Lambdascope

Another optimal implementat

Vincent van Oostrom

ion of the lambda-calculus

Kees-Jan van de Looij

Marijn Zwitserlood
Universiteit Utrecht
Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

{Vincent.vanOostrom,KeesJan.vand

Abstract

An optimal implementation of the3-calculus into inter-
action nets, featuring

1. only a single type of scope node,
2. a completely reduction based read-back, and

3. only three reduction rule schemes.

1. Introduction

We present an optimal implementation®feduction on
A-terms. For any\-term [3] (Section 2), translating it by
to an interaction net [9] (Section 3), then performing a num-
ber of interaction steps (Section 4), and finally unwinding
the resulting interaction net by to a tree-like net isomor-
phic to a)-term again (Section 5), yields &term which
is reachable by a number gksteps (Section 2) from the
initial term.

To show correctness we first introduce the seh-ofets
which contains all the nets reachable from translated
terms, and for which a stack-based read-back mdmpm
A-nets toA-terms can be defined [10, 7] (Section 6). Us-
ing the read-back we show that a Beta-step fromreet is
projected byA onto a multi-Beta-step, performing a num-
ber of Beta-steps simultaneously, from the unwound net [2]
(Section 7). Correctness follows since by its tree-likerfor
a multi-Beta-step on a tree-like net, followed by unwinding
corresponds to &-development [3] on ita-term.

To show optimality [11] it suffices to note that we im-
plement the same abstract algorithm [2] as extant optimal
implementations in interaction nets [10, 7, 2]. Although op
timality was the original motivation for our studies, we wil

eLooij,Marijn.Zwitsed} @phil.uu.nl

not high-light it here. Instead, we focus on presenting the
calculus itself.

2. A-calculus

In order to give a rational reconstruction of our optimal
implementation ofs-reduction in the\-calculus [3], we first
present a factorisation gf-reduction for the namefres-
calculus [5] into argument replication and scope extrudion
We employ the following as a running example.

Example 1 The application22 of the (Church) numeral
2 = Az \y.z(xy) to itself, reduces td in five steps

22 —p My2(2y)

Ay.2\z.y(y)

Ay Az.(Azy(yz))(Az.y
Ay Az.(Az.y(yz)) (y(yz)

Ay A2y (y(y(yz)))

—g
—p3 (yx))z)
)

B

B
(Application of Church numerals is exponentiation.)
Instead of\-terms, we implement namelesgerms [5].
Example 2 22 with 2 = A\(S0)((S0)0) reduces tot

22 =5 A2(20)

A2)(S0)((S0)0)
AN(A(SS0)((SS0)0))((A(SS0)((SS0)0))0)
AyA=(Az(SS0)((S50)0)) ((S0)((S0)0))
AA(S0)((S0)((S0)((S0)0)))

B

1To a large extent our presentation reflects the way our imgieation
was developed. People not interested in that can fast fdriwathe next
section, after taking note of the inference system for gaised\-terms.

The unary notation for De Bruijn-indices employed here the scope of\, that is,all Ss matching with\ (in this case
serves the interpretation of successors as end-of-scope omone) are elided. (Not removing them would disturb match-
erators as introduced in [8]. This interpretation is illastd ing and possibly cause dangling ‘pointers’ or worse.) This
for 2 by results in the generalisedterm AS2((S2)0). Here a gen-
eralised\-term, as introduced in [4], is &term where suc-
| cessors are generalised to be applicable to any (genebalise
term instead of just to De Bruijn indices. Finally, to tureth
generalised\-term into the ordinary\-term \2(20) again,
successors need to be pushed to the leafs in a matching-
preserving way, a process which we call scope extrusion [8].
Formally, the grammar for the sétA of generalisech-
terms is

Ax
|
Ay
|
Q
|
xX

TT

)

.

oO—Wn—0 — > —>

—a
\

S
\

0

teGA

0St|Xt|tt

displaying from left to right, the syntax tree of theterm2,
the syntax tree of the namelesderm2, and that tree again ~ We employt, s, u, ... to range over generalisaeterms and
with scopes explicitly indicated by boxes. Asillustratgd b i, j, k, ...to range over its subset of (De Bruijn) indices,
the figure, and as observed by [4], namelédsrms have i.e. repeated applications 6fto 0. Ordinary namelesa-
a context free tree structure: every successor and zero oferms are obtained by requiring successors to occur as part
a closed\-term matchesa unique); the box is a way to of indices.s-reduction on ordinary (namelessyerms fac-
represent this matching explicitly. In other words, thealsu torises then as follows. First replication and removal are
notion of binding for named-terms is seen to correspond performed according to
to the notion of matching for namefreeterms.

The matching structure can be employed to implement (At)s — t[s]°
[-reduction as follows. An occurrence 0fin t matching
the \ of a §-redex(\t)s has the operational meaning: put
the argumens. Dually, an occurrence @ in ¢t matching 0[s]°

with ‘substitution’t[s]? of s in ¢ at depthi defined by

that A has the operational meaning: throw the argument Si °

away (as any subterm of this term will be out of the scope Ofs] =0

of the)\, so to speak). The nameless pendant of the idea that (St)s]® = ¢

the binding structure is preserved Byreduction on named (St)[s]>* = St[s]’
A-terms, is then that matching is preserved in case of name- D)[s] =)\t[s]51
lessA-terms. As a consequenggreducing(At)s does not ; i
only involve replicating the argumestin appropriate num- (tit2)[s]" = ti[s]'ta[s]

ber of }!mtes'kf"ftafo ma}[natgln% matclhlng. In th_e Ilgrriture Next scopes are extruded by reducing to normal form with
on explicit substitutions starting from [1], one varies respect to thecope extrusionules

aspects. The starting observation for the variation ptesen

here is that the firséi-step of Example 2 can be decomposed SAt —y M5O
as
S(t1t St,1St
22— A(S2)((52)0) — A2(20) (1t) = StSt
L . abstraction extrusion application extrusion
Q replication extrusion

| 1 scope removal . ‘ L ‘
S S S A A A Q@ @l @

| . m |

\ |

where, for index, minimal lifting ¢* is defined by:
0 = St
0% =0

St*

—0—0

—~
wn
ey

wn
<!
Il

That is, 8-reduction consists of first replicating the argu-)Si ssi
ment2 putting the latter at alds in the body matching the (A3 = A
), and then removing th@ and) of the redex as well as (tit2)> = 135

Note that using the extrusion rules, the first step of Exam-
ple 2, indeed factorises in the way which was displayed
above. In particular, note th&2 — 2 holds since2 is
closed. Here a generaliseetermt is closed if0 ¢ in the
following inference system (cf. [6]):

ihtita
ikt ibts

SitSt
ikt

iE At

A
Sikt
The intuitive reading of the indexn a judgment - ¢, read:

termt is well-formed under index, is as the (hnumber of)
variables bound bys above this subterm.

Sit0
0

Example 3 That2 is indeed closed is witnessed by

0F AX(S0)((S0)0) \
S0+ A(S0)((S0)0) \
SSO- (S0)((S0)0)
SSO S0 SSOF (S0)0
SO0 SSOFSO SSOF0
S S0+ 0 0

As usual, any\-term can be closed (made well-formed un-

der0), by putting enough abstractions. Hence it is no re-
striction to prove our results for closed terms only and we
will do so. Moreover, we will abbreviate indices by natural

numbers in sans-serif e §550 is abbreviated t8.

3. From terms to nets

We present our translation of the namefpeterms to a
class of graphs known as interaction nets [9]. The signa-
ture of an interaction nets consists of symbols each having
a number of ports among which a designaiedcipal port.

The interaction net signature we employ is

applicator abstractor delimiter duplicator eraser

argument @bind _EJZ W @

function body

whereos indicate ports ands indicate principal ports, i.e.
ports along which a symbol may interact (see the rules be-
low). Herei ranges over arbitrary indices, making the sig-
nature infinite.

Apart from@ andX which will have the meaning one ex-
pects, the signature has symbols for explicitly repreagnti
the different operations of the factorisation@feduction,
as presented in the previous section. In particular, the du-
plicator v, (share, fan) and the eraser(garbage) will to-

we do not write the index for a duplicator or delimiter, it
is assumed to be.

Interaction nets are graphs the nodes of which are la-
belled by symbols of the signature, and the edges of which
connect to the ports of the (symbols of the) nodes. To every
port at most one edge may be connected. If no edge is con-
nected to a port, then the port is called free. A netis closed
if it does not have free ports.

The functiond : A—IN mapping closed terms to closed
interaction nets is defined in two phases. First, a well-
formed termi ¢ is mapped to a net havingt 1 free ports,
which is defined by induction and cas@s§, A\, and@) on
the definition of well-formedness as:

After that a@-node (theoot) is connected to the free port.
Here a numbef next to a slashed edge represents that in
fact the edge is a ‘bus’ consisting ©édges.

Example 4 The translationC(2) of 2 is recursively ob-
tained from the inference displayed in Example 3

Since the translation is uniform, it is on the one hand easy
to prove properties about, but on the other hand very in-

gether serve to represent replication, as usual in graph im-efficient: it generates many duplicator-eraser combinatio

plementations of first-order rewriting. The delimiterrep-

whose net-effect will be (see the reduction rules below) the

resents the higher-order aspect of scope. By default, whersame as that of an edge. Removing these yields th2 net

useless duplicator-
eraser combo, and
result of removing
it from [J(2)

The set B of interaction rules which interest us is defined to
be the union ok and Beta (but not disintegrate).

Note that the effect of operators is indeed as expected:
the eraser acts as a garbage collector erasing anything it
can interact with; the duplicator acts as a copier duplicat-
ing anything it can interact with; the delimiter acts as an
extruder putting anything it can interact with into its seop
All act locally in the sense that they affect one node at the
time. This restriction, which comes with the interaction ne
framework, explains our use afdexeddelimiters: roughly
speaking, the way in which the recursive definition of min-

where the north port of the second application has been roimal lifting of the previous section is implemented, is to

between the interaction net representatio ahd its syn-
tax tree, as displayed above.

4. Interaction net reduction

The intuitive meaning of the symbols in our interaction
net signature, as presented above, is operationalisedby ju
two rule schemes, fof,g arbitrary but distinct, and a rule

commute

‘annihilate disintegrate

wheref’ andg’ are either identical to or updates of the sym-
bols f andg, respectively. An update is an increment of the
index: (if any) of either symbol, which takes place iff the
other symbol is eithek or Li;, with 7 > j. Instances of the
two schemes are calledrules.

Example 5 Annihilate, commute, and commute with up-
date, respectively, are exemplified by the followgtAgiles

| X% 875

Disintegration is only half of a rule; the rule Beta is defined
by post-composing it with an annihilation of its:

i

disintegrate annihilate

Example 6 We display only a few nets along the reduction
of 2 applied to itself, to B-normal form. The final net shown
is the normal form which is a representationdf How to
retrieve this term from the net s the topic of the next sectio

52%
°
Y

5. From nets to terms

The functiona : IN—A mapping closed nets to closed
terms is defined in three phases, each consisting of normal-
ising w.r.t. an action first and the-rules next. (Without
touching the roots.) This yields the syntax tree of a unique
(derivation of a) term, which is taken as the resulngf).

The three phases are named after their actions given by:

bt g Pt

unwind scope remove loop cut

Here theS is a new node type, the interaction of which is

governed by the-rules, i.e S behaves as a non-indexed
After the unwinding action, both abstractiossd appli-

cation have their north port as principal port. This makes

that all replication and delimiter nodes are ‘pushed toward that the transformation is not just any transformation, but
the leafs/variables’ (causing unsharing and extrusion) bythat it corresponds tG-reduction.

the subsequent-normalisation phase, except for some up- Unfortunately, we did not succeed yet in proving static
ward directed delimiters with index The latter are pushed correctness directly using owyntactic reduction-based
toward the leafs as well in the subsequent scope removafunction . Instead, we fall back to semanticstack-based
phase, which also puts all replication nodes closer to theread-back functiom mapping nets ta\-terms in the spirit
leafs than the delimiter nodes. Finally, cutting the loop of [10, 7], for proving static correctness. We then conclude
causes all replication nodes to vanish by having them in- by noting that this read-back functian coincides witha
teract with the eraser, yielding a tree proper. on the class of\-nets. The reason why we think this is
unfortunate, except for causing a detour, is that the seman-
tic read-back mag is quite complex. For this reason, we
only include proof ideas in this and the next section. (How-
ever, note that the semantic read-back is only needed in our
proof of correctness; the actual implementation does not
need it and is extremely simple to implement (just three rule
schemes).)

Example 7 Thex-normal forms of the three phases applied
to the normal form in Example 6 are, respectively

6.1. Directed nets

The interaction nets yielded by the functiahcan be
turned into ooted directednets in DN, by directing the
edges in the function as:

O ;e Ve

Because of the reversely directed east port edge tifere
must also be reverse versions of the symbols commuting

with), i.e. ofLy, S, v and®, which are obtained from the
From the final tree it is trivial to reconstruct the tern above by reversing all arrows for them.

Until now, we have presented a translation of nameless Theorem 8 0 maps into DN, which is reduction closed.
terms in interaction nets, provided some reduction rules on

the latter, and some more rules for retrieving-term from The proof of the first part consists in directing the edges
nets again. The examples suggest that we have implementeih the translation in Subsection 3 such that they cross the
(-reduction. It remains to prove this. dashed box borders downward.

For a proof of the second part, it suffices to show that for
each interaction rule whose left-hand side can be directed,
its right-hand side can be directedth the same directed

In order t ¢ f ol tati interface This is easy. (Note that although the right-hand
h order 1o prove correctness of our impiementation, We ;o f the disintegrate rule cannot be directed, it congine
provide a series of three, each time more stringent, char-

o with @-annihilation to yield the Beta-rule, the right-hand
acterisations of the nets reachable from translatégrms, y g

Iminating in th t of-nets. Thi t satisfies the fol side of whichcanbe directed).
cuiminating in the Set oR-nets. IS Set satisties the fol- From the theorem it follows that the annihilation rules
lowing three desirable properties:

for @ (on its own) and\ are superfluous, as their left-hand
e The translatiof maps into-nets. sides cannot be directed.

6. Static correctness

e The set ofA-nets is closed under B-reduction. 6.2. Tree nets

e The translatiom maps\-nets tor-terms.)
The read-back function (cf. [7]A maps tree-nets (to be

This shows static correctness in the sense that B-reductiordefined below) to (potentially infinite) trees. It will be de-
can then be viewed as a transformation)eterms. Inthe fined in three phases, which can be intuitively understood
next section dynamic correctness will be shown in the senseas follows.

Recall that the set of nameleasterms is context free. it 000 inl oblKl o[;3E;
That is, one can define a push-down automaton for recog- ((@ (@) <: Si @
nising namelesa-terms. Correspondingly, the class of tree
nets will consist of nets which are context free in the sense o @i i ol GLO, olGRR,
that they are recognised by a ‘generalised push-down au- 7 7
tomaton’ (GPDA). This automaton, which will be defined such that the stacks, ando satisfy the constraints spec-

in the first phase, is generalised in that its stack has moreified. Here we have employed the context-notatigd); to
structure and allows for more operations than usual PDAs. denote a stack = jro, ..., £, Wherer; has been replaced

In the second phase, we show how the walks of the au-PY &, implicitly assuming that < k.

tomaton can be combined to form a tree, which will be the A réad-backpath ofw is a path inG, starting at(e, 0),
tree read back from the net. where ¢ is the unique edge from the root of A read-

backstack is a stack occurring as the second component of

Recall from the first section, that a variable being bound
a vertex along a read-back path.

by a A-abstraction in the name&-calculus, was rendered
in the nameless-calculus as an inde& matchingwith a ~ Example 9 We show the stacks along a read-back path
A-abstraction. For nets, the corresponding notion is that ofalong the final net in Example 6, where we have omitted
abinding loopon aA-node, which will be introduced in the ~ the part of the netirrelevant to this path, for clarity.

third phase. Just as provingreduction of(A\x.M)N cor- 0
rect involves showing that substitutiig for « in M yields 00
a correct term again, in the case of nets Beta-reduction will
cause cutting the binding loop and reconnecting it to the ar- 110
gument and one has to show that this yields a correct walk 1010
again. This will be enforced in the third phase, by requiring
- . , 22010
all binding loops to be transparent in the sense that they do 22010 202010
not modify the stack; hence once cut, they can be used to 202010 T 202010
lengthen any path. + Ly
o . . ! 2(02)010 | 1! 2(02)010

After this intuitive explanation, we proceed with the first \ 1
phase. 2(02)(0L)10 2(02)(0R)10
6.2.1. The automaton

. . i 6.2.2. Reading back trees

Any directed netv is mapped to a directed gragh (the g
‘GPDA) as follows. Second, the grap8, is turned into a rooted treg(v). The

A vertex ofG, is a pair(e, o) with e an edge of ando vertices ofa (v) are the verticeée, o) of G, such that

a stack, where the grammars for the syntactic categories of, e ¢ = . Then the verteXe, o) is theroot-vertex, or

respectivelyblocks levelsandstacksare:) .
P yplocks e the source o¢ is the body port of &. Thene is called

be B = abodyedge and the vertexavertex or

S n= 1

Vel o= o o the target ot is the bind port of &\, in which case: is
g B 7 called abindedge. Then the vertex isSd—7 (0)-vertex

s =

for i andj the body and bind indices of, or

Herei ranges over indices as before, anchnges over the o the target ot s the north port of ar (an @-vertey.

setA = {L, R} of directors For a stacu((jg),zg)ﬂ i andj Thereis an edge im (v) from vertexv to w if there is a path

are called itdbodyandbindindices, respectively. fromv tow (as edges!) i, through edges not ia(v) (as
Intuitively the body index of stack represents how many vertices!). Note that paths are deterministic excepfian

As have been visited thusfar, and the stack records all theExample 10 The read-back path displayed in Exam-

matching information encountered thusfar, boptiasharing ple 9 witnesses that the rooted treg(r) looks like

as well a;yuascoping. AA?(?(7(?0))), where thé’s are unknowns to be determined
There is an edge froife;, o1) t0 (e2, o) in G, if the tar- by the other read-back paths (they will all bg). Note that

get ofe; and the source aof; are ports of the same node in the 0 is caused by the bOdy and the bind index of the final

v, which are connected according to (the arrows in): stack22010 both being2, hence their difference &

6.2.3. Binding loops Theorem 12 0O maps into TN, which is B-reduction closed.

Third, the set TN of tree-nets is the subset of DN consisting |f ,, —,_ ,;, one even has(v) ~ A(y). The proof is

of netsv such that any finite-walk is a binding loop, where analogous to the proofs of similar results in the literature
av-walkis a read-back path of which cannot be extended ¢ g.[10, 2J:

since it either ends in a bind edge or it is infinite, and a walk
is said to be a binding loop if it has a cyclic transparent e Inthe case ok-steps one shows that there is a bijective

suffix. Here, a path fronfe;, 01) to (e2, 02) is correspondence between the walks before and after the
step.
e cyclicif the source of the body edgg is the target of
the bind edge,, and the body index of; is the bind ¢ In the case of a Beta-step one shows that a walk after
index of . the step can be obtained by cutting and pasting walks
before the step. In order for this to be a proper walk,
e transparentf 1 C,; g2 with i the body index ob, transparency is crucial.
and wherer denotesr with its body index replaced by
0. 6.3.\-nets

Informally, transparency means that ando, are identi- . -
cal except that the latter may have been extended with extra The setAN of A-nets is the subset of TN consisting of

(sharing) data on top of the stack (i.e. for the variableomntr nets having on!y “”“? _vvalks. AS. a consequence the read-
duced by the abstraction). back function yields finite terms, i.& : AN—A.

Example 11 The path displayed in Example 9 is a binding Theorem 13 0O maps intoAN, which is B-reduction closed.
loop for the suffix starting with the body edge of the second

) encountered: 6.4 A~aA

e The suffix ends with a bind edge toward that same To prove this isomorphism, we show
node, and the respective body indices are I®th
A(v) =~ a(av) 1)
e The suffix is transparent as both stacks are identical, A ~ p)
hence still identical after replacing the body index by
0. for everyA-netv, and any tree-like\-netv, from which we

conclude since\ (v) is tree-like by construction.

To show (1) it suffices to show that is invariant for the
interactions in each of the three phasegofirst we show
that A is well-defined, since each of its three phases is.

To formalise a parametric notion of extension)(it
is convenient to employ an alternative representation of
stacks, which enables a definition exXtensionof a stack
by means of substitution. The alternative representation i
obtained by replacing eadhindex in any block of a stack Proposition 14 —, is complete (confluent and terminat-
with a variable, and by putting a variable to the right of any ing) on AN, also aftex, P, >, and it preservea.
vector in it, in such a way that variables occur at most once.
(This is analogous to the fact that a term-based definition of L€t us sketch why this proposition holds. Completeness
strings, representing letters by unary function symbots an holds since confluence holds for any interaction net by de-
the tail of the string by a variable, allows for the definition Sign, and termination follows from read-back paths being
of extension (concatenation) by means of substitution.) finite.

Thehigherthan relation on levels is generated by letting ~ Preservation of holds for the first phasg since in it
the levelbly, . . ., ¢, and levels irgs; all be higher than any only x-rules are applied, and these were already seen to pre-

level in ¢;. For a stackio, . . .,/ the situation is reverse: Servea above.

any level in¢; is higher than the levels ifis;. Variables Since after the first phase a read-back path is a path
and (indices) of blocks are related according to their level through the net which is assumed to becinormal form, it
Finally, stackextensioris then defined as consists of a number of edgigsm principal ports, followed
by a number of edgés principal ports. By the assumption
o g? 7,if 0¥ = 1 for somey that the read-back path does not get stuck, the efiges

principal ports cannot arise from arrows alang- or v,;-
with ¢} a syntactic-category-preserving substitution which is nodes, as these require structure which is not present (on
the identity on variables lower than Here, we implicitly the stack). Hence, a read-back path first visits a number of
assume if # 0, thati occurs in bothr andr. @-, A- andLp-nodesfrom their principal port, followed by

visits toLJ;- andv;-nodesdo their principal ports. Asacon- 8. Related and further work
sequence, the net is tree-like in the sense that a read-back
path nevers visits a node twice, for this would require pass-
ing a node with in-degree greater thanhence av;-node
but then the tail of the path would be a cycle consisting only
of edgesto the principal port, hence either the path gets
stuck, if some_l;-node is on the cycle since passing these
decrements the (finite) height of the stack, or it is infinite,
only v;-nodes are on the cycle, both of which are impossi- Our calculus is an optimal implementation of the
ble by assumption. Now to show invariancesoholds for ~ calculus in the sense of [11], i.e. alredexes having the
the second phade, note that mapping all indices tpre- same Lévy label in a-term along a reduction will be rep-
serves read-back. Essentially, this holds since treedike resented by the same Beta-redex in the correspondirey.
implies that the vertices associated to bind edges have a#\ prototype implementation, which we have dubl@ahb-
indexi, the difference between the ordinary and the reversedascopeshows that out-of-the-box, our calculus performs
occurrences df-nodes on their binding loop. Hence letting as well as theoptimizedversion of the reference optimal
S have the same semanticslas the result follows since higher-order machine BOHM (see [2]) (hence outperforms
is easily seen to be invariant unde,. the standard implementations of functional programming
Finally, to show invariance in the third loop-cutiing- 'anguages on the same examples as BOHM does).

phasex and of (2) the invariant above suffices, giving as However, being optimal does not necessarily imply be-

semantics oénteringe-nodes, the semantics of bind edges. ing the most efficient. Indeed, the presented calculus is not
optimised, so it would be interesting to try to apply exigtin

optimisation techniques to it.

7 Dynamic correctness For instance, extruding a scope over a closettrm
costs time linear in the size of the term in our implemen-
tation, whereas one observes that in such cases it would be

From the above, we know thatnets are closed under safe to simply remove the scope. In order to be able to im-

B-reduction. It remains to show that this reduction imple- plement this, one should be able to observe whether a

mentss-reduction and not some other transformatiomen abstraction is closed or not. In the approach of [13] this is

terms. The proof is along standard lines of reasoning in theppssible, explaining in some sense its efficiency. Since at
area of explicit substitutions [1], showing that unwinding first sight, both the present approach and that of [13] seem

a Beta-step on a-netv unwinds to a Beta-multistep on to be compatible, it would be interesting to attempt to unify

the UnWinding ofv. As for eXpIiCit substitution CalCUli, to them. More genera”y’ a goa| worthwhile pursuing is to try

show commutation of Beta-steps would involve showing a to |ift standard first-order optimization techniques\toets.
variant of the substitution lemma, arising from the ‘ctic For another instance, our calculus is based on the un-
pairs’ betweens-redexes (befor€) and thex-steps (of). typed\-calculus whereas most of the timeterms will be

Instead, we show that commutes with Beta-steps. Thisis typable. One would expect a better translation funcion
easier (the hard work having been done in Section 6), sincetaking advantage of the type information.

A is more semantic than.

Since there is a lot of related and further work, we only
briefly touch upon some issues.

8.1. Optimal vs. efficient

8.2. Disconnected vs. connected scopes
Proposition 15 If v —e—peta o @nd if the-netv unwinds
to v/, thenv’ can be unwound further to a-netv” such

) Y " Since in our approach scope delimiter nodes are not di-
thatr” —e—peta it With A(u) ~ A(u”).

rectly connected (by an explicit edge or via other scope

nodes) to their matching openingabstraction node, there

By Section 6, it follows that it —geta i1, thend(v) —e—+geta is no way to remove them locally when performingia

', for some nef’ with A(u) ~ A(u'). Moreover, also step. However, simply removing theabstraction would

by the previous section, applyingto 4’ yields a tree-like |eave dangling the closing scope nodes matching it. Our so-

unwound net isomorphic ta (). lution was to not remove the scope at all, instead mimicking
Roughly speaking, an arbitrary B-reduction on nets the scope opening effect of the disappeakeabstraction

projects onto a reduction between tree-like unwound nets,by adjoining explicit scope opening operators, i.e. ithe

such that each of its ‘steps’ consists of a multi-Beta-stepsnodes in the disintegrate rule in Section 4.

followed by the three phases of i.e. by substitution nor- Another solution would be tonakethe scope nodes

malisation. Correctness follows, since on tree-like unmebu matching a\-abstraction local to it, by explicitly connect-

trees this is just the usually procedure for Bourbaki-gsaph ing the formers to the latter. Then they can be removed

upon performing a-reduction. This is the approach taken References

in [13].
8.3. The ideal explicit substitution calculus?

Although we do not show it here, we claim the pre-
sented implementation of the-calculus has all properties
one might desire of an explicit substitution calculus, safe
being atermcalculus.

8.4. Scoping first vs. replication first

Existing work on the optimal implementation of the
calculus, e.g. [10, 7, 2], has focused on dealing with ex-
plicit local replication, viewing the explicit scope optoes

(brackets and croissants) only as a necessary evil needed to

implement the so-called oracle. Instead, we have followed

the opposite route as was suggested in [8] There, an exten-

sion of theA-calculus with an explicit global scope operator
called X was introduced, leaving replication implicit. The

K-operator is a generalisation of the generalised successor

of [4], which in turn is a generalisation of the successor on
De Bruijn indices [5]. The-operator corresponds tol.&
node here. In [15], the global scope operatois made
local, still leaving replication implicit. Roughly speailg,

this amounts to making scope extrusion and in particular the
inductive definition of minimal lifting of Section 2 local,
leading to the introduction ahdexedgeneralised succes-
sor (and predecessor) nodes, corresponding talthredes
(and their inverses) here.

The advantage of following this route is that once ex-
plicit (local) scoping is in place, adjoining explicit régdh-
tion both in its local [14] and global version proceeds anal-
ogous [12] to the way replication is made explicit and local
in the first-order case.

8.5. Conclusion

We have presented an implementation of dhealculus
in the spirit of the calculational approach of [5], and which
is fully in the traditions of calculi with explicit substition
and of graph implementations of term rewriting. As far as
we know it is the first such calculus which is optimal in
the sense of Lévy. Moreover, as far as we know this is the
first optimal calculus featuring only a single scope delim-
iter node instead of the usual two, croissants and brackets
which by force eliminates the problems which are caused by

having more than one scope node [2, Chapter 9]. The calcu-
lus is simple, half a page suffices (see Section 4) to describe
it, and completely reduction-based (no semantic read-back

in the implementation). As a consequence it can be trivially
implemented in any (modern) programming language.

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Ex-
plicit substitutions. Journal of Functional Programming
1(4):375-416, 1991.

[2] A. Asperti and S. Guerrini. The Optimal Implementation

of Functional Programming Languagesolume 45 ofCam-

bridge Tracts in Theoretical Computer Scien€égambridge

University Press, 1998.

H. Barendregt. The Lambda Calculus: Its Syntax and Se-

mantics volume 103 ofStudies in Logic and the Founda-

tions of Mathematics North-Holland, 2nd revised edition,

1984.

R. Bird and R. Paterson. De Bruijn notation as a nested

datatype.Journal of Functional Programming®(1):77-91,

1999.

N. de Bruijn. Lambda calculus notation with nameless dum

mies, a tool for automatic formula manipulatiomndaga-

tiones Mathematicae84:381-392, 1972.

[6] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax andivar

able binding. InLICS 14 pages 193-202. IEEE Computer

Society Press, 1999.

G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of

optimal lambda reduction. IROPL 19 pages 15-26. ACM

Press, 1992.

[8] D. Hendriks and V. v. OostromA. In CADE 19 volume
2741 ofLNAI, pages 136-150. Springer, 2003.

[9] V. Lafont. Interaction nets. IlPOPL 17 pages 95-108.

ACM Press, 1990.

J. Lamping. An algorithm for optimal lambda calculus re

duction. InPOPL 17 pages 16-30. ACM Press, 1990.

J.-J. Lévy. Réductions correctes et optimales dansile

calcul. These de doctorat d’'état, Université Paris VII, 1978.

K.-J.v. d. Looij. Tha. Master’s thesis, Universiteitrecht,

2004. Forthcoming.

I. Mackie. Efficient lambda evaluation with interaatioets.

In RTA 15 2004. Forthcoming.

V. v. Oostrom. Net-calculus. Lecture notes for the cgur

"Computationele Methoden in de Typen theorie” (in Dutch),

2001.

M. Zwitserlood. End-of-scope, locally. Master’s tiggdJni-

versiteit Utrecht, 2004. Forthcoming.

(3]

(4]

(5]

(7]

[10]
[11]
[12]
[13]

[14]

[15]

