, a respective result was added to IsaFoR, and the following
paragraphs describe our formalized proof.

We call a standard unraveling source preserving if for all rules ρ ∈ R of the
form ` → r ⇐ s1 → t1, . . . , sk → tk it holds that Var(`) ⊆ Zi for all i 6 k.

The intuition behind this notion is that then each term Uρi (t,
»

Zi)σ completely
determines σ on Var(`). For instance, R2 in Ex. 7 is source preserving, but R3 is
not since the information on x gets lost in U2.

Lemma 19. Let R be a deterministic, non-left variable 3DCTRS, and let U be a
source preserving unraveling such that U(R) is left-linear. Suppose s, t ∈ T (F ,V)

13

such that s →∗U(R) u
∗

U(R)← t for some u ∈ T (F ′,V). Then there is some

v ∈ T (F ,V) such that s→∗R v ∗R← t holds.

Proof. By induction on u. If u ∈ V then u ∈ T (F ,V), so using Thm. 13 one can
directly conclude s→∗R u ∗R← t.

Otherwise, suppose for a first case that root(u) ∈ F , so let u = f(u1, . . . , um).
Let u′ be the linear term f(x1, . . . , xm), and σ := {xi 7→ ui | 1 6 i 6 m}, i.e.,
u = u′σ. We have s ⇒ns

U(R) u
′σ and t ⇒nt

U(R) u
′σ for some ns and nt. From

Lem. 18 we thus obtain substitutions θs and θt such that s→∗R u′θs, t→∗R u′θt,
and u′θs, u

′θt ∈ T (F ,V). Moreover, for all variables xi ∈ {x1, . . . , xm} we have
xiθs →∗U(R) xiσ and xiθt →∗U(R) xiσ; and since u B xiσ, we can apply the

induction hypothesis to obtain xiθs →∗R vi
∗
R← xiθt for some vi ∈ T (F ,V).

Joinability of s and t follows because of

s→∗R u′θs ⇒∗R f(v1, . . . , vm) ∗R⇔ u′θt
∗
R← t

Second, assume root(u) 6∈ F , so by the assumption u ∈ T (F ′,V) we have

u = Uρi (u1,
#»

Z iν) for some ρ ∈ R of the form `→ r ⇐ s1 → t1, . . . , sk → tk and
1 6 i 6 k, some term ui and some substitution ν. Let x ∈ V be some variable, so
we have s⇒ns

U(R) x{x 7→ u} for some ns. By Lem. 18, there is a substitution θs
such that s→∗R xθs, and xθs ∈ T (F ,V).

As u is rooted by Uρi an analysis of the proof of Lem. 18 for this case shows
the following:4 The rewrite sequence s⇒ns

U(R) x{x 7→ u} contains a partial ρ′-step

simulation up to i, for some rule ρ′ ∈ R prefix equivalent to ρ, and there are a
substitution σ0 such that xθs = `σ0 as well as substitutions σ1, . . . , σi such that

1. zσ0 ⇒∗U(R) zσ1 for all z ∈ Var(`),
2. zσj ⇒∗U(R) zσj+1 for all z ∈ Zj and 1 6 j < i, and
3. zσi ⇒∗U(R) zν for all z ∈ Zi.

Consider some variable z ∈ Var(`). Since U is source preserving, z ∈ Zj for all
j 6 i. Therefore, the properties of the substitutions σj yield a rewrite sequence
zσ0 ⇒∗U(R) zν.

In the same way the rewrite sequence t ⇒nt

U(R) x{x 7→ u} gives rise to

substitutions θt, τ0 such that t→∗R zθt, zθt ∈ T (F ,V), zθt = `τ0, and zτ0 ⇒∗U(R)

zν holds for all z ∈ Var(`).
Consider again some z ∈ Var(`). We have zσ0 ⇒∗U(R) zν and zτ0 ⇒∗U(R) zν,

where zσ0, zτ0 ∈ T (F ,V). But as we have uB zν, the induction hypothesis shows
zσ0 ↓R zτ0. Hence `σ0 and `τ0 are joinable to some common reduct `ν′ ∈ T (F ,V).

In summary, joinability of s and t follows from the rewrite sequence

s→∗R xθs = `σ0 ⇒
∗
R `ν

′ ∗
R⇔ `τ0 = xθt

∗
R← t ut

Theorem 20 (Confluence). Let R be a non-left variable 3DCTRS over signa-
ture F , and U be a source preserving unraveling such that U(R) is left-linear.
Then confluence of U(R) implies confluence of R.
4 Within IsaFoR this fact is made explicit by adapting the statement of Lem. 18.

14

Proof. Consider a peak s ∗R← u→∗R t with u ∈ T (F ,V). Then also s, t ∈ T (F ,V)
since R has signature F . By completeness of U , we also have s ∗

U(R)← u→∗U(R) t.

Confluence of U(R) yields a join s→∗U(R) v
′ ∗
U(R)← t for some term v′ ∈ T (F ′,V).

By Lem. 19 there is also a term v ∈ T (F ,V) such that s→∗R v ∗R← t. Hence R
is confluent on terms in T (F ,V). A further technical renaming suffices to prove
confluence on all terms u, where we refer to the formalization for details. ut

Example 21. The TRS R2 = Uconf(R1) from Ex. 7 is confluent since it is orthogo-
nal. According to Thm. 20, R1 is thus confluent as well. Due to our formalization,
the confluence proof generated by ConCon can be certified by CeTA.

The following example shows that Uconf is not necessarily an optimal choice when
it comes to confluence analysis.

Example 22. Consider the CTRS R4 consisting of rules

a→ b ⇐ c→ x, di(x)→ e di(c)→ e

for i ∈ {1, 2}. We obtain the following unraveled TRSs:

Uconf : a→ U1(c) U1(x)→ U i2(di(x), x) U i2(e, x)→ b di(c)→ e

Uopt : a→ U i1(c) U i1(x)→ U i2(di(x)) U i2(e)→ b di(c)→ e

Useq : a→ U i1(c) U i1(x)→ U i2(di(x), x) U i2(e, x)→ b di(c)→ e

Uconf admits the non-joinable peak U1
2 (d1(x), x) ← U1(x) → U2

2 (d2(x), x), but
Useq (as well as Uopt) is confluent, so R4 is confluent by Thm. 20.

8 Conclusion

We presented a formalization of soundness and completeness results of unravelings.
We used these results to certify quasi-reductiveness proofs by AProVE [3] and
conditional confluence proofs by ConCon [17]. As a test bench we used all 3DCTRSs
from Cops (problems 1–438) and TPDB 9.0,5 duplicates removed. In this way we
obtained 85 problems from Cops and 31 problems from TPDB.

AProVE produces termination proofs for 84 input problems, and CeTA could
certify these termination proofs for 83 problems. ConCon could prove confluence for
58 problems, and nonconfluence for 28 problems. CeTA could certify 38 confluence
proofs. Around 17 % of the confluence proofs of ConCon required sharing of U
symbols. All proofs that CeTA could not certify contain some techniques which are
not yet formalized. Detailed experimental results are provided on the website.

In summary, we consider our contribution threefold. On the formalization
side, we provided to the best of our knowledge the first formalization framework
for conditional rewriting and unravelings. Besides basic definitions it comprises
the crucial soundness and completeness results for the wide class of standard

5 See http://cops.uibk.ac.at/ and http://termination-portal.org/wiki/TPDB

15

unravelings. Theoretically, we contribute a comprehensive proof for soundness of
standard unravelings. It is based on [12, Theorem 3.8], but we could generalize
it in several respects. Practically, we provide a certifier for CTRSs. It is able to
certify quasi-decreasingness for all but one of the proofs generated by AProVE,
and it confirms 65% of the examples where ConCon claims confluence.

Potential future work includes the integration of further (non)confluence
techniques or termination techniques for CTRSs into IsaFoR.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination
of membership equational programs. In Proc. PEPM 2004, pages 147–158, 2004.

3. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,
P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termination
of programs automatically with AProVE. In Proc. 7th IJCAR, volume 8562 of
LNCS, pages 184–191, 2014.

4. K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term
rewriting systems via unravelings. In Proc. IWC 2013, pages 35–39, 2013.

5. B. Gramlich. Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

6. S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term
rewriting systems. IPL, 95(4):446–453, 2005.

7. M. Marchiori. Unravelings and ultra-properties. In Proc. ICLP 1996, volume 1139
of LNCS, pages 107–121, 1996.

8. M. Marchiori. On deterministic conditional rewriting. Technical Report Computa-
tion Structures Group Memo 405, MIT, 1997.

9. J. Nagele and R. Thiemann. Certification of confluence proofs using CeTA. In Proc.
3rd IWC, pages 19–23, 2014.

10. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

11. N. Nishida. Transformational Approach to Inverse Computation in Term Rewriting.
PhD thesis, Nagoya University, 2004.

12. N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term
rewriting systems via ultra-properties related to linearity. LMCS, 8(3):1–49, 2012.

13. E. Ohlebusch. Transforming conditional rewrite systems with extra variables into
unconditional systems. In Proc. LPAR 1999, volume 1705 of LNCS, pages 111–130,
1999.

14. E. Ohlebusch. Termination of logic programs: Transformational methods revisited.
AAECC, 12(1–2):73–116, 2001.

15. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
16. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis

of logic programs. In Proc. 20th RTA, volume 1833 of LNCS, pages 270–273, 2000.
17. T. Sternagel and A. Middeldorp. Conditional confluence (system description). In

Proc. 25th RTA, volume 8560 of LNCS, 2014.
18. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In

Proc. 22nd TPHOLs, volume 5674 of LNCS, pages 452–468, 2009.

16

