
Reduce to the max

A cofinal strategy for weakly orthogonal higher-order pattern rewrite systems (WOPRSs).

Notions and results needed for WOPRSs can be found in [Oos95, Oos99].

Definition 1 A simultaneous set U of redex(-occurrenc)es in a term s is maximal, if any redex
v in s overlaps the head of some redex in U .

By the tree structure of terms maximal sets can be constructed inside-out, but need not be unique.

Lemma 2 If s ◦−→V t then t ◦−→ s∗, where s∗ is obtained from s by contracting a maximal set U .

Proof By maximality of U and simultaneity of V , we can define an injection ι mapping every
redex v ∈ V to a redex ι(v) ∈ U such that v overlaps the head of ι(v). By weak orthogonality
s ◦−→ι(V ) t, so t ◦−→U/ι(V ) s

∗ [Oos95, Theorem 5, Prism]. 2

Note that distinct maximal sets may exist, but these must be equipollent hence lead to the same
result, justifying our notation s∗. The lemma is a generalisation of [BBKV76, Lemma 3.2.2],
[Tak95, Section 1, property (5)], [Nip96, Section 5.2], and [Raa96, Lemma 5.3.3]. Only slightly
relaxing weak-orthogonality invalidates the theorem, as witnessed by the term f(a) in the parallel-
closed TRS a→ a, f(a)→ f(b).

As a standard corollary, we have that the maximal strategy is (hyper-)(head-)normalising and
cofinal for WOPRSs, where a strategy is maximal if it contracts maximal sets. This generalises
(results for) the Gross-Knuth strategy for λ-calculus and the full-substitution strategy for orthog-
onal TRSs in the papers cited. Note that it also applies to λβη-calculus, i.e. full-extendedness is
not required, so the result does not follow from [Oos99, Theorem 1].

The proof of the lemma avoids notions such as chain of λ’s [BBKV76], chain [Vri87] and clus-
ter [BKV98] of redexes, which were introduced to set up a satisfactory residual theory for λβη-
calculus, having the same ‘nice’ properties as that of λβ-calculus. Instead the proof is based on
the more general notion of weakly orthogonal projection [Oos99], which applies to all WOPRSs.
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