Acyclicity is Modular for Orthogonal TRSs

Acyclicity is shown to be a modular property of orthogonal first-order term rewriting systems
(TRSs), which answers a question raised by Klop. Here, a rewrite system — is acyclic if it doesn’t
allow non-empty cycles, where a cycle on t is a reduction sequence of the form ¢ —» t.

We assume knowledge of modularity, standardisation, tracing, and externality in term rewrit-
ing. To be specific, we freely make use of the notions and results in Sections 5.7.1, 8.5, 8.6.1,
and 9.2.3 of [3]. For more information on acyclicity we refer the reader to [1].

Lemma (Standard Prefix). In an orthogonal TRS, the collection of standard reductions ending
in a head step, is totally ordered by the prefix relation.

Proof. First note that any standard reduction ending in a head step can be uniquely decomposed
into a number of standard reductions such that only their final step is a head step. Thus to prove
the lemma, it suffices to show that for any term there is at most one reduction of the latter type.
We claim that a standard reduction of which only the final step is a head step is in fact an external
reduction. The result then follows since supposing p and 8 would be distinct such reductions from
t, we may assume w.l.o.g. that they already differ in their first steps, say ¢ and v, and by totality
of the textual order, we may assume w.l.o.g. that ¢ is to the left of ¢». Therefore, by externality
of ¢ and standardness of 0, ¢ must have a unique residual up to the final step of 6. But that final
step is a head step, so clearly it nests the residual of ¢, contradicting externality of ¢.

We prove the claim that any standard reduction of which only the final step is a head step, is
an external reduction by induction on the lengh of the reduction. If the length is 1, it is trivial.
Otherwise, we may write the reduction as ¢ - p for some step ¢. Since any suffix of a standard
reduction is standard, the induction hypothesis yields that p is an external reduction.

For a proof by contradiction, suppose that ¢ contracting a redex-pattern at position p were
not external. That is, a reduction  co-initial to p would exist, consisting of steps disjoint from
p and ending in a term allowing a step v at position g nesting p. By standardness of ¢ - p, the
position p is in the redex-pattern of the first step above p in p (if any). As p ends in a head step
such a step indeed exists, say it is ¢’ at position p’ above p, and let p’ be the prefix of p up to ¢'.

Now consider the projections 8 of 6 over p’, and p’ of p’ over 6. Since by construction neither
nor p’ contracts redex-patterns on the path from the root to p, neither do their projections, hence
the common reduct contains unique residuals of both 1) after p’ and of ¢’ after 8, respectively at
positions ¢ and p’ above p. Since the positions above p are totally ordered by the prefix relation,
either of ¢ and p’ is above the other. We prove that neither is possible.

If g is properly above p’, then the reduction 6 disjoint from p’ and ending in a term containing
a redex-pattern nesting p’, shows that ¢’ is not external, contradicting the induction hypothesis.
If p’ is above ¢, then since ¢ is above p and the redex-pattern at p’ overlaps p, the redex-patterns
of ¢’ and v must have overlap in the common reduct of 8 and p’, contradicting orthogonality. [

Theorem. Acyclicity is modular for orthogonal TRSs.

Proof. Let Ry W Ry, be the disjoint union of the orthogonal TRSs R; and R,. To prove that
acyclicity is a modular property is to prove that the underlying rewrite system —g,wr,,, Wwhich
we will abbreviate to —, is acyclic if both —x, and —x,, are. For a proof by contradiction, assume
that —z,wr, Would allow a non-empty cycle o on some term ¢, which we may w.l.o.g. assume to
be of minimal rank. Since the rewrite systems —x, and —x, are acyclic by assumption, the rank
of ¢t must be positive, say it is n + 1. By minimality, at least a single step in ¢ must contract a
redex-pattern in the top layer. Finally, w.l.o.g. we may assume ¢ to have a minimal number, say
m + 1, of principal subterms of maximal rank, i.e. of rank n.

Since rewriting does not increase the rank, the fact that o is a cycle entails that the rank of all
the terms along ¢ must be n + 1, so none of them has a principal subterm of rank greater than n.
Now, let p be the vector of positions of principal subterms of maximal rank in ¢. We claim that
for some index ¢ and some positive k, p; is its own origin when tracing p; back along the k-fold
repetition o of 0. The claim holds true by the Pigeon Hole Principle and the fact that a principal



subterm of maximal rank has another such subterm as origin.! Let s be the principal subterm of
maximal rank at the position p; given by the claim. We show that from ¢ we can obtain a term
t’ which also allows a non-empty cycle but has at most m principal subterms of rank n, yielding
a contradiction. The term ¢’ is obtained from ¢ by replacing a number of principal subterms, the
subterm s at position p; inclusive, by a term s’ the rank of which is less than that of s.

The replacement term s’ is defined as follows. If s allows some reduction having a destructive
step in its top layer, then as standardisation preserves this and a destructive step in the top layer
is a head step, the Standard Prefix Lemma yields some standard reduction p from s ending in a
destructive step, which is least among such in the prefix order, and we let s’ be the target of p.
Otherwise, we let s’ be a fresh variable. Either way, the rank of s’ is less than the rank of s.

To see which principal subterms, other than s at position p;, of ¢ are to be replaced by s’, we
proceed as follows. Consider tracing p; forward along an infinite repetition of ¢, where we only
let a position trace as long as it is the position of a principal subterm.? Then we let ];’ be the
collection of all descendants which occur in t after some repetititon of o, and let ¢ be obtained
from t by replacing all subterms at positions in ];’ by s’. Note that by the above, p; itself is among
the 17 , and that by construction the subterms of ¢ at positions in ];’ are reachable from s.

Next, we show the non-empty cycle ¢™ on t can be simulated by a non-empty cycle ¢’ on t/,
by simulating each step ¢:u — v by a reduction ¢':u’ — v’ depending on the relative positions of
the redex-pattern contracted in ¢ and the (pairwise disjoint) descendants of p7 in w. The invariant
is that u’ is obtained from u by replacing all subterms at positions of descendants of 1;’ by s’

e If ¢ contracts a redex-pattern outside, i.e. in the context of, the descendants ofp_; in u, then
we let ¢’ : v/ — v’ be obtained by contracting the same redex-pattern in u’.

e If ¢ contracts a redex-pattern inside some descendant of ];’ and ¢ is not destructive at its
top layer, then we let ¢’ : v/ — v/ be the empty reduction.

e If ¢ is a destructive step at a descendant p of 17 , then the subterm v, is reachable from s as
noted above, hence per construction of s’ and the Standard Prefix Lemma, there also exists
some reduction from s to vy, via s', thus using v’ = u'[s'], we may set ¢ : u'[s], = u/[v|p]p.

That ¢’ is non-empty follows from the fact that o contains at least one step in its top layer, which
will be simulated by exactly one step in ¢’ according to the first item of the simulation. To show
that ¢’ is a cycle, it suffices to show that each position p among ];’ in t traces back along o* to
some position in that set again, which is trivial per construction of the set. O

This complements the results on modularity of acyclicity in [2] based on the distribution of col-
lapsing and duplicating rules. Answering questions of Middeldorp, note the proof method also
yields modularity of absence of non-empty fized-point reductions of shape t — C[t] for orthogonal
TRSs, and neither non-overlappingness nor left-linearity can be omitted from orthogonality:

Example. Let R, either be the overlapping left-linear TRS with rules {g(z,y) — =, g(z,y) — y}
or the non-overlapping non-left-linear TRS with rules {g(x,y, z,2z) — x,g9(z,y,2,5(z)) = y, 00 —
S(c0)}. In either case, Ry is acyclic since applying a g-rule decreases the number of g-symbols.
Combining either with the acyclic orthogonal TRS R, {f(0,1,2) — f(z,z,x)} yields a cyclic
combination Ry W R, as can be seen from f(0,1,¢(0,1)) or f(0,1,9(0,1,00,00)), respectively.
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INote that the claim need not hold when fixing k to 1. For instance, ¢ might swap two principal subterms.
2Per construction positions trace statically; a redex-pattern overlapping one would be polychrome quod non.



