
Course notes on Braids

The purpose of these notes is to provide an example (braids) of an orthogo-

nal rewrite system which is completely distinct from orthogonal term rewriting

systems.

We study an equational system for braids [Art26]. Firstly, we present in

Section 1, an informal speci�cation which is subsequently formalised in Section 2

by means of an equational speci�cation h�; Ei. Whether two braids U and V

are equivalent, is an instance of the uniform word problem for this equational

speci�cation:

U =

E

V ?

This problem is dealt with in Section 5. The problem whether two braids U, V

can be `extended' by braids U

0

, V

0

such that they become equivalent:

9U

0

;V

0

UU

0

=

E

VV

0

?

is an instance of the uni�cation problem up to an equational theory. This

latter problem and its solution by means of rewriting techniques are extensively

discussed in Section 3.

1 Informal Speci�cation

1

This is a braid:

2

The braid consists of 6 strands which are braided. The strands start on the left

and extend to the right (in�nitely long and straight). If two strands cross ( ),

then the top one crosses over the bottom one. This we call a crossing . Doing

this with real strands makes clear that some braids can be transformed into one

another. That is, keeping the (eventual) end-point of the strands �xed, one can

be obtained from the other by manipulating the strands.

3

Two simple cases are

presented in Figure 1, where the arrows indicate how to manipulate the strands

to transform the left-hand braid into the right-hand braid and vice versa.

1

This section is based on [KV].

2

Like for knots, we will concentrate on a two-dimensional representation for three-

dimensional braids [Art47].

3

Such braids are said to be isotopic [Art47].
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�

�

Figure 1: Transformaties op vlechten

Exercise 1 Execute the transformations in Figure 1 on real strands (e.g. strands

of hair). For the �rst equivalence at least four and for the second equivalence at

least three strands are required.

Two braids are said to be equivalent if they can be transformed into each

other.

Example 2 Using the transformations in Figure 1, which of course can be ap-

plied anywhere in a braid, we can transform our example braid as follows (into

an equivalent one):

�

�

�

The arrows indicate how a braid is transformed into its successor.
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How can we determine whether two braids are equivalent?

4

The �rst step

to be taken is to formalise the intuitive notions of braid and equivalence. In

the most natural formalisation strands are represented as certain (continuous)

curves in R

3

[Art47]. However, as shown in [Art26, Boh47], it su�ces to �nd a

suitable (discrete) representation of sequences of crossings and transformations

on those, as shown in Figure 1. This will be the topic of the next section.

2 Equational Speci�cation

Consider a braid consisting of n+1 strands. The gaps between successive strands

can be numbered from 1 to n, like in the braid:

5

4

3

2

1

3 3 31 25

Then, the braid itself can be represented by listing the (numbers of the gaps

of the) crossings from left to right. The braid in the example is represented by

315233. Representing the transformations in Figure 1 in this way gives rise to

the transformations in Figure 2.

1

2

=

E

1 2 1 2 1 2

�

3

1 3 3 1=

E

�

1

2

Figure 2: Transformations on braidrepresentations

4

Cf. the same questions for knots.
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Example 3 Providing the transformations in Example 2 with their representa-

tions results in

�

�

�

1

3

2

4

5

=

E

=

E

=

E

1

1

1 1

1

3

3 3 3 3 3

3 3 33 33

2 2

2

2

2

2

4

5 5

55

Forgetting about the two-dimensional representation, we get:

315233 =

E

135233 =

E

153233 =

E

152323

where the underlinings indicate how a braid is transformed into its successor.

Hopefully the above is clear enough to make the following de�nition under-

standable.

De�nition 4 For every natural number n 2 N, h�; Ei is the equational spec-

i�cation (cf. [DII, Completion of equational speci�cations]) ofbraids with n

strands.

� � is an alphabet consisting of unary symbols i, the crossings, for every

1 � i < n, and a constant (nullary function symbol) o. Braids are closed

�-terms. We use U, V, W, : : : to range over braids.

� E is a set of schemata consisting of

1.

i(j(i(x))) = j(i(j(x)))

for every 1 � i; j < n such that ji � jj = 1 (the crossings apply to

three successive strands in the braid), and
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2.

i(j(x)) = j(i(x))

for all 1 � i; j < n such that ji� jj � 2 (the crossings apply to four

pairwise distinct strands).

5

Note that we have presented an equational speci�cation for `strings' (cf. [DI,

Sectie 2.7]. In the sequel we will employ the standardnotation for these (we've

already done so in Example 3). In particular, instead of 1(2(3(o))) we just write

123. A braid which doesn't contain any crossings is denoted by the empty string

o. The concatenation UV of braids U = i

1

(: : : (i

k

(o)) : : : ) and V is de�ned by

i

1

(: : : (i

k

(V)) : : : ).

Exercise 5 1. Show that equivalent braids have the same depth (cf. [DI,

De�nition 2.1.5]).

2. Show that the concatenation of two braids is a braid.

3. Demonstrate: U =

E

V en U

0

=

E

V

0

implies UU

0

=

E

VV

0

.

After formalising we will now try to solve the problems mentioned in the

introduction.

3 Uni�cation

The uni�cation problem for braids is described in an antropomorphical way

in [SS91, pp. 132-134]. A girl has two braids, each consisting of six strands

(see Figure 3). Her father starts braiding the left braid, and her mother starts

braiding the right braid. After some crossings they arrive at the situation in

the �gure and notice that the left and right braid are di�erent. Of course, they

want their daughter to have identical braids

6

, but how to achieve this?

7

Using

the formalisation of braids the parents' question can be rephrased as

9U;V 315233U = 42531V ?

We will use some variations on well-known rewriting techniques to solve this

problem. First we de�ne a TRS such that performing a rewrite step corresponds

to the application of a crossing.

De�nition 6 1. Consider the TRS h�; Ri, where R consists of the rules:

o! i(o)

for every 1 � i < n.

5

This schema is called syntactic isotopy in [Laf].

6

Symmetric braids would be nice as well, but wouldn't change the problem. (Why?)

7

Note that only one way of crossing strands is allowed, hence the parents cannot `undo'

what they have done. (Undoing corresponds to an equivalence on knots. Which one?

5



Figure 3: Girl (m/f) with two braids

2. The rewrite relation of the ARS hTer(�)=E;!i is de�ned by

U! V () 9U

0

;V

0

U =

E

U

0

!

R

V

0

=

E

V

The objects of the ARS are equivalenceclasses of braids which can be trans-

formed into each other. The question of the parents can now be rephrased again

as: Is ! conuent?

Exercise 7 1. Show that U�

R

UV for arbitrary braids U and V.

2. Show that if U

0

=

E

U, U! V, and V =

E

V

0

, then U

0

! V

0

.

3. Check that the parents' problem is indeed equivalent to the conuence prob-

lem for !.

Local conuence (WCR) is a necessary condition for conuence of ARSs.

Figure 4 shows that braiding is indeed locally conuent. We call the corre-

sponding diagrams as shown in Figure 4 elementary diagrams . (In a diagram a

dashed line indicates an empty rewrite sequence.)

6



i

i

j

i

j

ij

i

ji� jj = 1

j

j

ji� jj � 2

i i

Figure 4: Elementary diagrams (1 � i; j < n)

Note that in the elementary diagram in the middle, several rewrite steps

(both on the right and on the bottom 2 steps) are required to reach a common

reduct (iji =

E

jij). Because of this conuence does not follow directly from local

conuence; one could imagine that tiling the plane with elementary diagrams

can go on forever (cf. [DII, Figures 4.3,4,4]). Hence, it is a priori not clear

whether the ARS ! is conuent or not,

8

and a more detailed analysis is called

for.

Exercise 8 1. Check that the elementary diagrams in Figure 4 are indeed

conuent. (What do you have to check?)

2. Show that ! is conuent for 0 � n � 2.

3.1 Conuence by Completion (a few strands)

9

Consider a braid consisting of a few (three or four) strands.

Example 9 For the braids 1112 and 2221 a common reduct can be found by

tiling with the the elementary diagrams in Figure 4, as is shown in Figure 5.

The top side of that �gure is formed by the rewrite sequence 1112 and the left

side by 2221.

We observe that although the elementary diagrams in Figure 4 could in

principle give rise to an `in�nite descend', it doesn't in reality, at least not in

the reality of Figure 5. Looking for example at the 3

th

column, the diagrams

become smaller toward the bottom but this is `compensated for' by a growing

number of empty steps. In preparation for the general proof of conuence for

braiding, we �rst show this for braids having three strands.

Lemma 10 ! is conuent for braids consisting of three strands.

8

None of the standard conuence techniques (decreasing diagrams fails, why?) for ARSs

seems to apply.

9

This subsection is based on [Zan95].

7



1

1 1

1

1

1

1

2

2 2

2

1

1 1

1

111

2 2

1

2

1 2

2

2

2

2

1

1

2

2

2

2

2

2

2

2

1

1

1

1

2

1

2

1

2

2

2

1

1

2

2

2

1

2

1

2

1

1

2

2

1 1 1 2

1

2 1

1

2

21

2

Figure 5: Canonical tiling for the braids 1112 and 2221

Proof Extend R by the rules:

o ! 1(2(o))

o ! 2(1(o))

The rewrite relation of the ARS corresponding to these rules (obtained in the

same way ! was obtained) is denoted by ��!.

1. Since we have o!

R

1(o)!

R

1(2(o)) and o!

R

2(o)!

R

2(1(o)), conu-

ence of ! is equivalent to conuence of ��!.

2. It is easily checked that all `critical pairs' of ��! are convergent in at

most one step. Stated di�erently, ��! is subcommutative (CR

�1

) hence

conuent [DI, Theorem 1.1.8.(iv)].

Conuence of ! follows by combining both parts. 2
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The general proof idea is starting from R to adjoin rules to the ARS, until

all `critical pairs' converge in in at most one step, and conuence follows. With

an ugly word one could call this a `subcommu�cation', since like in Knuth-

Bendix completion rules are adjoined to the original rewrite system (without

changing the equational theory) until the rewrite system satis�es some property.

Subcommutativity in case of subcommu�cation and completeness in case of

completion. Like completion, commu�cation may fail to terminate (can it also

fail?).

Exercise 11 1. Does it make sense to try Knuth-Bendix completion here?

2. Explain what happens if a locally conuent and terminating TRS is com-

pleted.

3. Explain how the standard proof of conuence for orthogonal TRSs can be

viewed upon as being obtained by subcommu�cation.

In case n = 3 subcommu�cation stops after having adjoined two rules, as

shown in the proof of Lemma 10. For small n it is easy to check by computer

that subcommu�cation stops.

10

In the following (extended) example subcom-

mu�cation is carried out for braids having four strands.

Example 12 The TRS for braids with four strands, initially has three rules:

o ! 1(o)

o ! 2(o)

o ! 3(o)

Since all left-hand sides of the (generated) rules have form o, rules can be denoted

just by the string representation of their right-hand sides:

1;2;3

1. In the �rst iteration of the subcommu�cation process three critical pairs are

generated (up to symmetry and trivial critical pairs): h1;2i; h2;3i; h3;1i.

The pair h1;2i can be turned into an elementary diagram via 21 and

12 (the middle diagram in Figure 4). According to the process described

above, we adjoin 21 and 12 to the set of rules. Similarly, the critical

pair h2;3i entails adjunction of the rules: 32;23. The critical pair h3;1i

can be completed via 1 and 3 (the diagram on the right in Figure 4), not

entailing an extension of the set of rules. To conclude, in this iteration

we have adjoined the rules:

21;12;32;23

10

This solves the parents' problem in a practical sense.
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2. In the next iteration three times four critical pairs are obtained between

`old' and `new' (adjoined in the previous iteration) rules: hi;12i; hi;21i; hi;23i; hi;32i,

for 1 � i � 3. Tiling with the elementary diagrams in Figure 4 yields for

i = 1 the new rules:

2132;123;321

i = 2 doesn't yield any new rules. i = 3 yields (modulo E!) exactly

the same rules as i = 1. There are six more critical pairs between the

`new' rules themselves (up to symmetry and trivial critical pairs). Notic-

ing moreover that the conuence problem is symmetrical in 1 and 3 (i.e.

exchanging 1 and 3 everywhere preserves correctness of diagrams), we only

need to consider four critical pairs: h12;21i; h12;23i; h12;32i; h21;23i.

Only the second pair entails adjunction of a new rule 132. So, in this

iteration we have adjoined the rules:

2132;123;321;132

3. The third iteration leads to adjunction of the rules:

13;12321;2321;1213

4. The fourth iteration to adjunction of:

213;1321;1232;121;232

5. The �fth iteration:

12132;21321

after which the set of rules remains stable, i.e. all critical pairs are sub-

commutative.

The �nal set of (right-hand sides of) rules is:

1;12;123;1232;12321;121;1213;12132;13;132;1321

2;23;232;2321;21;213;2132;21321;3;32;321

Exercise 13 Check that all critical pairs in the �nal set of rules in both Lemma 10

and the preceding example are subcommutative (this is a lot of work in case of

the example).

To prove that subcommu�cation always terminates, it is convenient to de-

velop some theory �rst.

10



3.2 Conuence by Complete Developments

11

Is there any regularity in the generated sets of rules in Subsection 3.1? Staring

at the rules, we notice after some time that all have shape u

1

u

2

or u

1

u

2

u

3

,

where u

i

is a (possibly empty) pre�x of i : : :1, e.g. 32 is a possible instantiation

of u

3

.

Example 14 1. The rules in Lemma 10 all have shape u

1

u

2

:

b

1

b

;

b

1

b

2;

bb

2;

bc

21

where each time the hat (b:) covers crossings in the same descending se-

quence.

2. The rules in the preceding example all have shape u

1

u

2

u

3

(where we've

omitted steps u

i

):

b

1;

b

1

b

2;

b

1

b

2

b

3;

b

1

b

2

c

32;

b

1

b

2

d

321;

b

1

c

21;

b

1

c

21

b

3;

b

1

c

21

c

32;

b

1

b

3;

b

1

c

32;

b

1

d

321;

b

2;

b

2

b

3;

b

2

c

32;

b

2

d

321;

c

21;

c

21

b

3;

c

21

c

32;

c

21

d

321;

b

3;

c

32;

d

321

Since this regularity is not a coincidence, we present an inductive de�nition

of such sequences.

De�nition 15 Consider the ARS hTer(�)=E; ��!i of developments, where ��!

is generated (cf. De�nition 6) by the rules:

o ��! u

1

: : :u

n

where for every 1 � i � n, u

i

is a (possibly empty) pre�x of i : : :1. Denoting a

descending sequence from i to j by [i;ji, u

i

has shape [i;ji, for some 0 � j � i.

We call a development having shape [1;0i[2;0i[3;0i : : : [n;0i =

b

1

c

21

d

321 : : :

\

n : : :1

complete and it is denoted by n

�

(see Figure 8).

The notion complete development was dubbed fundamental word in [Gar69].

Complete developments in braids play the same rôle as Gross-Knuth-steps in �-

calculus and orthogonal term rewriting.

All this seems pretty complicated, but this is mainly caused by the (1-

dimensional) representation (of braids by words). Looking at the 2-dimensional

representation, a sequence having shape [i;ji represents a braid where the

(i + 1)

th

strand crosses its i � j neighbouring strands. For example, the se-

quence [4;1i = 432 can be interpreted as: cross the �fth strand over its three

neighbouring strands (to the left, see Figure 6). A development expresses that

all of the strands simultaneously cross a number of strands to their left. The

11

This subsection is based on [Gar69].
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Figure 6: Two developments: 432 and 21435 in 2D

right braid 42531 of the girl in Figure 3 is equivalent to 21435. This sequence

has the shape required for a development

c

21

c

43

b

5 (see Figure 6). On the con-

trary, the left braid of the girl is not (equivalent to) a development (why not?

can strands cross twice in a development?).

In the most natural representation of braids as curves in R

3

we can esh

out the intuition that the strands in a development cross simultaneously. A

simultaneous crossing is constructed as follows:

� Lead the strands straight from their starting points to points on a central

vertical axis, such that a strand to the left of another one ends up lower

on the axis.

� From these points on the central axis, the strands are led straight to an

arbitrary ending point.

Figure 7: Two developments: 432 and 21435 in 3D

Viewing the horizontal axis as representing time, progressing to the right, we

observe that all crossings really take place simultaneously. From this it is easy

to see (literally) why the left braid of the girl is not a development: the succes-

sive crossings 33 can not be applied simultaneously (there will be some � time

between them).

12

Note that the �gure is transformed into itself by a 180 degree rotation. In general:

developments are closed w.r.t 180 degree rotations.

12



�

Figure 8: A complete development (in two 2D representations)

12

We will prove that an arbitrary development can always be extended by

another development to a complete development, This implies conuence by

the so-called triangle lemma [Tak95].

Lemma 16 (Triangle) An ARS hA;!i has the triangle property, if there ex-

ists a map :

�

: A! A such that for every a; b 2 A we have:

1. a! a

�

, and

2. if a! b, then b! a

�

.

An ARS having the triangle property is conuent. 2

Exercise 17 1. Prove the triangle lemma.

2. Show that the second condition of the triangle property implies the �rst if

! is reexive.

3. How many non-equivalent developments can be constructed for braids with

n strands?

The following lemma is the key to conuence and shows that if a development

can be completed, then the same holds after `insertion' of some strand (see

Figure 9).

De�nition 18 The insertion [i;jiiu of [i;ji in the development u = u

1

: : :u

n

is

de�ned by: u

1

: : :u

i�1

[i;ji
~
u

i

: : :
~
u

n

. Here

^

[k;mi is de�ned by [k + 1; ~mi, where

~m = m if m < j, and ~m = m+ 1 otherwise.

13



Figure 9: Insertion of a strand [4;2ii214 = 21435

By de�nition, inserting a strand in a development yields a development

again.

Lemma 19 (Key) Let u = u

1

: : :u

n

and v = v

1

: : :v

n

be developments. Then

uv =

E

n

�

=) ([n+ 1;iiiu)([i;0iiv) =

E

(n+ 1)

�

for all 0 � i � n+ 1.

Proof

([n+ 1;iiiu)([i;0iiv) = ([n+ 1;iiiu)v

1

: : :v

i�1

[i;0i
~
v

i

: : :
~
v

n

= u

1

: : :u

n

[n+ 1;iiv

1

: : :v

i�1

[i;0i
~
v

i

: : :
~
v

n

=

E

uv

1

: : :v

i�1

[n+ 1;ii[i;0i
~
v

i

: : :
~
v

n

= uv

1

: : :v

i�1

[n+ 1;0i
~
v

i

: : :
~
v

n

=

E

uv

1

: : :v

i�1

v

i

: : :v

n

[n+ 1;0i

= uv[n+ 1;0i

=

E

n

�

[n+ 1;0i

= (n+ 1)

�

2

Theorem 20 Braiding is conuent.

Proof From the triangle lemma it su�ces to show that ��! has the triangle

property (why?). We show by induction on n, that if o ��! u, then u ��! n

�

.

(0) In the base case (one strand) u = 0

�

= o.

(n+ 1) In the induction case, the development can be written as [n+1;iiiu for

some 0 � i � n + 1. By the induction hypothesis it is known that there

exists a v such that uv =

E

n

�

. We conclude using the key lemma that

[i;0iiv is the development we are looking for. 2
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Exercise 21 1. Show that inserting a development in a development yields

a development.

2. Demonstrate the three equivalences of braids in the proof of the key lemma.

Example 22 The construction in the proof of Theorem 20 is illustrated in Fig-

ure 10 by means of the right braid of the girl in Figure 3. The �gure shows

how each time the insertion of a (dashed) strand in the top braid is compensated

for by the insertion of a (dashed) strand in the bottom braid, such that their

concatenation is a complete development.

Although Theorem 20 solves the parents' problem in general, the solution it

yields is usually far from optimal; the extensions contain many more crossings

than would have been necessary to �nd a common one.

Example 23 Consider the braids 1 and 3, both consisting of four strands. They

can be extended by 21321 and 12132 respectively, to complete developments. It

is more e�cient to do so via 3 and 1 respectively.

In the sequel, we show that tiling with elementary diagrams always yields a

solution and (among others) that the solution found in this way is minimal with

respect to the number of crossings. The former follows from orthogonality of

the braiding ARS. The latter follows from the fact that braiding does not have

syntactical accidents .

3.3 Orthogonality of Parallel Moves

13

We introduce an alternative representation of developments as certain relations,

called parallel moves , and show these relations to be orthogonal.

The representation is based on the following observations. At any moment

the strands in a braid are linearly ordered (from left to right). Such an order

we call a state. A parallel move is a relation on strands. Parallel moves induce

transformations on states, by viewing them as speci�cations of which strands

should cross (just like the usual representation of permutations in mathematics).

A union (t) and a residual (n) operation are de�ned on parallel moves. The

union of two parallel moves is the minimal common extension of the parallel

moves. The residual of a parallel move after another parallel move, is that `what

is left to be done' to reach the common extension, after `doing' the former.

Orthogonality expresses that these operations satisfy the following laws (see

Figure 14)

(u t v) n w = (u n w) t (v n w) (Arrow)

w n (u t v) = (w n u) n (v n u) (Prism)

13

This subsection is based on [Mel].
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Figure 10: Inductive completion of developments

for arbitrary parallel moves u, v, and w. This will be the main theorem proven

in this subsection.

Throughout this subsection braids will consist of n strands and the (names

16



of the) strands are f1; : : : ; ng.

Orderings of f1; : : : ; ng will sometimes be represented by enumerating the

strands in increasing (according to the ordering) order.

1 53421 53 6

421 53 6

42 6

4 62 31 5

Figure 11: Parallel moves as transformations on orderings

Example 24 The orderings < = 123456 and � = 315264 represent the initial

and �nal state of the right braid in Figure 11. Note that the (relational) di�er-

ence v = <�� between < and� consists of the pairs (1; 3); (2; 3); (2; 5); (4; 5); (4; 6).

These are exactly the pairs of crossing strands. This is no coincidence; for ex-

ample the di�erence u between the initial and �nal state of the left braid consists

of the pairs (2; 5); (3; 5); (4; 5) of crossing strands.

De�nition 25 A state is an irreexive, transitive, total relation on f1; : : : ; ng.

We use <, �,n to range over states. The parallel move from < to � is {�,

where {R = <�R is the (relative) complement of R with respect to <. We

employ u, v, and w to range over parallel moves. The e�ect [R] of R on < is

de�ned by {R [R

>

, where R

>

is the inverse of R.

14

Relative complements will always be relative to the order <, unless stated

otherwise. We also assume that if a complement of a relation with respect to

some other relation is taken, the former is a subrelation of the latter.

Parallel moves are by de�nition completely determined by their initial and

�nal state. This doesn't hold the other way around; for example, the empty

relation is a parallel move from any state to itself. We do have that a parallel

move together with either its initial or its �nal state, completely determines the

other state. In particular, the �nal state is determined by the e�ect [u] of a

parallel move u on the initial state < (as we will shortly see).

Exercise 26 What is the e�ect of the parallel move < on <?

14

Representing a relation by its incidence-matrix, inverting a relation coincides with

>ransposition of the matrix.
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63 51 2 4 62 435 1

t =

4 62 31 5

63 51 2 4 63 51 2 4 63 51 2 4

Figure 12: Union of parallel moves

1 5 432 6

63 51 4

n =

2 1 2 3 4 5 6

3 1 5 2 6 4 1 2 63

2 413 5

45

6

Figure 13: Residual of parallel moves

Example 27 Consider the parallel moves u and v in Example 24. Their re-

lational union u [ v consists of the pairs (1; 3); (2; 3); (2; 5); (3; 5); (4; 5); (4; 6).

This relation is not transitive (the pair (1; 5) is `missing') hence doesn't repre-

sent a parallel move. Only after adjoining the missing pair the parallel move

shown in Figure 12 is obtained. The reason for initial failure is intuitively clear:

if 1 crosses 3 and 3 crosses 5, then 1 has to cross 5. The other way around, 1

does not cross 6 since 1 crosses 2 nor 2 crosses 6 (see Proposition 32).

The residual v n u of v after u consists of the pairs (1; 5); (3; 5) (see Fig-

ure 13). Notice that concatenating the parallel moves u and v n u is possible and

yields a braid which is equivalent to the parallel move u t v.

De�nition 28 Let R and S be relations.

1. The union R t S of R and S is de�ned by (R [ S)

+

.

18



2. The residual S nR of S after R is de�ned by (R t S)�R.

3. S is contained in R, if S nR = ?. This is denoted by S v R. If moreover

R v S, then R and S are said to be permutation equivalent, denoted by

R � S.

The de�nition of the union operation t on moves can be understood in

the following way. In a minimal extension of two parallel moves u and v, at

least those strands have to cross which cross in either of them. This explains

the relational union [ in (u [ v)

+

. The only remaining problem is that the

relational union need not be transitive, hence need not represent a parallel

move. Taking the transitive closure is the minimal way to obtain a transitive

relation, explaining the �

+

in (u [ v)

+

. As it turns out (after some interesting

calculations) this su�ces to yield a parallel move.

The de�nition of the residual v n u of v after u by means of the expression

(u t v)� u can be seen as a literal translation of the sentence `that what is left

to be done to reach the common extension (u t v), after doing the former (u).

Proposition 29 (Semilattice)

R t R = R R nR = ?

R t? = R R n? = R

R t S = S t R ? nR = ?

R t (S t T ) = (R t S) t T

for relations R, S, and T (R needs to be transitive for idempotence and the

equations containing ? to hold).

Proof The properties of t follow easily from the corresponding properties of

[ and monotonicity of �

+

. The properties of n follow from the corresponding

properties of � and the properties of t. 2

We have to show well-de�nedness of the union and residual operations,

i.e. that applying them to parallel moves yields a parallel move, not just a

relation. To that end, we �rst present a more intrinsic characterisation of par-

allel moves. Note that {� = < \�

>

, because of totality of � and irreexivity

of <. This immediately implies irreexivity and transitivity of parallel moves.

This does not completely characterise parallel moves: the pair (1; 3) is irreexive

and transitive, but does not represent a move from 123. The problem is that 1

cannot cross 3 without 2 crossing either strand (cf. Example 27). To make the

latter intuition formal, the duals of some standard operations on relations are

required.

De�nition 30 (Dual) The dual {f of an m-ary function f on relations is

de�ned by ({f)(R

1

; : : : ; R

m

) = {(f({R

1

; : : : ; {R

m

)). The dual of closure and

transitive are called interior and scopic [Mel], respectively. The scopic interior

of a relation R is denoted by R

�

.
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Note that these notions (implicitly) depend on the relation with respect to

which the complement is taken. The scopic interior of the complement of a

relation is the complement of the transitive closure of the relation.

Exercise 31 1. Show that identity, inverse, subrelation and intersection are

the duals of complement, inverse, superrelation and union respectively.

2. Describe the duals of relation composition (decomposition) and union (of

moves).

3. Show that a relation R is scopic i� for all a < c < b:

a R b ) a R c or c R b.

(I.e. it formalises what we intended to formalise.)

The next proposition provides the alternative characterisation of parallel

moves as well as two properties which are essential for well-de�nedness of union

and residual and for the proof that braiding is orthogonal.

Proposition 32 Let R, S, and T be transitive relations.

1. If R is a subrelation of state <, then

R is a parallel move , R is scopic.

2. (R

�

)

+

= R

�

.

3. If {R � S \ T , then (R \ (S [ T ))

+

= R \ (S [ T )

+

.

Proof

1. ()) Suppose R = {� for some state �. Then {R =� is transitive

because of transitivity of �. Scopicness then follows from the de�-

nition.

(() We �rst show that [R] = {R [ R

>

is a state.

� If < is total, then {Q [Q

>

as well, for arbitrary Q.

� R

>

is a subrelation of the irreexive relation >.

� To show transitivity, it su�ces to show that all for compositions

of {R and R

>

are contained in [R]. The components {R and R

>

are both transitive by scopicness and transitivity of R respec-

tively. It remains to show that both `cross-compositions' {R ;R

>

and R

>

; {R are contained in [R]. W.l.o.g. we only demonstrate

the former. Let a ({R) c R

>

b.

(a = b) cannot occur.

(a < b) then a {R b because of transitivity of R,

(b < a) then b R a because of scopicness of R.
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It easily follows that R is the parallel move from < to [R].

2. Since the transitive closure of a relation contains the relation itself the

inclusion (R

�

)

+

� R

�

remains to be shown. ({R)

+

is the complement of

R

�

, hence if the inclusion wouldn't hold then there would exist a minimal

m, and a, b, and c such that a R

�

c R

�

b and a ({R)

m

b.

(1) Suppose a {R b. Because R

�

� R holds, we have a R c R b from the

hypothesis hence a R b by transitivity of R. Contradiction.

(>1) Suppose a ({R)

m

1

c

0

({R)

m

2

b for some c

0

, with 1 � m

1

;m

2

< m.

By totality of < we may w.l.o.g. assume that c < c

0

.

� If c ({R)

+

c

0

, then from c

0

({R)

m

2

b also c ({R)

+

b. Contradic-

tion.

� If c R

�

c

0

, then a R

�

c R

�

c

0

. From a ({R)

m

1

c

0

a contradiction

with the induction hypothesis is obtained since m

1

< m.

3. (�) (R \ (S [ T ))

+

� R

+

\ (S [ T )

+

= R \ (S [ T )

+

.

(�) Choose a minimal m, and a and b such that a R b and a (S [ T )

m

b,

but not a (R \ (S [ T ))

+

b.

(1) a (S [ T ) b leads linea directa to a contradiction.

(>1) Let a (S [ T )

m

1

c (S [ T )

m

2

b for some c, with 1 � m

1

;m

2

< m.

It su�ces to show a R c and c R b, since then the induction hy-

pothesis is applicable to both components. Suppose e.g. a {R c.

Then a (S \ T ) c (using the condition) and c (S [ T )

m

2

b implies

a (S [ T )

m

2

b because of transitivity of S and T , Contradiction

(with minimality of m). 2

Exercise 33 1. What happens in case of an in�nite number of strands?

2. Proposition 32.2 can be expressed cryptically as +�+ = +�. Dually it

holds that �+� = �+. Furthermore ++ = + hence �� = �. Give an

example exemplifying �+ 6= +�.

Lemma 34 Suppose u and v to be parallel moves from <, Then

1. u t v is the parallel move from < to [u t v], and

2. v n u is the parallel move from [u] to [u t v].

Proof

1. Since u t v clearly is a transitive subrelation of <, it su�ces by Propo-

sition 32.1 to show that it is scopic. u [ v is scopic being the relational

union of two scopic relations (dual to the fact that the intersection of two

transitive relations is transitive). Hence u t v = (u [ v)

+

is scopic by

(the dual of) Proposition 32.2, since it is the transitive closure of a scopic

relation.
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2. Unfolding the de�nition of `the parallel move from [u] to [u t v]' yields

({u [ u

>

) \ ({(u t v) [ ((u t v)

>

))

>

. Using u � u t v � < and totality of

< we �nd after some calculation that it is equal to (u t v)� u. 2

Orthogonality of a rewrite system is expressed by the so-called prism theo-

rem [Hue94]. The theorem roughly says that the residual of a parallel move after

another one, does not depend on the way either of them is split (see Figure 14).

w

u

u t v

(w n u) n (v n u)

= w n (u t v)

w

u

u nw

w n u

v n u

v nw

v

u t v

(u nw) t (v nw)

= (u t v) nw

Figure 14: Arrow and Prism

Theorem 35 (Arrow and Prism) Let u, v, and w be parallel moves from <.

(u t v) n w = (u n w) t (v n w)

w n (u t v) = (w n u) n (v n u)

Proof
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1. (u t v) n w = (u t v t w)� w

= ((u t w) [ (v t w))

+

� w

= (((u t w) [ (v t w))� w)

+

= (((u t w)� w) [ ((v t w)� w))

+

= (u n w) t (v n w)

2. (w n u) n (v n u) = ((w n u) t (v n u))� (v n u)

= (((w t u)� u) [ ((v t u)� u))

+

� (v n u)

= (((w t u) [ (v t u))� u)

+

� (v n u)

= (((w t u) [ (v t u))

+

� u)� (v n u)

= ((w t v t u)� u)� ((v t u)� u)

= (w t v t u)� (v t u)

= w n (u t v)

All equalities are consequences of the algebraic properties, except for the third

and fourth equalities where we've made use of Proposition 32.3. Note that w

and u are transitive because of (the dual of) Proposition 32.1. 2

Exercise 36 Turn the prism and arrow equalities into rewrite rules by orienting

them from left to right. Is the resulting TRS complete?

Proposition 37 1. v is a quasi-order,

2. u v u t v, and

3. u = v () u � v.

Proof

1. Reexivity follows directly from Proposition 29. Suppose u v v v w.

Then

u n w = u n (v t w) = (u n v) n (w n v) = ? n (w n v) = ?

by the prism theorem, hence v is transitive.

2. By the prism theorem and Proposition 29.

3. By unfolding the de�nition and by u = v () u � v & v � u. 2

3.4 Orthogonality of multi-derivations

15

In the preceding subsection we've seen that parallel moves are orthogonal. In

this subsection we will lift this result to sequences of parallel moves . The con-

struction employed is an instance of a canonical construction in [HL91], for

15

This subsection is based on [HL91, KV]
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constructing an orthogonal system for sequence of elementary steps (here: mul-

tiderivations) from an orthogonal system for elementary steps (here: parallel

moves).

De�nition 38 Multiderivations (U , V , W , : : : ) are of the following kind:

1. A zero multiderivation from < to <, denoted by 0

<

, or simply 0 if < can

be deduced from the context.

2. For every parallel move u from < to �, there is an elementary multi-

derivation hui from < to �.

16

3. For multiderivations U from < to � and V from � to n, there is a

composite multiderivation U ; V from < to �.

Multiderivations are considered up to the monoid-equations:

0 ; U = U

U ; 0 = U

(U ; V ) ;W = U ; (V ;W )

Let U , V , and W be multiderivations, and let u, v be parallel moves, all from

the same state.

1. The residual operation n is de�ned by:

U n 0 = U

0 n U = 0

hui n hvi = hu n vi

(U ; V ) nW = (U nW ) ; (V n (W n U))

U n (V ;W ) = (U n V ) nW

2. The union operation t is de�ned by U t V = U ; (V n U).

3. The equational theory obtained by adjoining the equation 0 = h?i, is de-

noted by =

?

. U is contained in V , U v V , if U n V =

?

0. They're

permutation equivalent, U � V , if V is contained in U as well.

The size of the zero multiderivation and of elementary multiderivations is 1, the

size of a composite multiderivation is the sum of its components, and the size of

the residual of some multiderivation after another one is the size of the former.

The size of U is denoted by jU j.

Note that it is not clear whether the residual operation is well-de�ned: e.g.

two clauses apply in case (U ; U

0

) n (V ; V

0

).

16

In general for this construction to work one needs to consider elementary multiderivations

up to (elementary) permutation equivalence. From Proposition 37 we learn that permutation

equivalence coincides with equality in case of parallel moves.
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Proposition 39 The residual operation on multiderivations is well-de�ned.

Proof Orient the monoid equations and the de�ning equations of the residual

operation from left to right. We will demonstrate that this yields a complete

TRS. Proving local conuence is matter of simple casuistics. We only check two

interesting cases of overlap between rules.

1. The term (U ; U

0

) n (V ; V

0

) can be rewritten in two di�erent ways:

! ((U ; U

0

) n V ) n V

0

! ((U n V ) ; (U

0

n (V n U))) n V

0

! ((U n V ) n V

0

) ; ((U

0

n (V n U)) n (V

0

n (U n V )))

and

! (U n (V ; V

0

)) ; (U

0

n ((V ; V

0

) n U))

! ((U n V ) n V

0

) ; (U

0

n ((V n U) ; (V

0

n (U n V ))))

! ((U n V ) n V

0

) ; ((U

0

n (V n U)) n (V

0

n (U n V )))

2. The term ((U ; V ) ;W ) n U

0

can be rewritten as

! ((U ; V ) n U

0

) ; (W n (U

0

n (U ; V )))

! ((U n U

0

) ; (V n (U

0

n U))) ; (W n ((U

0

n U) n V ))

and as

! (U ; (V ;W )) n U

0

! (U n U

0

) ; ((V ;W ) n (U

0

n U))

! (U n U

0

) ; ((V n (U

0

n U)) ; (W n ((U

0

n U) n V )))

This analysis shows that all critical pairs are conuent, hence the TRS is locally

conuent [DI, Lemma 2.4.9]. Proving termination is a bit more di�cult since

directly applying recursive or lexicographic path orders fails. We solve the

problem by the semantic labelling technique, where symbols in a term/rule may

be labelled with labels which are determined by the semantics of its arguments.

The size of a term is a correct semantics in the sense that it never increases by

the application of one of the rewrite rules of the TRS (it decreases only in case

of the rules for zero). Labelling the residual operator by the sum of the size of
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its argument, yields the following TRS.

0 ; U ! U

U ; 0 ! U

(U ; V ) ;W ! U ; (V ;W )

U n

x+1

0 ! U

0 n

1+x

U ! 0

hui n

2

hvi ! hu n vi

(U ; V ) n

x+y+z

W ! (U n

x+y

W ) ; (V n

y+z

(W n

z+x

U))

U n

x+y+z

(V ;W ) ! (U n

x+y

V ) n

x+z

W

It is easy to show this labelled TRS terminating using a lexicographic path order,

which implies termination of the original TRS. From local conuence and ter-

mination we have conuence (hence completeness) by Newman's Lemma ([DI,

Theorem 1.1.8.(ii)]). Finally, note that `residual-normal forms' are preserved by

application of the `monoid rules', hence (by completeness) residuals of multi-

derivations are well-de�ned. 2

Next we check that the laws for residual and union hold for their multi-

derivation incarnations.

Theorem 40 For multiderivations U , V , and W we have

U t 0 = U

0 t U = U

U n U =

?

0

U t U =

?

U

U v U t V

(U v V ) () (V =

?

V t U)

U t V � V t U

W n (V t U) = (W n V ) n (U n V ) (Prism)

(V t U) nW = (V nW ) t (U nW ) (Arrow)

(U t V ) tW = U t (V tW )

v is a quasi-order, and � an equivalence relation which is a congruence for ;

and n, hence for t.

Proof The �rst two equalities are simple. The third is proven by induction on

the structure of U , where in case of an elementary multiderivation the equality

h?i = 0 is needed. Idempotence of t follows from the third equality. The

following two equalities are implied by

U n (U t V ) = U n (U ; : : :) = (U n U) n : : : =

?

0 n : : : = 0 ,
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(U n V =

?

0) =) V = V ; 0 =

?

V ; (U n V ) = V t U , and

(V =

?

V t U) =) U n V =

?

U n (V t U) = (U n V ) n (U n V ) =

?

0

Commutativity of t by

(U t V ) n (V t U) = (U ; (V n U)) n (V ; (U n V ))

= ((U n V ) n ((V n U) n (V n U))) n (U n V )

=

?

0

Prism is obtained by unfolding the de�nitions. Unfolding of the de�nitions

learns that arrow follows from

U n (V tW ) = U n (W t V ) (Cube)

which is proven by induction on the sum of the size of U , V , and W . If either

U , V , or W is zero, then Cube follow from the �rst two equalities. If all three

are elementary multiderivations, then

hui n (hvi t hwi) = hui n (hvi n (hwi n hvi))

= (hui n hvi) n (hwi n hvi)

= h(u n v) n (w n v)i

= hu n (v t w)i

by the prism theorem (for parallel moves). By commutativity of t (for parallel

moves) the result follows symmetrically. If at least one of U , V , and W is a

composite multiderivation, then Cube follows by induction hypothesis:

1. If U = U

1

; U

2

, then

(U

1

; U

2

) n (V tW ) = (U

1

n (V tW )) ; (U

2

n ((V tW ) n U

1

))

= (U

1

n (W t V )) ; (U

2

n ((W t V ) n U

1

))

= (U

1

; U

2

) n (W t V )

2. If V = V

1

; V

2

, then

U n ((V

1

; V

2

) tW ) = U n (V

1

; (V

2

t (W n V

1

)))

= (U n V

1

) n (V

2

t (W n V

1

))

= (U n V

1

) n ((W n V

1

) t V

2

)

= U n (V

1

; ((W n V

1

) t V

2

))

= U n ((V

1

tW ) ; (V

2

n (W n V

1

)))

= (U n (V

1

tW )) n (V

2

n (W n V

1

))

= (U n (W t V

1

)) n (V

2

n (W n V

1

))

= U n (W ; (V

1

nW ) ; (V

2

n (W n V

1

)))

= U n (W t (V

1

; V

2

))
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3. W =W

1

;W

2

is left to the reader. 2

Associativity of t follows using arrow by

(U t V ) tW = U ; (V n U) ; (W n (U t V ))

= U ; (V n U) ; ((W n U) n (V n U))

= U ; ((V n U) t (W n U))

= U ; ((V tW ) n U)

= U t (V tW )

v is a quasi-order by the above, analogously to Proposition 37. Being the

intersection of two quasi-order � is an equivalence relation. It is a congruence

as well by simple pedipulation of the above. Suppose U � U

0

en V � V

0

. Then

(U n V ) n (U

0

n V

0

)

=

?

((U t U

0

) n (V t V

0

)) n ((U

0

t U) n (V

0

t V ))

=

?

((U n (V t V

0

)) t (U

0

n (V t V

0

))) n ((U

0

n (V

0

t V )) t (U n (V

0

t V )))

=

?

0

by applying Arrow and Cube. Congruence for ; and t are just as simple. 2

Summarising: we've constructed an orthogonal system for multiderivations

by lifting an orthogonal system for parallel moves in a canonical way. In the

next subsection parallel moves are related to developments, multiderivations to

braids, and permutation equivalence to braid equivalence.

3.5 Conuence by Orthogonality

Of course, we want to relate the notion of a parallel move as introduced above

to ordinary braidings. We show that, �rstly, every ordinary crossing can be

viewed as a parallel move, and secondly, that parallel moves can be developed

17

as a sequence of crossings, transforming permutation equivalence into braid

equivalence. Subsequently, the correspondence between parallel moves and de-

velopments is lifted to a correspondence between multiderivations and braids.

De�nition 41 Let u, v be parallel moves from < = a

1

: : : a

n

.

1. u is elementary if it is not the union of (non empty) parallel moves. Scop-

icness implies that u has shape f(a

i

; a

i+1

)g (a crossing of two neighbouring

strands). i is called the crossing associated with u.

2. A development of the parallel move u is

(?) the trivial braiding o if no elementary move is possible, or

17

The notion of a development in Subsection 3.2 will turn out to be a special (inductively

de�ned) case of this new notion of development.
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(:?) a braiding iu, where i is the crossing associated with an elementary

move v such that v v u, where u is a development of the parallel

move u n v from [v]. This can be viewed as a state transition

(<; u) 

i

([v]; u n v)

from a state < where u still has to be developed into the state [v]

where v has been applied and u n v remains to be developed.

3. The ARS hTer(�)=E; ��!i of developments is generated by:

o ��!

u

u

where u is a development of an arbitrary parallel move u.

4. A development of a multiderivation U is

(0) o if U = 0,

(h�i) a development of u if U = hui, and

(;) U

1

U

2

if U

i

is a development of U

i

and U = U

1

; U

2

.

In Item 3 of the de�nition the symbol ��! is overloaded (cf. De�nition 15).

This is harmless, as will be shown in Proposition 51. Finally note that we may

assume w.l.o.g. that < = 1 : : : n in the de�nition of a development, since the

de�nition is parametric in the names of the strands (their order is the only thing

that matters).

Example 42 1. Consider the parallel move (1; 2); (1; 3) from 123. The pair

(1; 3) is not a parallel move, but the pair (1; 2) is (why?) and f(1; 2)g n f(1; 2); (1; 3)g = ?.

The residual of (1; 2); (1; 3) after (1; 2) is the elementary move (1; 3) from

213. The development associated with doing (1; 2) followed by (1; 3) is 12.

This is the only development possible here.

2. The parallel move (1; 2); (1; 3); (2; 3) from 123 has two developments: 121

and 212.

Exercise 43 1. Compute the parallel move f(i; i+ 1)g t f(j; j + 1)g and its

developments, for i = j, i = j + 1, and i > j + 1, (from 1 : : : n). Cf. these

to Figure 4.

2. A development of a multiderivation has been de�ned here as a sequence of

developments of its constituting parallel moves. Show that developments

are preserved by the monoid equalities, but not by permutation equiva-

lence. Try to �nd a notion of family development which is preserved by

permutation equivalence and such that all family developments are �nite

(cf. [Oos97b]).

Lemma 44 Let u be a development of the parallel move u from <.
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1. u is a pre�x of some development of u t v, for every parallel move v from

<. If moreover u is �nite, then it is a su�x of a development of v n u.

2. u is �nite ( is terminating).

Proof

1. For the �rst part it su�ces to show that if the conditions of the lemma

hold, and if it is possible to do i according to u, then i is also possible

from u t v and we end up in a state which satis�es the conditions again.

Let w be the elementary move from < with which i is associated.

(a) w v u v u t v, where the second equality follows by the prism theo-

rem,

(b) In the same way u n w is a parallel move from [w], (u t v) n w is

one as well. Furthermore, the latter can be written as a union

(u n w) t (v n w) because of the arrow theorem. Hence after doing

the move i the conditions are satis�ed.

For the second part it su�ces to note that

v n u = v n (w t u)

= (v n w) n (u n w).

by the choice of w and the prism theorem. Since by repeated application

it follows that

v n u = (u t v) n u

= (: : : ((u t v) n w

1

) : : : n w

m

) n (: : : (u n w

1

) : : : n w

m

)

= (: : : ((u t v) n w

1

) : : : n w

m

)

where w

1

, : : : ,w

m

is the elementary move associated with the development

u. The last equality follows from the fact that u is a development of u.

2. Let R, S be relations and R transitive, such that S t R = R. Then

R n S = (R t S)� S = R� S, hence R n S consists of less pairs than R

(if S is not empty). This directly implies that the length of a development

of a parallel move is bounded by the number of pairs in it. 2

Note that the �rst part of the lemma is abstract in the sense that it holds for

an arbitrary orthogonal system, hence also for systems where developments are

not necessarily �nite

18

Hence to prove �niteness de�nitions had to be unfolded.

Proposition 45 ! � ��! ��.

18

Think of an in�nite number of strands, or in�nite terms.
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Proof We demonstrate both inclusions.

1. A crossing i is the development of the elementary move (a

i

; a

i+1

) from

a

1

: : : a

n

.

2. By de�nition of developments as sequences of crossings and Lemma 44,

guaranteeing that those sequences are �nite. 2

Applied to TRSs, this proposition asserts that to show conuence of !, it

su�ces to show that ��! has the diamond property. In case of braids, conuence

itself is a weak statement, since it only asserts that the starting and ending of

two braids agree with one another, but nothing about how this was achieved.

The �rst part does imply that we can associate a multiderivation with every

braid, which is constructed from the sequence of elementary parallel moves.

Lemma 46 1. Let u and v be parallel moves from <, with developments

u, v. There exist developments u

0

and v

0

of v n u and u n v, such that

uu

0

=

E

vv

0

.

2. Let U and V be multiderivations from <, with developments U and V.

There exist developments U

0

and V

0

of V n U and U n V , such thatUU

0

=

E

VV

0

.

Proof (see Figure 15).

i

^
u

v

00

v

1

v

2

U

1

U

2

V

1

V

2

j
^
v

u

0

u

00

^

v

0

V

U

0

U

00

Figure 15: Equivalence of developments

1. This is proven by well-founded induction on the initial state (<; u t v),

ordered by  

+

.
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� If u = ?, then u = o. Furthermore u n v = ? and v n u = ?, we can

take u

0

= v and v

0

= o.

� The case v = ? is dealt with symmetrically.

� If neither of the parallel moves is empty, then u = i
^
u and v = j

^
v, for

crossings i and j associated with the elementary parallel moves i and

j such that i v u and j v v. Furthermore
^
u is a development of u n i

and
^
v is a development of v n j. i and j are the �rst crossings of the

developments of i t j, say iu

00

and jv

00

. By the induction hypothesis

there exist development v

1

of i n v and

^

v

0

of v n (i t j) such that

^
vv

1

=

E

v

00

^

v

0

. Another application of the induction hypothesis yields

developments u

0

and v

2

such that u

00

^

v

0

v

2

=

E

^
uu

0

. De�ning v

0

=

v

1

v

2

entails

vv

0

=

E

j
^
vv

1

v

2

=

E

jv

00

^

v

0

v

2

=

E

iu

00

^

v

0

v

2

=

E

i
^
uu

0

=

E

uu

0

2. This is proven by induction on the size of U t V which is naturally ordered.

� If either is the zero multiderivation, then it is not hard to �nd suitable

U

0

and V

0

.

� If both are elementary multiderivations, then we conclude using the

�rst part.

� If at least one of U and V is a composite multiderivation, say U =

U

1

; U

2

, then we reason as follows. By the induction hypothesis there

exist developments U

00

and V

1

of V n U

1

and U

1

n V respectively,

such that U

1

U

00

=

E

VV

1

. Another application of the induction hy-

pothesis yields developments U

0

and V

2

of V n U and U

2

n (V n U

1

),

such that U

2

U

0

=

E

U

00

V

2

. De�ning V

0

= V

1

V

2

entails

VV

0

=

E

VV

1

V

2

=

E

U

1

U

00

V

2

=

E

U

1

U

2

U

0

=

E

UU

0

We are now ready to reap the fruits from our hard labour and present an

alternative proof of conuence of braids.

Proof [of Theorem 20] Every pair of braids U and V can be viewed as develop-

ments of certain multiderivations U and V . According to Lemma 46 there exist
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developments U

0

and V

0

such that UU

0

=

E

VV

0

. 2

We can even say more.

Corollary 47 If the multiderivations associated with two braids are permuta-

tion equivalent, then the braids are equivalent.

Proof Since and because: if the multiderivations U and V associated with

the braids U and V are permutation equivalent, then by de�nition U n V =

?

0

and V n U =

?

0. Adjoining the rule h?i ! 0 to the TRS in the proof of

Proposition 39 preserves completeness. Furthermore, the application of rewrite

rules containing 0 (two monoid rules and the adjoined rules) can be postponed,

implying that if if for some multiderivation W it holds that W =

?

0, then

W = h?i ; : : : ; h?i, hence o is the only development of W . According to

Lemma 46 there exist developments U

0

and V

0

o� U n V and V n U , such that

UU

0

=

E

VV

0

. From U

0

= o = V

0

we deduce U =

E

V. 2

The reverse holds as well.

Lemma 48 If two braids are equivalent, then the multiderivations associated

with the braids are permutation equivalent.

Proof Since permutation equivalence is an equivalence relation, it su�ces to

show this fore an elementary braid equivalence, i.e. the replacement of one side

of an elementary diagram by another one. So suppose U = W

1

U

0

W

2

, V =

W

1

V

0

W

2

, where (U

0

= V

0

) 2 E. The multiderivations U and V associated

with these braids can be written as: U = W

1

; U

0

;W

2

and V = W

1

; V

0

;W

2

,

where U

0

and V

0

are the multiderivations associated with U

0

and V

0

. We

calculate as follows:

U n V = (W

1

; U

0

;W

2

) n (W

1

; V

0

;W

2

)

=

?

(U

0

;W

2

) n (V

0

;W

2

)

=

?

W

2

nW

2

=

?

0 2

Theorem 49 Two braids are equivalent i� their associated multiderivations are

permutation equivalent.

Proof Direct consequence of Corollary 47 and Lemma 48. 2

The theorem suggest that residual and union operations on braids can be

de�ned via the residual and union operations on the associated multideriva-

tions. The only remaining problem is that multiderivations can be developed

into braids in many di�erent ways. In the next subsection suitable (canonical)

developments are constructed by means of tiling.
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Exercise 50 Give a de�nition of the notion of a family development (cf. Ex-

ercise 43) such that

U =

E

V () U � V

holds for all multiderivations U and V and their family developments U and V.

To conclude this subsection we show, as promised, that our overloading of

the de�nition of a development is harmless.

Proposition 51 Developments in the sense of De�nition 15 are development

in the sense of De�nition 41.

Proof The proof is by induction on n

(0) The only braid consisting of one strand, o, is a development of ?.

(n+ 1) Consider the braid u[n+ 1;ii, where by induction hypothesis u is a

development of a parallel move u from 1 : : : n+ 1 to a

1

: : : a

n+1

. De�ne

a parallel move u

0

= u [ f(a

m

; n+ 2) j i < m � n+ 1g from 1 : : : n+ 2 to

a

1

: : : a

i

n+ 2a

i+1

: : : a

n+1

. 2

Exercise 52 1. Complete the proof of Proposition 51.

2. Compute the relation corresponding to a complete development on a braid

consisting of 4 strands.

3.6 Orthogonality of Braiding

19

The tiling process which has been intuitively described above, is formalised

as a TRS. Subsequently, this TRS is employed to de�ne residual and union

operations on braids, such that braiding is orthogonal. The construction is

abstract in the sense that well-de�nedness of the tiling process only depends on

�niteness of developments of parallel moves and on canonicity of tilings (because

elementary diagrams are canonical).

De�nition 53 (Tiling TRS) Conversions consist just like braidings of sequences

of crossings 1, : : : ,n, but this time inverse crossings 1

>

, : : : ,n

>

are allowed as

well. The tiling rules have, for arbitrary 1 � i; j � n, left-hand side i

>

(j(x))

and right-hand side:

x if ji� jj = 0

j(i(j

>

(i

>

(x)))) if ji� jj = 1

j(i

>

(x)) if ji� jj � 2

For a given conversion x, x# denotes the `positive part' U of the tiling normal

form U(V)

>

of x.

19

This subsection is based on [Klo80, Oos94].
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Note the correspondence between the tiling rules and the elementary dia-

grams of Figure 4 and moreover that the application of a tiling rule indeed

corresponds to the `tiling' by an elementary diagram.

Proposition 54 The tiling-normal forms have shape i

1

: : : i

m

j

>

1

: : : j

>

l

.

Proof Trivial. 2

Since crossings can be viewed as transformations on states (as remarked

above), at any moment in a conversion (i.e. for any subterm) the state is com-

pletely determined by the initial state or even by an arbitrary state somewhere

in the conversion. For this reason states are left implicit in the proof of the

following theorem.

Theorem 55 The tiling TRS is terminating.

Proof The global idea is that tiling any `square' in Figure 16 terminates by

�niteness of developments, hence the complete process terminates by �niteness

of the number of squares. To formalise this informal description, a labelled

(1; 6) (1; 5) (1; 4) (1; 3) (1; 2) (1; 1)

(2; 1)(2; 2)(2; 3)(2; 4)

(3; 4) (3; 3) (3; 2) (3; 1)

(4; 1)

Figure 16: Termination of tiling

version of the tiling TRS is introduced. We show that every tiling can be lifted

to a well labeled tiling, and that well-labeled tilings are terminating.

1. A label is a quadruple consisting of two coordinates (natural numbers) and

two parallel moves, called the domain and the image.

(a) The alphabet of the labelled tiling TRS consists of the constant o,

labelled crossings, an labelled inverse crossings. A labelled conversion

is good , if for every occurrence of a crossing in the conversion it holds

that

i. the image is the residual of the domain after the crossing (and

mutatis mutandis for the inverse).
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ii. for the coordinates (r; c) and (r

0

; c

0

) of the crossing and its suc-

cessor, we have

� r � r

0

, and if r = r

0

then the image of the former is contained

in the domain of the latter,

� c

0

� c, and if c

0

= c then the domain of the latter is contained

in the image of the former.

(b) Consider arbitrary labelled crossings i

>

(r;c;v;u)

and j

(r

0

;c

0

;u

0

;v

0

)

. Let r̂

and ĉ be the minima of r and r

0

, and c and c

0

respectively. Then there

exists a labelled tiling rule with left-hand side i

>

(r;c;v;u)

(j

(r

0

;c

0

;u

0

;v

0

)

(x))

and right-hand side:

x if ji� jj = 0

j

(r̂;ĉ;v̂;w)

(i

(r̂;ĉ;w;y)

(j

>

(r̂;ĉ;y;w

0

)

(i

>

(r̂;ĉ;w

0

;v̂

0

)

(x)))) if ji� jj = 1

j

(r̂;ĉ;v̂;w)

(i

>

(r̂;ĉ;w;û

0

)

(x)) if ji� jj � 2

where the domains and images are obtained by taking residuals `along

the sides of the diagram', starting with û = u t u

0

.

We �rst show that good conversions are preserved under reduction. The

part of the conversion that remains �xed is still good. Furthermore, the

domains and images created by the application of a labelled tiling rule

satisfy the clause for goodness. Finally, consider a `created succession' of

two crossings having labels (r

1

; c

1

; u

1

; v

1

) and (r

2

; c

2

; u

2

; v

2

).

� If both crossings are preserved ones, then the �rst (`collapsing') tiling

rule must have been applied, hence r

1

� r

2

and c

2

� c

1

follow from

goodness of the original conversion and transitivity of �. Further-

more, if e.g.. the �rst coordinates are the same, then the �rst coor-

dinates in the rule are the same and v

1

v u

2

follows by goodness of

the original conversion and transitivity of v.

� If w.l.o.g. the second crossing is a created one, then (r

2

; c

2

; u

2

; v

2

) =

(r̂; ĉ; v̂; w), and r

1

� r̂, ĉ � c

1

follow from the de�nitions of r̂, ĉ and

goodness of the original conversion. Furthermore, if e.g. the �rst

coordinates are the same, then v

1

v v v v̂.

Good conversions are terminating. Measure such a conversion by the mul-

tiset of all labels occurring in it. Order labels by the lexicographic product

of the order on coordinates and the order on parallel moves, where coor-

dinates are ordered by the product ordering of the usual order > on the

naturals,  

+

. Conversions are ordered by the usual multiset extension

of the ordering on the labels. By [DI, Theorem 4.5.5] this ordering is

terminating, since both > (naturally so) and  

+

(Lemma 44) are termi-

nating. This measure is decreased (in this ordering) by the application of

any tiling rule. Since either the coordinates of the created labels (of the

crossings) are (all) smaller than the coordinates of the removed labels, of

they are (all) the same. In the latter case it must hold by goodness of the
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original conversion and by Proposition 37 that the image of the �rst of

the removed crossings is the same as the domain of the second one, that

is, û = u = u

0

. Per construction the created labels are reachable by state

transitions (via  -steps) hence smaller.

We still need to check that every tiling can be lifted to a well-labelled

tiling. Obviously, the crossings of a (�nite) conversion can be labelled,

since the �rst coordinates can be labelled in increasing order, and the

second coordinates in decreasing order, (see Figure 16), and every crossing

is associated with and (elementary) move having the empty relation as

residual. Moreover, tiling steps can always be lifted to labelled tiling

steps, since for every labelling of the left-hand side of a tiling rule, there

exists a right-hand side which is a labelling of the right-hand side of the

tiling rule, per construction. 2

This proof is abstract in the sense that it only uses orthogonality and �nite-

ness of developments. One of its consequences is that tiling is terminating

for orthogonal TRSs. Since the tiling TRS has no critical pairs, tiling is lo-

cally conuent ([DI, Lemma 2.4.9]) and terminating, hence complete. The next

proposition expresses that residuals can be computed by tiling.

Proposition 56 1. Let u and v be developments of parallel moves u and v.

If u

0

(v

0

)

>

is the tiling-normal form of u

>

v, then u

0

and v

0

are develop-

ments of the parallel moves v n u and u n v.

2. LetU, V be braids, and U , V their associated multiderivations. IfU

0

(V

0

)

>

is the tiling-normal form of U

>

V then U

0

and V

0

are developments of

V n U and U n V .

Proof [Sketch]

1. The proof is analogous to the second item. In addition we note that

there exists a well-labelled version of u

>

v where all coordinates are (0; 0),

which implies that the `residuals' obtained in the end, are themselves

developments of parallel moves.

2. Associate with a well-labelled version of U

>

V a graph, such that its edges

correspond to state transitions. Tiling with an elementary diagram trans-

forms a conversion into a new conversion and with it we can associate an

extension of the graph (see Figure 17). In the initial situation we have:

(a) All paths in the graph between two edges are permutation equivalent,

(b) Every path from the root to some vertex is contained in U t V .

These properties are preserved by tiling (use Arrow for the latter property)

hence hold in the �nally constructed diagram. By construction, U as well

as V is contained in a (every) path W from the root to the (unique) end
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�
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�

�

ED

�

Figure 17: Equivalence by Tiling

point in the �nally constructed diagram. HenceW � U t V , implying the

proposition. 2

Now, the residual of a braid after another braid is de�ned as a function taking

as input the (uniquely existing) �nal diagram obtained by the tiling process.

De�nition 57 Let U and V be braids. Let V

0

(U

0

)

>

be the tiling-normal form

of V

>

U. We de�ne

1. the residual of U after V by U nV = V

0

,

2. the union of V and U by V tU = V(U nV), and

3. U is contained in V, U v V by U nV = o. U is equivalent to V, U � V,

if V is contained in U as well.

Note that the tiling TRS is complete, hence the operations and notions are

well-de�ned. Combined with the correspondence between braid equivalence and

permutation equivalence of the preceding subsection, the proposition implies

that braiding is orthogonal.

Theorem 58 Braiding is orthogonal.

Proof n, t, o, and v have the properties required for orthogonality as de-

scribed in Subsection 3.3, by the fact that the corresponding properties hold for

the corresponding operations on multiderivations. 2
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U

V

U nV

i

0

1

j

0

4

j

0

3

j

0

2

j

0

1

i

0

3

i

0

2

Figure 18: Residual by tiling

Exercise 59 1. Computing residuals can be formalised by the following resid-

ual TRS. The alphabet of the residual TRS is the alphabet of the tiling

TRS, extended with binary function symbols A and L, and unary function

symbols R, �, and �

>

. The rules of the residual TRS are the rules of the

rules od the tiling TRS extended with

A(x; y) ! L(y;R(x)) �(�

>

(x)) ! x

L(o; y) ! �(y) R(o) ! �

>

(o)

L(i(x); y) ! L(x; i

>

(y)) R(i(y)) ! i(R(y)))

�(i(x)) ! i(�(x)) i

>

(�

>

(x)) ! �

>

(x)

For braids U and V U n V is de�ned to be the residual-normal form of

A(U;V).

Show that the residual TRS does what it name suggest it does.

2. Find braids U and V such that tiling results in the diagram in Figure 18.

Compute the normal form of A(U;V) for these braids, using the residual

rules.

Orthogonality of braiding expresses that braid equivalence is a congruence

relation with respect to the residual operations. We can say more.
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Theorem 60 For arbitrary braids U, V and W:

U n o = U o nU = o

U n (VW) = (U nV) nW (VW) nU = (V nU)(W n (U nV))

Proof We only present the proof of (VW) nU = (V nU)(W n (U nV)).

V

W

U

U nV

(U nV) nW

V nU

W n (U nV)

Uo

o nUU n o

Figure 19: Residual equalities

See Figure 19.

(VW) nU = (U

>

(VW))#

= ((U

>

V)W)#

= (((V nU)(U nV)

>

)W)#

= (V nU)(W n (U nV))

where for the third equation symmetry of elementary diagrams was employed. 2

The theorem expresses that computing the residual of a braid after another

braid via tiling, does not depend on the way in which either of them is split.

Exercise 61 1. Formalise the proof of the theorem.

2. Find three braids such that if the braids are put on the three 3D axes, tiling

of the cube `deadlocks' (i.e. the sides of neighbouring diagrams cannot be

made to match).

The theorem holds for arbitrary orthogonal rewrite systems (having canon-

ical elementary diagrams).

Example 62 TRSs (and the �-calculus) do not possess canonical elementary

diagrams, a priori. For example, consider the TRS with one rule D(x) !
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x + x. The residual of D(1) after the rewrite step D(D(1)) ! D(1) + D(1)

consists of both D(1)-redexes. These can in principle be contracted in arbitrary

order, resulting in two (equivalent) elementary diagrams. Of course, we can

choose some �xed order thereby restoring canonicity. [Bar84] chooses to contract

redexes from left to right (in the �-calculus).

3.7 Conuence by Completion (the sequel)

We've seen in Subsection 3.1 that the subcommu�cation process terminates for

braids having 3 or 4 strands. Here we extend this result to braids having an

arbitrary number of strands.

Theorem 63 Subcommu�cation of the R rules ends in a conuent rewrite sys-

tem for braids.

Proof Theorem 55 and Proposition 56 imply that tiling two developments ends

in two braids which are developments. That is, right-hand sides of adjoined rules

are always developments. Since developments are �nite, and since at any mo-

ment there are only �nitely many possibilities for applying a crossing (n for a

braid having n+ 1 strands), the subcommu�cation process ends. Conuence

follows by Proposition 56. 2

4 Minimality

In the preceding section we have shown braiding to be orthogonal. In particular,

we've shown that for arbitrary braids U and V, their union U tV is a braid

extending both. Does there exist a shorter braids extending both U and V. In

this subsection we show that U tV is the shortest common extension (up to

equivalence). Consider an arbitrary common extension U V

0

=

E

V U

0

of U

and V. We compute:

(U nV) nU

0

=

E

U n (V U

0

)

=

E

U n (U V

0

)

=

E

(U nU) nV

0

=

E

o nV

0

=

E

o

From this it is easy to deduce that V U

0

extends U tV:

V U

0

=

E

V U

0

o

=

E

V U

0

((U nV) nU

0

)

=

E

V (U

0

t (U nV))

=

E

V (U nV) (U

0

n (U nV))

=

E

(U tV) (U

0

n (U nV))
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Since equivalent braids have the same length, we are done.

Note that, except for the length argument, this computation goes through

for arbitrary orthogonal rewrite systems. The following example shows that for

TRSs the union operation yields a common extension which is minimal in a

somewhat strange way.

Example 64 Consider the one-rule orthogonal TRS I(x)! x and the two (dif-

ferent) steps I(I(x))! I(x). The union of these steps is I(I(x)) ��! x where

both redexes are contracted simultaneously. Notice that a common reduct (I(x))

had been reached already.

The example shows the existence in term rewriting of so-called syntactical acci-

dents ; there exist rewrite sequences which di�er from each other in an essential

way, but which do have the same initial and �nal term. The di�erence between

braiding and term rewriting is that in case of braiding a rewrite sequence can

be reconstructed from the initial and �nal terms, which is unique up to equiv-

alence. This does not hold true in general, for TRSs as witnessed by the step

I(I(x))! I(x) in the example. We call a TRS having this reconstruction prop-

erty extreme. Although not all orthogonal TRSs are extreme, every orthogonal

TRS can be embedded in an extreme TRS in a natural way, by enriching the

TRS with an `action-stamping' mechanism [L�ev78, Mar92, Oos96].

5 The Uniform Wordproblem

The uniform wordproblem for braids, i.e. the question whether two braids are

equivalent, is not very interesting from a decidability point of view: equivalent

braids consist of the same number of crossings (why?) hence all possibilities can

be enumerated, This is not very e�cient. Orthogonality of braiding yields an

e�cient procedure for checking equivalence of braids: U and V are equivalent

i� U nV = o and V nU = o, i.e. if tiling results in two empty braids.

Exercise 65 1. Prove decidability of the uniform wordproblem.

2. Determine the complexity of checking equivalence both by enumerating all

possibilities and by tiling.

6 Conclusion

Techniques from rewriting theory can be applied to solve every day (non-trivial)

problems.

Exercise 66 Of course, there are countless variations possible on the theme of

braiding. One can thank of e.g. (in increasing order of number of generators

and axioms, see Figure 20):

1. The strands are on a cylinder (the last strand is a neighbour of the �rst

strand) There's an extra generator, 0, for expressing a crossing of the �rst

and last strand.
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Figure 20: Four variations on braids

2. Real braids: a crossing can be both `right over left' as well as `left over

right' Every generator i has an inverse i

>

.

3. Two neighbouring strands may be joined. There are extra generators i, i,

ni, en =i, for top, bottom, moving to left, and moving to right, respectively.

4. etc.

Present axioms for these variations, pose interesting problems and solve them.

Most formal methods concentrate on terms. For (an attempt at) two and

higher-dimensional rewriting techniques Lafont [Laf92] can be consulted.
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