
Finite Family Developments

Vincent van Oostrom

Vrije Universiteit, Faculteit der Wiskunde en Informatica,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract. Associate to a rewrite system R having rules l → r, its la-
belled version Rω having rules l ◦

m+1
→ r •

m
, for any natural number

m ∈ ω. These rules roughly express that a left-hand side l carrying la-
bels all larger than m can be replaced by its right-hand side r carrying
labels all smaller than or equal to m. A rewrite system R enjoys finite
family developments (FFD) if Rω is terminating. We show that the class
of higher order pattern rewrite systems enjoys FFD, extending earlier
results for the lambda calculus and first order term rewrite systems.

1 Preliminaries

The abstract property we are interested in is termination of a binary relation.

Definition 1. An abstract rewrite system (ARS) is a binary relation on a set. We
use (sub/superscripted) arrows to range over ARSs. An ARS → is terminating
if the transitive closure of its inverse ←+ is a well-founded order.

Except for the notation � denoting the reflexive-transitive closure of an ARS→,
ordinary notations for operations on relations are employed, e.g.→+ denotes the
transitive closure of →. See [Klo92] for these and for standard rewrite concepts
such as rewrite sequence, confluence, normal form, etc.. In general we assume
knowledge of both first order term rewriting (TRS [Klo92]) and the lambda
calculus (Λ [Bar84]).

The ARSs we are interested in are the rewrite relations on terms induced by
higher order pattern rewrite systems [Nip]. Higher order rewriting in this paper
stands for rewriting modulo the simply typed λ-calculus [Chu40]. Concretely, the
objects to be rewritten are simply typed λ-terms modulo the theory λη [Bar84].
Our presentation only considers λ-terms in expanded η-normal form [Pra71],
which is no restriction [Aka93], and has the advantage of being close to first
order rewriting. We quickly recapitulate their syntax.

A higher order pattern rewrite system (PRS [MN94]) is a structure (F ,R)
consisting of an alphabet F and a set R of rewrite rules over F .

Definition 2 (Term). Types (θ, ι, κ ∈)T are defined by the grammar T ::=
TT→ B, where TT stands for vectors of types1 and (b ∈)B is a set of base types.
ε → b is abbreviated to b and the order function Ord on types is defined by
1 In this paper boldface letters stand for vectors, ε for the empty vector, and juxtapo-

sition or , is used for concatenation of vectors.

Ord(θ → b) = 1 + max(Ord(θ)). To each symbol a among the disjoint sets of
function symbols (f , g, h ∈)F and variables (x, X, y, Y ∈)X a unique type T(a)
is associated. Preterms (M , N , O ∈)T (F ,X) over F ∪ X are objects M such
that M : θ for some type θ can be inferred from:

(head) a(M) : b ⇐= a is a symbol in F ∪ X of type θ→ b and M : θ
(abs) x.M : ιθ→ b ⇐= x is a variable in X of type ι and M : θ→ b

(beta) N(M) : b ⇐= N : θ→ b and M : θ

where in (beta) the type vector θ (and hence the preterm vector M) is assumed
to be nonempty. Identity on inferences is denoted by ≡ which coincides with
identity on preterms by the condition on (beta). Provable equality in the theory
λη [Bar84, Def. 2.1.28] is denoted by =. Terms are =-equivalence classes of
preterms.

Preterms are just simply typed λ-terms (a bit in disguise)2, hence we may
employ some standard no(ta)tions and results for these. In particular, we will
now sketch the usual way to construct unique representatives of terms.

Note that in (beta) N is necessarily of the form x.N � for some nonempty
variable vector x of type θ and preterm N � of base type b, hence it makes sense
to define the following macro β-rule:

(x.M)(N) → M
[x�→N]

with M of base type, and where [x �→ N] denotes the (simultaneous) substitution
defined as the homomorphic extension of the map x �→ N. Substitutions (σ,
τ) are automorphisms on the preterms.3 The relation →β on preterms is the
compatible closure [Bar84, p. 50] of the macro β-rule. Each term [M]= may be
represented by the →β-normal form of M , which exists uniquely [Aka93]. Note
that a preterm M is in→β-normal form iff (beta) was not used in its construction,
and M can then be written in a unique way as:

x.a(M)

for some variable vector x (the binder), symbol a (the head), and vector M
(the matrix) of preterms (the arguments) in the same format [Wol93, Notation
2.29]. This preterm is taken as representative of the term [M]= and terms are
frequently identified with their representatives.

After this intermezzo on representing terms, we continue with our presenta-
tion of PRSs.

Definition 3 (Rule). A rewrite rule over alphabet F is a pair (l,r) such that:

(plug) l and r are closed terms in T (F ,X) of the same type,
2 More precisely, one may check that the set of preterms coincides with the set of

simply typed λ-terms in expanded η-normal form [Aka93].
3 Strictly speaking, the macro β-rule only makes semantic sense when preterms have

been identified already up to renaming of bound variables [Bar84, Appendix C].

(head) the head of l is a function symbol, and
(pat) l is a pattern [Mil91], i.e. if l = x.a(M) then a(M) ∈ A(x, ε), where the
collection of sets A(X,Y) is the least such that y.b(N) ∈ A(X,Y), if either
(�∈) b �∈ X and N ∈ A(X,yY), or
(∈) b ∈ X and N is a vector of mutually distinct variables among Y.
If moreover the latter case occurs precisely once for each variable among X
and such that N = Y, the pattern is called local4 [Mel96]. We use P , Q to
range over the set A of local patterns.

In order to stay close to conventional notation in rewriting [Klo92], we write
l → r for (l,r) and sometimes omit the binder of l and r, and in general of
patterns. In that case, the free variables will be denoted by capitals (X, Y , Z).
The restriction to patterns on left-hand sides of rewrite rules serves to make the
rewrite relation generated by the rules (known to be) decidable [Mil91, Nip].

Define the order of a PRS to be the maximum order of the variables occurring
in the binders of its rules. TRSs form a subclass of first order PRSs, and Λ, combi-
natory reduction systems (CRSs [Klo80]), interaction systems (ISs [AL94]), and
expression reduction systems (ERSs [Kha90]) all are subclasses of second order
PRSs [Kah93, Raa96].

Example 1 (Classical Rewrite Systems). 1. The prime example of a first order
PRS (TRS) is Combinatory Logic (CL [Cur30]). Its alphabet consists of S,
K, I all of base type o, and @ of type o, o→ o. It has three rewrite rules (all
variables being of type o):

x.@(I, x) → x.x

x.y.@(@(K, x), y) → x.y.x

x.y.z.@(@(@(S, x), y), z) → x.y.z.@(@(x, z),@(y, z))

All left-hand sides are local patterns. This is pretty unreadable, but using the
convention above and turning @ into an implicit infix operator associating
to the left, the rules get the following more pleasant format:

IX → X

KXY → X

SXY Z → XZ(Y Z)

2. The prime example of a second order PRS (CRS) is the lambda calcu-
lus [Chu33]. Its alphabet consists of λ of type (o → o) → o and @ of type
o, o→ o. Using the same conventions as in the previous item, and writing
λM instead of λ(M), the beta rule is rendered as:

(λx.X(x))Y → X(Y)

where X is a second order variable of type o→ o, and x,Y are first order
variables of type o. Note that the left-hand side of the beta rule is indeed a
local pattern since the (free) variable X only has the variable x as argument.

4 Local occurs in literature also as ‘linear and fully extended’.

After the statics of PRSs, we now turn to their dynamics as embodied by
their induced rewrite relation.

Definition 4 (Rewrite). The ARS →P on terms over F of a PRS P =def

(F ,R) is called its rewrite relation and is induced by the rules in R via the
following inference system:

(beta) l(M) →P r(M) ⇐= l → r ∈ R
(head) a(M1, . . . ,M, . . . ,Mm) →P a(M1, . . . , N, . . . ,Mm) ⇐= M →P N

(abs) x.M →P x.N ⇐= M →P N

Note that substitution is missing from our inference system, or rather it is
brought about in an implicit way via the (beta)-inference rule. In general, apply-
ing a substitution σ to a term M containing free variables X can be effectuated
by writing X.M(Xσ) and vice versa.

Example 2. In CL as above we have the rewrite step KIS →CL I by (beta),
since KXY → X is a rule, KIS = (x.y.Kxy)(I, S), and (x.y.x)(I, S) = I.

Basic facts on PRSs. No(ta)tions for terms are pointwise extended to corre-
sponding ones for substitutions, e.g. for substitutions σ and τ we write σ �P τ

if Xσ �P Xτ for each variable X. The following lemma states compatibility of
rewriting with term formation.

Lemma 5 (Substitution). Let P be a PRS.

1. If M �P N and σ �P τ , then Mσ �P Nτ [MN94, Theorem 3.9].
2. Let P ∈ A be a local pattern containing a free variable X (after removing

the binder). If σ and τ only differ on X and Xσ →P Xτ , then Pσ →P P τ .

In the sequel we assume all patterns to be local. Since left-hand sides of PRSs
are patterns, this restricts the class of PRSs to the class of local PRSs, but entails
no loss in generality since any PRS can be ‘localised’ (cf. [OR94, Definition 25]).
Localisation essentially consists in removing some of the conditions on rules,
hence termination of the localised PRS carries over to the original PRS.

Definition 6. The (proper) subterm relation ✁ on terms is defined as ✁+
1 , where

the direct subterm relation ✁1 defined by

M ✁1 M
σ, for σ a non-bijective variable renaming

M ✁1 x.M

x.M ✁1 x.a(M)

where M ∈M. The substep order �P is defined as (✁ ∪←P)+.

Patterns have the nice property that terms substituted for variables in the
binder are subterms of the resulting term. The induction of our main theorem
relies on the property that termination of a rewrite relation is preserved by
adding ‘subterm steps’.

Lemma 7 (Substep). Let M be a term and P =def x.f(P) a pattern.

1. If xσ =def y.g(N) for x ∈ x, then g(N) ✁ f(P)σ.
2. M is terminating iff x.M is terminating.
3. M is →P -terminating iff M is �P -terminating.

Proof. 1. By induction on P , using that the head of P is a function symbol to
get proper subterms.

2. Because (abs) is the last inference step, for any rewrite step from x.M .
3. One direction being trivial the claim follows from the observation that ✄1-

steps are terminating and can be postponed (w.r.t. →P -steps). ��

Termination of PRSs is characterised by termination of the terminating in-
stances of their right-hand sides.

Lemma 8 (RHS). For a PRS P =def (F ,R), →P is terminating iff a(M)σ is
terminating for every l → x.a(M) ∈ R and terminating substitution σ.

Proof. One direction is trivial. The other follows by considering a ✁-minimal
non-terminating term x.f(M). By minimality and Lemma 7 the binder x is
empty, hence an infinite rewrite sequence issuing from the term is of the form
f(M) � f(M�) = lσ → rσ → . . ., with M � M�. By definition of PRS l is a
pattern having a function symbol as head, hence σ is terminating by minimality
and Lemma 7, so rσ is terminating by assumption. ��

Remark. For the lemma it is essential that left-hand sides are patterns, as wit-
nessed by the non-pattern rewrite rule f(X(Y)) → Y . If σ is terminating, σ(Y)
is terminating by definition. Nevertheless, the rewrite relation is not terminating
as witnessed by the rewrite step f(a) → f(a) with Xσ = x.a, Y σ = f(a).

2 Finiteness of Family Developments

We start by giving a definition of labelled PRS, analogous to the definition of the
labelled lambda calculus due to Hyland and Wadsworth [Hyl76, Wad76]. That
is, the terms and rules of a PRS are supplied with labels from the set of natural
numbers and these labels may restrict applicability of a rewrite rule to a term
(restrict with respect to its unlabelled version, see the example).

Definition 9. Let (m, n ∈) ω be a set of natural number labels ordered by < in
the usual way. The labelled version Pω =def (Fω,Rω) of a PRS P =def (F ,R) is
defined as follows.

1. Fω is F extended with a function symbol mb of type b→ b, for every label
m ∈ ω and base type b. Since the types of the labels do not play a rôle in
the sequel, we will not write them henceforth.

2. Rω consists of labelled versions rules in R together with rewrite rules man-
aging merger of labels. Their definition employs some auxiliary definitions.
Let m be a label, P =def X.a(P) a pattern, and M =def X.a(M) a term.

(a) The internally m-labelled pattern P ◦
m

is defined as X.a(P ◦
m
�X�), where

Q ◦
m
�X� =def Y.m(b(Q ◦

m
�X�)), if Q =def Y.b(Q) and b �∈ X,

=def Q, otherwise.
(b) The fully m-labelled term M •

m
is defined as X.m(a(M •

m
)).

Finally, we can specify the rewrite rules of Pω.
(a) For every rule l → r ∈ R, its labelled versions are of the form

l ◦
m+1

→ r •
m

for every m ∈ ω.
(b) For all labels n < m ∈ ω, there are merger rules (contract and decrease)

x.n(n(x)) →c x.n(x)
x.m(x) →d x.n(x)

Example 3. Consider the PRS P having the rule f(g) → g. An example of a
rewrite sequence in Pω starting from the term f(1(f(2(f(2(g)))))) is:

f1f2f2g →Pω f1f21g →d f1f11g →c f1f1g →Pω f10g →d f00g →c f0g

where parentheses have been removed and the actions are underlined. The rewrite
sequence ends in the Pω-normal form f(0(g)). Remark that its ‘unlabelling’ f(g)
is not a P-normal form!

Our constructions will work for any ordinal, not just ω after the following
adaptation: in a labelled rule l → r, r may contain only labels smaller than the
least label

�
l occurring in l.

Remark. Since 0-labels can be inserted if needed, we may assume that every
symbol a ∈ F ∪ X occurring in a labelled term carries a label, i.e. it occurs
as m(a(. . .)) for some label m. Since internally labelling is the identity on a
left-hand side l of the form x.f(x), the labelled version of a rule such as l → l

is non-terminating. This technical problem can be resolved by (before labelling)
extending the alphabet with some fresh symbol v and expanding terms and rules
via the homomorphic extension of the map f �→ x.v(f(x)).

A labelled PRS can be mapped to its underlying PRS simply by forgetting
the labels and this map enjoys natural properties, allowing for the definition of
the main notion of this paper, that of a family development.

Definition 10. The unlabelling function |·| : T (Fω,X)→ T (F ,X) is defined as
the homomorphic extension of the mapping m �→ x.x, for every m ∈ ω.

Lemma 11. 1. |P ◦
m
| = P and |M •

m
| = M , for pattern P and term M .

2. If M →Pω N , then |M |→P |N | in case a labelled version of a rule in P was
applied, and |M | = |N | in case a merger rule was applied.

Proof. 1. By induction on patterns and terms.
2. By induction on the generation of →Pω , using 1 in the base case. ��

Definition 12. A family development is the projection |M1| →=
P |M2| →=

P
|M3|→=

P . . . of some labelled rewrite sequence M1 →Pω M2 →Pω M3 →Pω

We start the investigation of the correspondence between a PRS and its
labelled version with generalising to PRSs an observation for Λ due to Lévy (cf.
[Bar84, Sec. 14.2]).

Theorem 13 (Lift). Every finite rewrite sequence is a family development.

Proof. One shows that any rewrite sequence M �P N of length m is the pro-
jection of a labelled rewrite sequence M •

m
�Pω N•

0
by induction on m. ��

We now show the converse of this theorem, i.e. that all family developments
are finite which is equivalent to all labelled rewrite sequences being finite, since
by well-foundedness of < the merger rules on their own are terminating.

Lemma 14. A labelled term m(M) is terminating iff M is terminating.

Proof. The head label of a term can only be involved in merger steps, which can
be postponed (at the head). ��

The first part of the following lemma expresses that for a step M →P N , the
labels in a given prefix of N are determined by some prefix of M . The second
part extends this to rewrite sequences of arbitrary length and corresponds to the
square bracket lemma for Λ [NGV94].

Lemma 15 (Invert). Let M be a term, Q a pattern, and τ be a substitution.

1. If M →Pω Qτ , then there exist a pattern P and substitutions σ, υ such that
M = Pσ,

�
Q ≤

�
P , and either

(trm) P →Pω Qυ and υσ = τ , or
(sub) P = Q and σ →Pω τ .

2. If σ is a substitution with head labels all m and Mσ �Pω Qτ , then
(int)

�
Q ≤ m, or

(ext) M �Pω Qυ and υσ �Pω τ for some substitution υ.

Proof. 1. By induction on →Pω and on Q in the base case.
2. By induction on the length of the rewrite sequence Mσ �Pω Qτ

(0) If a substitution υ exists such that M = Qυ, the conditions of (ext) are
trivially satisfied. Otherwise

�
Q ≤ m by induction on Q.

(m + 1) Suppose Mσ �Pω M � →Pω Qτ . By 1 there exists a pattern P and
substitutions σ�, υ� such that M � = Pσ� ,

�
Q ≤

�
P , and either

(trm) P →Pω Qυ� and υ�σ
�
= τ , or

(sub) P = Q and σ� →Pω τ .
By the induction hypothesis, either
(int)

�
P ≤ m but then

�
Q ≤ m by transitivity of <, or

(ext) M �Pω P υ and υσ �Pω σ� for some substitution υ, then
(trm) , M �Pω P υ →Pω Qυ�υ , and υ�υ

σ �Pω τ by Lemma 5, or

(sub) , M �Pω Qυ, and υσ �Pω σ� →Pω τ and we are done. ��

Remark. Using the decomposition of PRS steps into partial PRS steps and β-
steps [Oos96], the base cases of the lemma are seen to rely on FFD for β-steps.

The proof for showing finiteness of family developments for PRSs extends
the one for Λ [Daa80], and roughly runs as follows. Consider a minimal term M

such that Mσ is not terminating for some terminating substitution σ. Due to
minimality eventually there must be some rewrite step taking place at the head.

1. The substitution did contribute to this head step.
(a) If the head of M is a function symbol, then the label of the right-hand

side of the head step is smaller than that of M , contradicting minimality
of M .

(b) If the head of M is a variable, then the rôles of term and substitution
are interchanged. More precisely, if M =def x(M) and xσ =def y.b(N),
then we consider termination of b(N) with substitution [y �→Mσ].

2. The substitution didn’t contribute to the head step. Then the ‘same’ head
step could have been obtained from M alone contradicting minimality of M .

Theorem 16 (FFD). Pω is terminating for every PRS P.

Proof. By Lemma 8 it suffices to prove Mσ
•
m

is terminating for every term M ,
label m ∈ ω, and terminating substitution σ, by induction on (m,M) ordered
by the lexicographic product < ×lex ✁. A minimal counterexample term has
an empty binder and all free variables occur exactly once in it by Lemma 7.
Consider such a minimal M =def a(M) for which Mσ

•
m

=def m(aσ(Mσ
•
m

)) is not
terminating. By Lemma 14, this is the same as non-termination of aσ(Mσ

•
m

). and
by induction hypothesis Mσ

•
m

is terminating. The proof is by cases on a.

(fun) If a is a function symbol f , then an infinite rewrite sequence looks like

f(Mσ
•
m

) �Pω f(M�) = l
τ
◦

n+1
→Pω r

τ
•
n
→Pω . . .

for some rule l → r ∈ R and substitution τ for the variables in the common
binder of l, r. By the induction hypothesis rτ

•
n

is terminating, since
1. M� is a vector of terminating terms by the induction hypothesis, hence

the substitution τ is terminating by Lemma 7, and
2. n < m, by the assumption that every left-hand side contains at least two

function symbols and the labels of the head symbols of the arguments
of f are initially m and cannot increase by rewriting.

(var) If a is a variable not in the domain of σ, then termination follows as
in the previous item. If a is in the domain of σ, then we prove termination
by induction on the order �Pω starting from aσ, which is well-founded by
the termination assumption on σ and Lemma 7.5 If aσ =def y.b(N), then

5 In the case of TRSs we are done with the proof now. In the case of Λ we have arrived
at the substitution theorem [NGV94, p. 511].

aσ(Mσ
•
m

) =def b(N)σ� with σ� =def [y �→ Mσ
•
m

]. By the (inner) induction

hypothesis, we have that Nσ� is terminating. The proof is by cases on b.
(lab) If b is a label, then termination follows from Lemma 14.
(fun) If b is a function symbol f ∈ F , then an infinite sequence looks like

f(Nσ�) �Pω f(N�) = l
τ
◦

n+1
→Pω r

τ
•
n
→Pω . . .

for some rule z.l → z.r ∈ R where l =def f(P), and substitution τ

having domain z. By Lemma 15, either the substitution σ� having m as
head label did contribute to one among P� =def P ◦

n+1
or it didn’t.

(int) If
�

P� = n+1 ≤ m, then n < m, and by Lemma 7 the outer
induction hypothesis applies to r•

n
and τ .

(ext) If N �Pω P�υ and υσ� �Pω τ for some substitution υ, then

f(N) �Pω f(P�υ) = l
υ
◦

n+1
→Pω r

υ
•
n

and r
υσ�

•
n

�Pω r
τ
•
n

by Lemma 5. Since the former sequence contains at least one step
(the final one), the inner induction hypothesis applies to rυ

•
n

and σ�,
yielding termination of rτ

•
n

by the latter sequence.

(var) If b is a variable not among y, then termination follows as in the previ-
ous item. If b = yi, and Mi =def z.c(O), then b(N)σ� =def c(O)σ

•
m

[z �→Nσ�
]

which is terminating by the outer induction hypothesis, since c(O) is a
proper subterm of M , σ is terminating by assumption, and Nσ�

is ter-
minating by the inner induction hypothesis. ��

There should be a simpler proof of this in the style of [Vri87, Stelling 1].

Remark. It was shown in [Ter96] that allowing the head of the right-hand side
to carry the label of the left-hand side (instead of a strictly smaller one) does not
affect validity of FFD in the case of Λ. By inspection of our proofs it will be clear
that the same holds for PRSs. (Formally, define (x.a(M))⊙

m
=def x.m+1(a(M •

m
))

and replace everywhere in the text • by ⊙.)

Applications. The applications of FFD to Λ in [Bar84, Section 14.2] of FFD scale
up to PRSs immediately.

1. A first consequence of FFD is the finiteness of developments theorem for
PRSs [Oos94], which will be discussed in the next section.

2. Another application is the standardisation theorem in [Bar84, Theorem 14.2.10],
roughly expressing that rewrite sequence can be sorted in an outside-in man-
ner. The proofmethod presented there is essentially abstract and can be lifted
to arbitrary (left-linear) PRSs.

3. Mapping the labels of Lévy’s labelled lambda calculus [Lév78] to their ‘nest-
ing depth’, yields Hyland-Wadsworth’s labelled lambda calculus (Λω). The
same holds for PRSs for a suitable extension of Lévy labelling [Oos96].

Many more applications should be around, for example we expect that FFD
implies finiteness of superdevelopments [Raa96], since intuitively a superdevelop-
ment from some term should be bounded by the labelling such that each symbol
is labelled by its distance to the root in the term.

Related work on FFD. Since TRSs, Λ, CRSs, ISs, and ERSs are all embeddable in
PRSs (see above), they enjoy FFD by our main result. For TRSs and Λ this was
known [Mar92, Daa80]. For the other systems we are aware of only two partial
results. In [Klo80, Remark II.6.2.7.16(i)] it is stated that FFD can be shown to
hold for orthogonal CRSs by adapting the methods presented there. However,
the method is highly technical and full of pitfalls (cf. [Mel96, Section 6.2.2] where
one of the proofsteps of [Klo80] was shown to be erroneous) rendering it not very
flexible (although we claim it can be adapted to PRSs). Moreover, the method is
confined to orthogonal CRSs in an essential way. To remedy all this, an axiomatic
approach to FFD was introduced in [Mel96] and it is conjectured there that the
axioms are verified by CRSs.

Remark. We conjecture that the axioms for FFD in [Mel96] are not verified by
PRSs. More precisely, we think his notion of contexte λ-clos is a second order
notion and expect that the axioms for these will not be verified by say third
order PRSs (cf. the remark on gripping below).

3 Finiteness of Developments

In this section we present two proofs of the finiteness of developments theorem
(FD) for PRSs [Oos94]. In the first paragraph, we show that FD is a conse-
quence of FFD. In the second paragraph we present a direct proof of FD via
reducibility [Tai67] and its specialisation to TRSs and Λ, yielding particularly
simple proofs of FD for those.

Consider a term and outline some left-hand sides of rules occurring in it (such
that outlines do not cross and do not contain one another). Then FD expresses
that every rewrite sequence contracting outlined left-hand sides only will always
terminate.

Example 4. Consider the TRS having rules a→ a, a→ b, and f(X) → g(X, X).
Examples of outline rewrite sequences starting from the outline term f (a) are:6

f (a) → f (b) → g(b, b), and

f (a) → g(a , a) → g(a, a) → g(a, b)

Note that the final term of the latter sequence is in outline normal form, but
not in normal form and that in this sequence different rules were applied to
‘residuals’ of the same outlined left-hand side a .
6 In examples, only heads of left-hand sides are outlined.

Definition 17. The outline version P =def (F ,R) of a PRS P =def (F ,R) is:

1. F is F extended with a symbol l of type θ for every l → r ∈ R of type θ.
2. For every rule l → r ∈ R, there’s a rule l → r ∈ R .

Analogous to unlabelling there’s an obvious notion of inlining having natural
properties, allowing for the usual definition of developments.

Definition 18. The inlining function † : T (F ,X)→ T (F ,X) is defined as the
homomorphic extension of the mapping l �→ l, for every l → r ∈ R.

Lemma 19. If M →P N , then †(M)→P †(N). ��

Definition 20. A development is the projection †(M1)→P †(M2)→P †(M3)→P
. . . of some outline rewrite sequence M1 →P M2 →P M3 →P

Below we will present two proofs of the fact that developments in PRSs are
always terminating, or stated differently that outline PRSs are terminating.

Theorem 21 (FD for PRSs). P-developments are terminating for any PRS
P.

FD via FFD. Finiteness of developments should follow from finiteness of family
developments, since in a development never newly created redexes are contracted
hence it suffices to use only labels {0,1}.

Definition 22. Define the mapping ω :T (F ,X)→T (Fω,X) as the homomor-
phic extension of the map l �→ l◦

1
.

Lemma 23. If M →P N , then ω (M•
0
) →+

Pω ω (N•
0
). (So, first fully label all

subterms by 0, then inline all left-hand sides and internally label them by 1.)

Proof. By induction on the generation of →P . ��

Remark. Since outlines were not allowed to cross or contain one another, there
are in general fewer developments starting from some term M , than there are
family developments obtained by projecting a labelled rewrite sequence starting
with ω (M). For orthogonal PRSs there’s no difference.

Proof (of Theorem 21). From Definition 20, Theorem 16, and Lemma 23. ��

FD à la Tait. In order to give a direct proof of Theorem 21, the following
strengthening of termination will be employed.

Definition 24. A term x.a(M) is reducible, if a(M)σ is terminating for reducible
σ (on a subset of x).

This is well-defined since the types of the terms in the substitution are smaller
than the type of the term. Note that reducibility implies termination (by taking
a substitution with empty domain) and is closed under rewriting.

Proof (of Theorem 21). We prove every outlined term x.a(M) is reducible by
induction on the pair (number of outlined symbols,number of head symbols) in
a term ordered by <×lex <. We need to show termination of a(M)σ for reducible
σ. Without loss of generality we may assume that x is the domain of σ since
variables are reducible. By induction hypothesis we know that x.Mi is reducible
for every Mi among M. The proof is by cases on a.

(var) If a is a variable xi among x and σ(xi) =def y.b(N), then a(M)σ =
σ(xi)(Mσ) = b(N)σ [y �→Mσ], which is reducible by induction hypothesis.

(fun) If a is a function symbol f , then termination follows from the induction
hypothesis on the arguments.

(rule) In a is an outline symbol l for some rule l → r of P, then since the
arguments are terminating by the induction hypothesis, an infinite rewrite
sequence must look like

l (Mσ) � l (M�) → r(M�) → . . .

But since r contains no outlined symbols, and M� is reducible by the induc-
tion hypothesis and closure of reducibility under rewriting, if r =def y.b(N),
then r(M�) = b(N)[y �→M�] which is reducible by the induction hypothesis,
hence terminating. ��

Specialising to TRSs and Λ, the following two short proofs of FD for those
systems are obtained.

Theorem 25 (FD for TRSs). R is terminating for every TRS R.

Proof. By Lemma 8 it suffices to prove termination of terminating instances of
right-hand sides of R , which follows by a trivial induction on outline terms. ��

Theorem 26 (FD for Λ). Λ is terminating.

Proof. One shows for all outline lambda terms M and terminating substitutions
σ, Mσ is terminating by induction on M , from which the theorem follows by
taking the identity for σ. The only non-trivial case is:

(λ) Consider a λ -redex of the form (λx.M)N . Since Mσ and Nσ are ter-
minating by induction hypothesis, an infinite rewrite sequence looks like

(λx.M
σ)Nσ � (λx.M

�)N � → M
�[x�→N �] → . . .

But M �[x�→N �] � Mσ [x�→Nσ] which is terminating by the induction hypoth-
esis. ��

Applications. Starting with [CR36], FD has been the cornerstone of confluence
proofs for orthogonal rewrite systems and our results can be used for that pur-
pose. Moreover, the FD proof given here is flexible and can be easily adapted to
the enhanced versions of FD occurring in literature (e.g. FD! expressing that all
maximal developments end in the same term [Bar84]). It is also possible to give
explicit realizers for our proofs, yielding proofs of FD�, i.e. (sharp) upperbounds
on lengths of developments [Vri87].

Related work on FD. Since the literature on FD is quite extensive, we only
discuss related work on higher order rewriting. In [Klo80, pp. 141–163] a first
proof of FD is presented for the class of CRSs, which is akin to the proof of
FD for ERSs in [Kha92]. Both proofs are based on the ‘memory method’ [Klo80,
Section II.4], which has its roots in the conservation theorem [Bar84, Theorem
11.3.4]. We remark that the obvious adaptation of this theorem to PRSs fails (cf.
the next example). [Oos94] introduces a modular approach to FD and presents
some conditions sufficient for FD, which are verified to hold for PRSs. The
method is based on explicitly manipulating residuals, i.e. a kind of realizers for the
proof à la Tait above, which is tedious. Finally, [Mel96] introduces an axiomatic
approach to FD, and the axioms are verified to hold for CRSs. Although the
method is appealing it does not apply directly to (third order) PRSs.

Example 5. Consider the outline version of the following (orthogonal) PRS

g(y.X(x.y(x))) → X(z.X(x.z))
f(x.Y (x)) → . . .

where the variable X is of (third order) type o→ o→ o, and the outline rewrite
step

g (y.(f (x.y(x)))) → f (x.(f (y.x))

Observe that the innermost f -redex in the resulting term is gripped [Mel96] by
the outermost one, i.e. contains a variable bound by the outer one. This implies
that axioms fd-3 and either acyclicity of gripping or axiom Z-1 in [Mel96, Ch. 3]
cannot hold at the same time.

It is not clear to us whether FD is a consequence of termination of rewrite
systems satisfying the so-called general schema [JO]. Although left-hand sides
of outline PRSs are algebraic, right-hand sides are not which makes the method
not directly applicable.

4 Conclusion

We’ve presented a modular proof of finiteness of family developments (FFD) for
the class of higher order pattern rewrite systems (PRS). The proof is modular in
the sense that higher order rewriting as studied here is rewriting modulo simply
typed λ-calculus and the proof can be viewed upon as reducing FFD for PRSs

to a similar question for the simply typed λ-calculus. A question is whether
FFD can be shown in an essentially different way, for example by an appeal to a
higher-order generalisation of Kruskal’s Tree Theorem (cf. [Mar92, Prop. 3.3.11]
for the TRS case). Another question is whether systems such as proofnets or
sharing graph rewrite systems (or people) enjoy FFD.

Acknowledgements Thanks to Zurab Khasidashvili, Femke van Raamsdonk, and
Roel de Vrijer for discussions and comments on the contents of this paper, and
to the referees for their constructive remarks.

References

[Aka93] Yohji Akama. On Mints’ reduction for ccc-calculus. In M. Bezem and J.F.
Groote, editors, Proceedings of TLCA’93, volume 664 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, 1993.

[AL94] Andrea Asperti and Cosimo Laneve. Interaction systems I: The theory of
optimal reductions. Mathematical Structures in Computer Science, 4:457–504,
1994.

[Bar84] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, revised edition, 1984.

[Chu33] Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33 and 34:346–366 and 839–864, 1932 and 1933.

[Chu40] A. Church. A formulation of the simple theory of types. the Journal of
Symbolic Logic, 5:56–68, 1940.

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions
of the American Mathematical Society, 39:472–482, January to June 1936.

[Cur30] H.B. Curry. Grundlagen der kombinatorischen Logik. Teil I, II. American
Journal of Mathematics, LII:509–536 and 789–834, 1930.

[Daa80] D.T. van Daalen. The language theory of Automath. PhD thesis, Eindhoven
University of Technology, 1980.

[Hyl76] J.M.E. Hyland. A syntactic characterization of the equality in some models
of the λ-calculus. Journal of the London Mathematical Society, 12(2):361–370,
1976.

[JO] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for exe-
cutable higher-order algebraic specification languages. in [LIC91, pp. 350–361].

[Kah93] Stefan Kahrs. Context rewriting. In M. Rusinowitch and J.L. Rémy, editors,
Proceedings of CTRS-92, volume 656 of Lecture Notes in Computer Science,
pages 21–35. Springer, 1993.

[Kha90] Z.O. Khasidashvili. Expression reduction systems. In Proceedings of I. Vekua
Institute of Applied Mathematics, volume 36, pages 200–220, Tbilisi, 1990.

[Kha92] Zurab Khasidashvili. The Church-Rosser theorem in orthogonal combinatory
reduction systems. Rapports de Recherche 1825, INRIA-Rocquencourt, Decem-
ber 1992.

[Klo80] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit
Utrecht, June 1980. Mathematical Centre Tracts 127.

[Klo92] J.W. Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,

Background: Computational Structures, pages 1–116. Oxford University Press,
1992.

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse
de doctorat d’état, Université Paris VII, 1978.

[LIC91] Proceedings of LICS 6, Los Alamitos, California, 1991. IEEE Computer Society
Press.

[Mar92] Luc Maranget. La stratégie paresseuse. Thèse de doctorat, Université Paris
VII, 6 Juilliet 1992.

[Mel96] Paul-André Melliès. Description Abstraite des Systèmes de Réécriture. Thèse
de doctorat, Université Paris VII, 20 Décembre 1996.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497–
536, 1991.

[MN94] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their con-
fluence. Technical Report I9433, Institut für Informatik, TU München, Novem-
ber 1994. To appear in TCS.

[NGV94] R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer. Selected Papers on Au-
tomath, volume 133 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1994.

[Nip] Tobias Nipkow. Higher-order critical pairs. in [LIC91, pp. 342–349].
[Oos94] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting.

PhD thesis, Vrije Universiteit, Amsterdam, March 1994.
[Oos96] Vincent van Oostrom. Higher-order families. In Harald Ganzinger, editor,

Proceedings of RTA-96, volume 1103 of Lecture Notes in Computer Science,
pages 392–407. Springer, 1996.

[OR94] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory re-
duction systems and higher-order rewrite systems. In Jan Heering, Karl Meinke,
Bernhard Möller, and Tobias Nipkow, editors, Selected papers of HOA’93, vol-
ume 816 of Lecture Notes in Computer Science, pages 276–304. Springer, 1994.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In Jens Erik Fenstad, edi-
tor, Proceedings of the Second Scandinavian Logic Symposium, pages 235–307,
Amsterdam, 1971. North-Holland.

[Raa96] Femke van Raamsdonk. Confluence and Normalisation for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, May 1996.

[Tai67] W.W. Tait. Intensional interpretations of functionals of finite type I. the
Journal of Symbolic Logic, 32(2):198–212, June 1967.

[Ter96] Jan Terlouw. Een terminatiebewijs voor reductie van gelabelde lambda ter-
men. Talk presented at TeReSe, Amsterdam, 10 December 1996.

[Vri87] Roelof Cornelis de Vrijer. Surjective Pairing and Strong Normalization: Two
Themes in Lambda Calculus. PhD thesis, Universiteit van Amsterdam, January
1987.

[Wad76] C.P. Wadsworth. The relation between computational and denotational prop-
erties for Scott’s D∞-models of the lambda-calculus. SIAM Journal on Com-
puting, 5:488–521, 1976.

[Wol93] D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1993.

This article was processed using the LATEX macro package with LLNCS style

