Reduce to the max

A cofinal strategy for weakly orthogonal higher-order pattern rewrite systems (WOPRSs).

Notions and results needed for WOPRSs can be found in [Oos95, Oos99].

Definition 1 A simultaneous set U of redex(-occurrenc)es in a term s is maximal, if any redex v in s overlaps the head of some redex in U.

By the tree structure of terms maximal sets can be constructed inside-out, but need not be unique.

Lemma 2 If $s \rightarrow t$ then $t \rightarrow s^*$, where s^* is obtained from s by contracting a maximal set U.

Proof By maximality of U and simultaneity of V, we can define an injection ι mapping every redex $v \in V$ to a redex $\iota(v) \in U$ such that v overlaps the head of $\iota(v)$. By weak orthogonality $s \xrightarrow{\bullet} \iota(v) t$, so $t \xrightarrow{\bullet} U/\iota(V) s^*$ [Oos95, Theorem 5, Prism]. \Box

Note that distinct maximal sets may exist, but these must be equipollent hence lead to the same result, justifying our notation s^* . The lemma is a generalisation of [BBKV76, Lemma 3.2.2], [Tak95, Section 1, property (5)], [Nip96, Section 5.2], and [Raa96, Lemma 5.3.3]. Only slightly relaxing weak-orthogonality invalidates the theorem, as witnessed by the term f(a) in the parallel-closed TRS $a \to a$, $f(a) \to f(b)$.

As a standard corollary, we have that the maximal strategy is (hyper-)(head-)normalising and cofinal for WOPRSs, where a strategy is maximal if it contracts maximal sets. This generalises (results for) the Gross-Knuth strategy for λ -calculus and the full-substitution strategy for orthogonal TRSs in the papers cited. Note that it also applies to $\lambda\beta\eta$ -calculus, i.e. full-extendedness is not required, so the result does not follow from [Oos99, Theorem 1].

The proof of the lemma avoids notions such as chain of λ 's [BBKV76], chain [Vri87] and cluster [BKV98] of redexes, which were introduced to set up a satisfactory residual theory for $\lambda\beta\eta$ -calculus, having the same 'nice' properties as that of $\lambda\beta$ -calculus. Instead the proof is based on the more general notion of weakly orthogonal projection [Oos99], which applies to all WOPRSs.

References

- [BBKV76] H. Barendregt, J. Bergstra, J.W. Klop, and H. Volken. Degrees, reductions and representability in the lambda calculus, 1976. The Blue Preprint.
- [BKV98] I. Bethke, J.W. Klop, and R.C. de Vrijer. Descendants and origins in term rewriting. IR 458, VUA, 1998. To appear in *IC*, RTA'98 special issue.
- [Nip96] T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). CADE 13, LNCS 1104, 1996.
- [Oos95] V. van Oostrom. Development closed critical pairs. HOA'95, LNCS 1074, 1995.
- [Oos99] V. van Oostrom. Normalisation in weakly orthogonal rewriting. RTA'99, LNCS 1631, 1999.
- [Raa96] F. van Raamsdonk. Confluence and normalisation for higher-order rewriting. PhD VUA, 1996.
- [Tak95] M. Takahashi. Parallel reductions in λ -calculus. IC, 118:120–127, 1995.
- [Vri87] R.C. de Vrijer. Surjective pairing and strong normalization: Two themes in lambda calculus. PhD UVA, 1987.