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expression:
pl
evaluation rules:

px — ifx=0thenlelse2-p(x—1)
if falsethen xelsey — y

if truethen xelsey — x



Evaluation of the Expression

pl
¢
if l=0thenlelse2 -p(1—1)
if falsethen L else2 - p(1 —1)
2-p(1-1)
2-p0
¢

2-(if0=0thenlelse2 p(0—1))
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Another Evaluation of the Expression

pl

¢

if1=0thenlelse2-p(1—1)

if 1=0thenlelse2-p0

¢

if false then 1 else2 - p0

¢

2-p0

¢

2-(if0=0thenlelse2 p(0—1))

2. (if truethen lelse2-p (0 — 1))

- =

N



And Yet Another

pl
if 1=0thenlelse2 p(1—1)

if1=0thenlelse2- (if (1—1)=0thenlelse2 -p((1—1)—1))

if 1=0thenlelse2- (if (1 —1)=0thenlelse2- (if (1 —1)—1)=0thenlelse2 p(((1—1)—1)—1)))



Abstracting away Expressions and Evaluation

Graph: Nodes as Expressions, Edges as Evaluation Steps
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Abstract Rewrite System = Graph

We are concerned with two kinds of entities, ‘“objects” and the “moves’ per-
formed on them, and each move is associated with two objects, “initial” and
“final.”” We are therefore dealing essentially with indexed 1-complexes (in
which, therefore, a positive sense is assigned in each 1-cell), the vertices being
the “objects,” and the positive 1-cells the “moves.”” It will be convenient to
make use of this topological terminology.® The incidence relations are in no
way restricted: there may be many cells with the same vertices, and the initial
and final vertices of a cell may coincide. In diagrams the positive 1-cells slope
down the paper, and some of the terms used are chosen accordingly.

3 The notions that arise are closely related to those of the theory of partially ordered sets,
but usually not identical. Except in the case of identity the terms of that theory are
therefore avoided.

Newman 1942, page 224



ARSs are not relations
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ARSs are not relations

Rewrite relation instead of system 77

I1(1(a)) = I(a) (two evaluations) not expressible !!
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Strategy?

No general definition on Wikipedia ...

No uniform definition in rewriting papers ...
...nor in Baader & Nipkow 1998.

(neither are ARSs, only rewrite relations)

Definition (Terese 2003)

Strategy : sub-ARS having same objects, normal forms



Strategy Examples
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Strategy Examples

ARS strategy for itself!
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Strategy Examples

An optimal strategy
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Strategy Examples

Original ARS again
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Strategy Examples

A pessimal strategy
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Arrows colour convention

step reduction

ARS B —_— =

optimal strategy E—— —_—
(blue, cool, open)

pessimal strategy —_— —

(red, hot, dense)



Examples of colour convention
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Examples of colour convention

A pessimal strategy
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Sorting by Swapping
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Reduction graph: Arrows start at first element swapped



Sorting by Swapping Abstractly
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Sorting Strategy: Inversion
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Inversion: only swap elements in wrong order
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Sorting Strategy: Inversion Abstractly
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Sorting by Swapping
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Reduction graph: inversions vs. anti-inversions



Sorting by Swapping Abstractly
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Strategy Analysis

» Normalising: if normal form exists, it is found

» Minimal: normal form reached in minimal number of steps

Inversion sort optimal (normalising and minimal)?

By local commutation of > and —!



Local Commutation of > and —

/ba\
ab = ab

same

baxy

AN

abxy bayx

N

N
abyx

independent

acb <-- cab <- cba

overlap

cba

self-overlap



Ordered Local Commutation of > and —
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Ordered Local Commutation
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Ordered Commutation

V peak J valley s.t. left path not longer than right path



OLCOM = Better
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OLCOM = Better (Proof)
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OLCOM Bounds Better

Induction on n



Better = Normalising and Minimal

Theorem
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Better = Normalising and Minimal

Theorem
> better than » =
> normalising and minimal for »

Proof.

» Normalising: a reduction to normal form is upper bound

» Minimal: not longer than any reduction to normal form

Corollary

Inversion sort normalising and minimal w.r.t. swapping

Proof.

OLCOM(>,—) =

Better(>,—) =

> normalising and minimal for —.
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Better = Perpetual and Maximal

» Perpetual: if infinite reduction exists, it is found

» Maximal: normal form reached in maximal number of steps

Theorem
> better than » =
» perpetual and maximal for >
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Applications

» Internal needed strategy normalising, minimal (Khasidashvili)
variations: Alves et al., Machkasova (WRS 2007)

» Gross-Knuth strategy normalising, minimal (folklore)
aka: full substitution strategy

» Limit strategy perpetual, maximal (Khasidashvili)
special case: F, for A-calculus (folklore)

» F, strategy perpetual, maximal for Ax
open problem: (Bonelli PhD thesis)

> ...

Proofs by ‘critical pair’ analysis and setting up ‘simulations’.



Completeness

Theorem (Completeness)
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Completeness

Theorem (Completeness)

> is better than » = OLCOM(>,»),
if » or > equal to — and — has unique normal forms.

OLCOM is always applicable!
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Bowls and Beans
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» Two-sided infinite sequence of bowls with beans: Z — N.
» Finite number of beans = finite number of steps

» Independent of strategy, same number of steps, final state



Terminates . ..



Bean run

10 1 -10 1

Terminates . .. but always so?



Analysis

Random Descent: all maximal reductions have same length



Newman 1942, page 226

b

In these examples it is obvious that if an end-form exists it is reached by ran-
dom descent. This is necessarily so in all systems with non-interference of
moves:

TuaeoreM 2. Under the conditions of Theorem 1, if there is a descending path
of k cells from a to an end e, no descending path from a contains more than k cells.

If £ = 1, Z cannot contain a cell ay with y # e, since if it does b exists such
that yub and eub, and e is not an end. In the general case let = be a descending
path & + £ + -+ + & joining a to ¢, and let o1 + 72 + --- 4+ 7, be any
descending path from a. Let & and 71 be cells az and ay. If z = y it follows
immediately from an induction that j < k. If not, let the cells { and w descend
from z and y to the common vertex w. By Theorem 1 there is a descending path
o from w to a vertex = ¢, i.e.,,since e is an end, to e itself. Since &z + -+ + &
has k — 1 cells, { 4+ ¢ has, by an inductive hypothesis, at most £ — 1 cells;
therefore w + ¢, and finally also 72 + --- + 5;, have at most & — 1 cells,—
ie.j =k

CoroLLARY 2.1. Every descending path from a is part of a descending path of k
cells from a to e (i.e. there is “random descent”’ to e).

Conditions of Theorem 1: join local peak in 0 or 1 steps
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Random Descent: all maximal reductions have same length

Bean run has random descent?

By local confluence of —!



Local Confluence of —

same distinct



Ordered Local Confluence of —
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Ordered Confluence

V peak J valley s.t. left path not longer than right path



OWCR = Random Descent

OWCR(—) &
OLCOM(—,—) =

— better than itself =
— maximal, minimal!

Corollary
Bowls and beans has random descent

Proof.

OWCR =

RD =

all reductions to final state have same length



Solving bowls and beans

RD = normalisation (WN) suffices for termination



Solving bowls and beans

RD = normalisation (WN) suffices for termination

VAR VA U

By induction on the number of beans



Existing generalizations of Newman's condition

Let A = (D, —) be an abstract reduction system.

Definition 3. A = (D, —) (or —) is balanced weakly Church-Rosser (BWCR)
iff Vo,y,2 € Dijjx — yAx — 2 = Jw € D,Fk > 0,y—Fuw A z2—Fuw]
(Figure 1).

Lemma 1 (BWCR Lemma). Let A = (D,—) be BWCR. Let x = y and
y € NF. Then,

(1) x is complete,
(2) all the reductions from x to y have the same length (i.e., the same number
of reduction steps).

BWCR (Toyama 92/05): join local peak in same number of steps
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Existing generalizations of Newman

None has a global notion (cf. WCR without CR)
None covers:

)

O

Out of sync
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Applications of OLCON

v

Inversion sorting: optimal for swapping by sorting
So: sorting by swapping is Q(nz) as some inversion sort is

v

Interaction nets (Lafont) : all reductions have same length
So: only implementation of A-calculus strategies

v

(really) Linear A-calculi (Simpson)

v

Spine strategies in A-calculus (Barendregt et al.)

Proofs by ‘critical pair’ analysis and setting up ‘simulations’.
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Completeness

d(C) = number of forward steps minus number of backward steps

OWCR < RD (cf. Church—Rosser)
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Conclusions

Positive experience: Notion of strategy of (Terese 2003)
Main novel notion: Ordered commutation
Paper on homepage: in colour and clickable bibliography

In paper: OLCOM for non-deterministic ARSs
V3 instead of ¥V notion of better


http://www.phil.uu.nl/~oostrom/publication/pdf/randomdescent.pdf
http://www.phil.uu.nl/~oostrom

Ordered Local Commutation

V local peak 3 valley s.t. left path not longer than right path
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