
Sorting vs. Braids vs. The Substitution Lemma vs. λxc

Knowledge of the book ‘Term Rewriting Systems’, Terese, CUP, 2003 is assumed.

Sorting Sorting is the process of stepwise transforming a source order into a target order on
the same objects. It is swapping-based if in each step the order changes for exactly one pair of
objects. In this note, the rewrite properties of swapping-based sorting are studied. To that end,
swapping-based sorting is formalised as a rewrite system. Its objects, called multi-swaps, will be
pairs of relations which can be thought of as the ‘current order’ and the ‘remaining inversions’.

Definition 1. A state is a total irreflexive transitive relation on the set of positions of a finite
string. A multi-swap is a pair consisting of a state < and a transitive scopic subrelation T of it,
where T is scopic if p < o < q and p T q imply p T o or o T q. A swap is a multi-swap (<, p̂q),
where p̂q is given by p p̂q q, implicitly assuming p adjacent to q, i.e. there is no o with p < o < q.

The two coherence conditions on the ‘remaining inversions’ T in the definition are due to Melliès
(RTA 2002). They can be thought of as discrete axiomatisations of continuous phenomena:1

Imagine three guys p, o, and q standing in a row, o being the man in the middle, which start
walking column-wise. Then scopic captures that for p and q to cross paths, either p or q has to
cross paths with o. Dually, transitive captures that if both p and q cross paths (exactly once!)
with o, then p and q have to cross paths. Without these conditions the ‘remaining inversions’
could be incoherent. Imagine for example, someone requesting to sort a list [p, o, q] saying that
both pairs p, o and o, q are already in the correct order, but p and q are not. Or, for another
example, that p, q are in the correct order, but both p, o and o, q should be swapped? As a first
sanity check, bijections between orders, the big-step semantics of sorting so to speak, are modeled
as multi-swaps.

Lemma 2. For any states <, � on the same set of objects (<,<−�) is a multi-swap.

Proof. By T the relation < − �, which captures the idea that the ‘remaining inversions’ are
exactly those pairs in < which are not (yet) in the correct order w.r.t. �, is abbreviated. It must
be verifyied that (<,T ) is a multi-swap. Clearly T is a subrelation of <. To show T is transitive,
suppose p T o T q. Then p < o < q, and q � o� p by totality of �. Thus p < q and q � p
by transitivity twice, and one concludes p T q from totality of �. To show T is scopic, suppose
p < o < q and p T q. Then p < q and q � p. By totality of �, either p� o or o� p. In case the
former, q � o by transitivity, hence o T q. In case the latter, p T o.

Below this modeling is shown correct. The relation < −� can be visualised by drawing twice,
below each other, the set of objects on a line, ordered from left to right according to < and �,
respectively. Connecting each pair of copies of the same object by a straight line, the relation
T consists of all pairs in < whose paths cross. The top-down symmetry in the visualisation
immediately suggests the equality (< −�) = (�−>), which indeed holds as one easily verifies
by calculation. For any state <, (<, ∅) and (<,<) are respectively its empty and full multi-swap
(note < is scopic). The empty multi-swap corresponds to a bijection from < to itself, and the full
multi-swap to a bijection from < to >. As a second sanity check, it is proven that any coherent
collection of ‘remaining inversions’ must contain a pair of swappable, i.e. adjacent, objects.

Lemma 3. Every non-empty multi-swap contains at least one swap.

Proof. Let (<,T ) be a non-empty multi-swap. Define the diameter of a pair p < q to be the length
n of the longest sequence o1 < . . . < on with p = o1 and on = q. The diameter is well-defined by
finiteness, transitivity and irreflexivity of <. The result follows by well-founded induction on the
diameter of pairs in T , using that the latter is scopic.

1One may think of the Jordan Curve Theorem.
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Viewing a multi-swap as consisting of a string (the state) to be sorted accoding to a set of rewrite
rules of the form axb→bxa (the remaining inversions), the lemma expresses that always some rule
of the form ab→ ba is applicable. Next, the effect of a swap is defined. On the current order it
does what it says; it swaps the order of the objects involved. W.r.t. the remaining inversions it is
simply removed; it has been done.

Definition 4. The residual of (<,T ) after (<, p̂q) is ((<− p̂q) ∪ q̂p, T − p̂q).

Observe that if T is contained in S for multi-swaps (<,T ) and (<,S), then the residual of the
former multi-swap after some swap is contained in the residual of the latter after the same swap.
Next, the soundness of the notion of coherence w.r.t. swapping is checked: the remaining inversions
should still be coherent after performing a swap.

Lemma 5. The residual of a multi-swap after a swap contained in it, is a multi-swap.

Proof. Let (�, S) be the residual of the multi-swap (<,T ) after the swap (<, p̂q). Totality and
irreflexivity of � follow easily from the same for <. To show transitivity of �, let p′ � o� q′.
Then p′ < o < q′, hence p′ < q′ by transitivity of < and thus p′ � q′ unless p = p′ and q = q′.
However, the latter cannot both hold as then o would contradict p and q being adjacent. Similarly
transitivity of S follows from transitivity of T . Finally, the only interesting case (up to symmetry)
in showing that S is scopic is if q � p� o and q S o. Then p T q T o, so p T o and p S o.

Soundness of swaps having been verified sorting is modeled as rewriting.

Definition 6. Let ↪→ be the swapping ARS having multi-swaps for objects and, for any multi-swap
and swap contained in it, a step from the former to its residual after the latter.

As one would hope and expect, sorting by swapping always terminates in a unique result.

Theorem 7. ↪→ is complete.

Proof. By Newman’s Lemma, termination and local confluence suffice to conclude completeness.
Termination of ↪→ follows noting that the number of pairs in the second component of a multi-swap
decreases in each step. To show local confluence, consider steps induced by distinct swaps (<, p̂q)
and (<, ûv). If q = u then first swap p̂v on both reducts, and then q̂v on the former and p̂q on
the latter, to reach a common reduct. Otherwise, swap ûv respectively p̂q.

Note that if ↪→ would have been modeled as a string rewriting system in the way suggested above,
checking local confluence reduces by the Critical Pair Lemma to checking joinability of the critical
pair corresponding to q = u in the proof of the theorem. Finally, correctness of the earlier modeling
of bijections can be both expressed and proven.

Lemma 8. For any states < and �, (�, ∅) is the normal form of the multi-swap (<,<−�).

Proof. By � = (<− (<−�)) ∪ (<−�)−1, which just expresses that performing the inversions
necessary to go from < to � indeed yields � when applied to <.

That is, sorting w.r.t. some order results in a sorted result. One may observe that the swapping
ARS ↪→ is even balanced weak Church–Rosser (BWCR) in the sense of Toyama (LICS 1991), since
any peak←↩ ; ↪→ can be joined in a balanced way by either zero (for the same step), one (↪→ ;←↩ for
non-overlap), or two (↪→;↪→;←↩ ;←↩ for overlap) steps. Toyama’s results for BWCR ARSs not only
imply that to prove termination of ↪→ it would have sufficed to prove normalisation, i.e. to prove
that some swapping strategy terminates, but more interestingly that all reductions to normal form
have the same length, i.e. that all swapping-based sorting algorithms have the same (quadratic)
complexity; a full multi-swap on n objects always takes n(n− 1)/2 steps. In the following final
lemma of this section, it is shown how from consecutive multi-swaps their composition can be
constructed.
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Lemma 9. If T , S are consecutive multi-swaps from state < to � to ≪, then (T − S−1) ∪
(S − T−1) is one from < to ≪.

Proof. The idea of the definition is that all inversions are taken which are done in either multi-swap
minus the ‘double’ ones. Correctness is calculated as follows.

(T − S−1) ∪ (S − T−1)
= ((<−�)− (�−≪)−1) ∪ ((�−≪)− (<−�)−1)
= ((<−�)− (≪−�)) ∪ ((≫−�)− (>−�))
= ((<−≪)− (�−≪)) ∪ ((≫−>)− (�−>))
= ((<−≪)− (�−≪)) ∪ ((<−≪)− (<−�))
= (<−≪)− ((�−≪) ∩ (<−�))
= <−≪

using the equality suggested above and some relation algebra, in particular the cube axiom of
residual systems for the third, and disjointness of T and S for the last equality.

By disjointness of T and S, the lemma, and the idea expressed in its proof, it follows that the
parity of the sum of the cardinalities of T and S is the same as that of the direct multi-swap.
This is the ordered version of the classical fact that the parity of all decompositions of a given
permutation into transpositions is always the same, even or odd; here it is equal to the parity of
(the cardinality of) the multi-swap between the two states.

Braids Braids arise by splitting the notion of swapping into over crossing and under crossing.
That is, it now matters whether the one object should be crossed over or under the other. Suppose
first a would have been crossed over b in [a, b] resulting in [b, ab], where the subscript is ad hoc
notation to indicate a crossed over b. Then for braids, continuing with crossing b under a results
simply in [a, b], whereas crossing b over a results in [ab, ba], which are different results. One can
try it with two strands; over crossing twice (a twist) is topologically different from first over and
then under crossing; the latter is just the identity. In this note, the interest will be in situations
where only one form of crossing, say over crossing, is allowed, i.e. in the so-called braid semi-group.
Replacing in the previous section everywhere swap by (over) cross its results can be lifted without
effort, in particular the crossing ARS ↪→ is complete. But more can be said.

Theorem 10. The ARS ↪→ is topologically confluent, i.e. any pair of co-initial reductions can
be completed into a confluence diagram having topologically equivalent sides.

Proof. By Lemma 7, noting that both sides of each of the three local confluence diagrams employed
in its proof are topologically equivalent. In fact, the two non-trivial local confluence diagrams are
the usual equations defining braid equivalence; the case that q = u corresponds to Reidemeister’s
slide move for knots, and to the Yang-Baxter equation in physics (yes, there are many models in
physics).

Whereas two consecutive sorts (multi-swaps) can always be combined into a single one (the com-
position of two bijections is a bijection again) as shown in the previous section, this is not the case
for multi-crossings as witnessed by the example above; a twist cannot be represented as a single
multi-crossing simply because it would require crossing the same strands twice, something which
is not possible in a multi-crossing. This leads to the following definition of braids as sequences of
multi-crossings, i.e. as ‘repeated sorting’.

Definition 11. The braid ARS has states as objects and, for any ↪→-reduction sequence ending
in the empty multi-crossing, a step from the first component of the source to that of the target.

Theorem 12. The braid ARS is topologically confluent.
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Proof. It suffices to show the braid ARS has the Triangle Property. For any state, let its full
state be the (unique) target of the braid step induced by its full multi-crossing. Now consider
an arbitrary braid step induced by some multi-crossing on the state. Since the multi-crossing is
contained in the full multi-crossing, the sequence of crossings corresponding to the former can also
be applied to the full multi-crossing, as observed above. By completeness of ↪→, the target of that
reduction sequence can be further reduced to the full state.

The Substitution Lemma The results in the previous sections are mild reformulations of
known results. In this section the methods developed in the previous sections to show topological
confluence of braids are extended to show confluence of a rewrite system derived from the so-called
Substitution Lemma of the λ-calculus:

M [x:=N ][y:=P ] = M [y:=P ][x:=N [y:=P ]]

which arises from the critical pair between the two β-reduction steps which are possible from the
term (λy.(λx.M)N)P . In explicit substitution calculi the substitution operation is reified into
an explicit substitution operator, transforming the equality into an equation having syntactically
distinct left- and right-hand sides. Thus, in order to regain confluence, the equation should be
‘completed’. The system studied here arises by choosing to orient the equation from left to right,
i.e. as

M [x:=N ][y:=P ]→M [y:=P ][x:=N [y:=P ]]

The question is whether this single rule is confluent. Since the λ-calculus syntax is rather unwieldy
here, the confluence problem is solved for the following simpler syntax, still capturing the essential
difficulties.

Definition 13. Let S be the substitution TRS having a unary operator [ ] and an associative
binary operator denoted by juxtaposition, and the single rule ς : [x][y]→ [y][x[y]].

The proof of confluence of this substitution TRS will follow the same structure as the proof of
topological confluence of braids in the previous section. The underlying idea is that both crossing
two strands and interchanging two substitutions can be thought of as ‘commutation with history’,
and the latter is an extension of the former because it allows nested substitutions, resulting in
‘rewriting history’ so to speak. The notion of residual to be defined below, will need the preliminary
concept of the descendant relation ςp for an S-step at position p. It is induced in the standard
way (see Terese) for TRSs, by the descendant relation for the rule ς indicated by its labeling
[x]i[y]i+1→ [y]i+1[x[y]i+1]i. Note ς−1

p is functional and surjective.

Definition 14. Let < be the relation on positions given by piq < pj, for all p, q, and i < j, and
let <t be its restriction to the positions of term t. A multi-swap is a pair consisting of a term t
and a transitive scopic left-convex subrelation T of <t, where T is left-convex if piq T pj implies
T relates (each position on) the path between pi and piq (inclusive) to pj. A swap is a multi-swap
(t, p̃i) where p̃i is given by pi p̃i p(i + 1).

For any term t, (t, ∅) and (t, <t) are respectively its empty and full multi-swap (note < is trivially
irreflexive, transitive, and left-convex, and <t is moreover finite and scopic, for any term t).

Lemma 15. Every non-empty multi-swap contains at least one swap.

Proof. Let (t, T ) be a non-empty multi-swap. By non-emptiness, by T ⊆ <t ⊆ <, and by definition
of <, piq T pj for some p, q, and i < j. Therefore, by T being left-convex, also pi T pj. Since
pi <t o <t pj implies by definition of < that all three positions are at the same level, i.e. o = pk
for some k, one may conclude as in Lemma 3, noting the positions are adjacent iff j = i + 1.

Definition 16. The residual of (t, T ) after (t, õi) is (s, (ς−1
oi ; T ; ςoi) ∩ (<s − õi)), if t→S,oi s.

One can think of this definition of residual of T in linear algebraic terms as the ςoi-conjugate of T
w.r.t. spaces (of positions) t and s.
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Lemma 17. The residual of a multi-swap after a swap contained in it, is a multi-swap.

Proof. Let (s, S) be the residual of the multi-swap (t, T ) after (t, õi). By definition of S as an
intersection with (a subrelation of) <s, the former is a subrelation of the latter.

To show transitivity of S, suppose p (S ; S) q. This implies p (ς−1
oi ; T ; ςoi) q, as ςoi ; ς−1

oi is the
identity relation and T is transitive by assumption, and also p <s q by transitivity of <s. Finally,
if p õi q were to hold, then p = oi and q = o(i + 1), entailing o(i + 1) T oi contradicting T ⊆ <t.

To show S is left-convex, suppose pjq S pk, so j < k must hold since S ⊆ <s. It suffices to
show that if some prefix v of pjq is related by S to pk, then so is its predecessor u if it is a suffix of
pj. To that end, let ςoi relate p′, v′, and u′ to pk, v and u, respectively. Then, by definition of S
it holds v′ T p′, and by the form of ς, u′ is seen to be the predecessor of v′ unless u = o(i + 1) and
v = o(i + 1)i′ with i′ the maximal successor (the position of the nested [y]). In case the latter,
u′ = oi T o(i + 1) = v′ T p′, hence by transitivity of T , u′ T p′ so u S pk. In case the former, let
q′ ςoi pj. Then, as before, q′ is a prefix of u′ unless pj = o(i + 1) and u = o(i + 1)i′. In case the
latter, u′ = o(i + 1) = pj < pk = p′, hence as u′ is a prefix of v′, u′ T p′ by left-convexity of T , so
u S pk. In case the former, q′ and p′ are on the same level unless pj = o(i + 1)j′ for some j′ < i′

and pk = o(i + 1)i′. In case the latter, q′ = o(i + 1) and since pi is a prefix of pij′ = q′ which is
a prefix of u′, one has u′ T p′ by left-convexity of T , so u S pk. In case the former, q′ is to the
left of p′ unless pj = oi and pk = o(i + 1). In case the latter, p′ = oi and o(i + 1) = q′ is a prefix
of v′ which is a prefix of u′ contradicting p′ <t u′ hence p′ T u′. In case the former, u′ T p′ by
left-convexity of T , so u S pk.

To show S is scopic, suppose p <s o′ <s q and p S q. Let ςoi relate p′, o′′ and q′ to p, o′

and q, respectively, so p′ T q′ by definition of p S q. If p′ <t o′′ <t q′ either p′ T o′′ or o′′ T q′

since T is scopic. If p′ T o′′, one concludes p S o′ from p (ς−1
oi ; T ; ςoi) o′ and p <s o′, since

p õi o′ would entail o′′ = oi and p′ = o(i + 1) contradicting p′ <t o′′. The case o′′ T q′ follows
symmetrically. It remains to consider situations in which either p′ <t o′′ or o′′ <t q′ does not hold.
If p′ <t o′′ does not hold, then o′′ = oi, o(i + 1) is a prefix of p′, and o(i + 1) = o′ < q = q′. Hence
o(i + 1) T q′ follows from left-convexity of T for p′ T q′, using that the greatest common prefix
of p and q is a prefix of o by o′ <s q, hence the same as the greatest common prefix of p′ and q′,
which is therefore a prefix of o(i + 1). Since also oi T o(i + 1), transitivity of T yields o′′ T q′, so
o′ S q. If o′′ <t q′ does not hold, then q′ = oi, and o(i + 1) is a prefix of o′′. Note in fact it must
hold o′′ = o(i + 1), since otherwise o(i + 1) would be a prefix of p′, contradicting p′ T q′. Thus
p′ T q′ = oi T o(i + 1) = o′′, hence p′ T o′′ by transitivity of T , so p S o′.

Lemma 18. ↪→ is complete, for ↪→ defined as in Definition 6.

Proof. By Newman’s Lemma, termination and local confluence suffice to conclude completeness.
Termination of ↪→ follows by measuring a term t by the multiset of lengths of all paths of
maximal diameter in <t. By the Critical Pair Lemma, to show local confluence it suffices to
consider the critical pair arising from ([x][y][z], {(1, 2), (2, 3), (1, 3)}). It is confluent as can be
seen by enriching both [x][y][z] ↪→ [x][z][y[z]] ↪→ [z][x[z]][y[z]] ↪→ [z][y[z]][x[z][y[z]]] and [x][y][z] ↪→
[y][x[y]][z] ↪→ [y][z][x[y][z]] ↪→ [z][y[z]][x[y][z]] ↪→ [z][y[z]][x[z][y[z]]] with relations.

Thus, the main result is obtained.

Theorem 19. S is confluent.

Proof. Completely analogous to the proof of Theorem 12.

The TRS S is easily seen to be isomorphic to combinatorless combinatory logic, where terms
consist only of applications and variables, having the S-less S-rule wxy→ wy(xy) as only rule.
By the theorem, combinatorless combinatory logic is confluent.
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λxc Extending Bloo and Rose’s λx-calculus with the substitution lemma rule of the previous
section, yields the so-called λxc-calculus.

Definition 20. The λxc-calculus is given by the rules

(λy.X)Y → X[y:=Y ]
x[y:=Y ] → x

y[y:=Y ] → Y

(X1X2)[y:=Y ] → (X1[y:=Y ])(X2[y:=Y ])
(λx.X)[y:=Y ] → λx.X[y:=Y ]

X[y:=Y ][z:=Z] → X[z:=Z][y:=Y [z:=Z]]

It will turn out handy to split he set of rules as follows. The first rule is the Beta-rule, the next
four are the x-rules, and the final rule is the c-rule. Any λxc-term can be reduced to substitution
normal form, i.e. x-normal form, yielding a term without explicit substitutions, i.e. an ordinary
λ-term. This is the basis for Hardin’s so-called interpretation method to reduce confluence of
λ-calculi with explicit substitutions to (the well-known) confluence of the ordinary λ-calculus,
which also works for λx. At the same time, this shows that the c-rule is equationally superfluous
and thus confluence of the λxc-calculus follows from that of the λx-calculus. However, it might
be advantageous to have c as an optimisation rule. For one, whereas in the λx-calculus it may
require exponentially many steps to make a Beta-redex which is present in the substitution normal
form of a term t ‘visible’, in the λxc-calculus that requires at most a linear number of steps. For
another, completing the critical pair between the Beta-rule and the x-rules:

X[y:=Y ][z:=Z]← ((λy.X)Y )[z:=Z]→ ((λy.X)[z:=Z])(Y [z:=Z])

may require, in λx, performing all the substitutions which occur in (the term substituted for) X,
which may involve exponentially many steps, but with the help of the c-rule it can be completed
in just2 three steps:

X[y:=Y ][z:=Z]→ X[z:=Z][y:=Y [z:=Z]]← (λy.X[z:=Z])(Y [z:=Z])← ((λy.X)[z:=Z])(Y [z:=Z])

As a third:

Lemma 21. t[y:=s] �xc t, if y does not occur in t, in a number of steps linear in t.

Proof. By induction on the size of t distinguishing cases on its shape. If it is of shape t1[x:=t2],
then t→c t1[y:=s][x:=t2[y:=s]] and one concludes by applying the IH to both ti[y:=s]. Otherwise,
one of the x rules (but not the second) is applicable at the head, and one concludes by the IH.

Again, due to the absence of c, this fails in the λx-calculus where both sides are just convertible
and that only in an exponential number of steps (to see the latter, consider a term t of shape
(x1x1)[x1:=(x2x2)][x2:=(x3x3)] . . . [xn:=z]). The lemma justifies replacing the first x-rule by the
so-called garbage collection rule X[y:=Y ]→X. To conclude this note, a direct proof of confluence
of the resulting calculus, which we will still refer to as λxc, is given, i.e. without relying on
confluence of the ordinary λ-calculus 3

Lemma 22. λxc is confluent.

Proof. Let ◦→Beta denote the contraction of any number of Beta-redexes, let→x denote contracting
an arbitrary (possibly garbage collecting) x-redex, and let ◦→c denote the contraction of a multi-
swap (in the sense of the previous section) of c-redexes. To show confluence of λxc, it then suffices
to prove confluence of these relations, since →λxc ⊆ ◦→Beta ∪→x ∪ ◦→c ⊆�λxc. In the rest of the
proof, the three types of rules are referred to simply as Beta, x, and c. It suffices to show that
they are decreasing w.r.t. the well-founded order which orders Beta above c above x, and orders x
steps according to the size of their source. Distinguish cases on the types of the rules in a peak.

2It was designed for that purpose!
3The same method yields a direct proof of confluence of the λx-calculus, without relying on interpretation.
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• If both are Beta, then the result follows from single-step Beta being linear orthogonal, i.e. a
common reduct is found in either zero or one Beta-steps on both sides.

• If s ←x t ◦→Beta r, then s →x ; ◦→Beta q and r ◦→c q in case the x-step overlaps one of the
Beta-redexes, and s ◦→Beta q �x r otherwise.

• Beta is orthogonal to c, and they commute in a single step on either side.

• If both are x, a common reduct is found in at most two further x-steps having smaller sources.

• If s ←x t ◦→c r, then s �x ; ◦→c q �x r in case the x-step overlaps one of the c-redexes
(needing a number of garbage collection steps). Otherwise the steps simply commute (c
may duplicate x, but not vice versa).

• If both rules are c, then a common reduct is found in at most one further c-step as shown
in the previous section.

Note that a common reduct is found in an amount of work which is linear in the diverging steps,
measuring each step by the number of single steps performed by it. This is not that good, but
still better than the interpretation method.

Of course, a drawback of the λxc-calculus is that it is inherently non-terminating due to the
c-rule, even on terms which are terminating in the ordinary λ-calculus w.r.t. β-reduction. But the
idea is that the c-rule could be seen as an optimization rule, and the other rules as computation
rules; the computation rules are known to preserve the good properties for λx. It remains to show
the same holds for the optimization rule. For instance, it would be interesting to know whether it
preserves acyclicity (or even stronger, whether λxc preserves acyclicity).

7


