Home Page Contents Page 1 of 28 Go Back Full Screen

Close

Quit

Sub-Birkhoff

Vincent van Oostrom
Universiteit Utrecht
Department of Philosophy
Vincent.vanOostrom@phil.uu.nl

Title Page

Contents

Page 2 of 28

Go Back

Full Screen

Close

Quit

Contents

1	Mo	tivation	4												
2	Equ	quational specification													
	2.1	Validity	7												
	2.2	Derivability	8												
	2.3	Convertibility	9												
	2.4	Proofs for equational specifications	10												
	2.5	Birkhoff soundness	11												
	2.6	Birkhoff completeness	12												
	2.7	Logicality soundness	14												
	2.8	Logicality completeness	15												
3	Sub	-equational specifications	16												
	3.1	Sub-equational specifications	17												
	3.2	Sub-equational specification examples	18												
	3.3	Sub-validity	19												
	3.4	Sub-validity examples	20												
	3.5	Sub-derivability	21												
	3.6	Sub-convertibility	22												
	3.7	Proofs for sub-equational specifications	23												
	3.8	Sub-Birkhoff soundness	24												
	3.9	Sub-Birkhoff completeness	25												
		1													

Title Page

4

Contents

Page 3 of 28

Go Back

Full Screen

Close

Quit

Conclusion												28						
3.11	Logicality	completene	ess															27
3.10	Logicality	soundness																26

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

 $\mathsf{valid} \iff \mathsf{derivable} \iff \mathsf{convertible}$

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

valid ← derivable ← convertible

For equational specification ${\mathcal E}$

$$\mathcal{E} \models s = t \iff \mathcal{E} \vdash s = t \iff s \leftrightarrow_{\mathcal{E}}^* t$$

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

valid ←⇒ derivable ←⇒ convertible

For equational specification ${\mathcal E}$

$$\mathcal{E} \models s = t \iff \mathcal{E} \vdash s = t \iff s \leftrightarrow_{\mathcal{E}}^* t$$

For rewriting logic specification \mathcal{R}

$$\mathcal{R} \models s \ge t \iff \mathcal{R} \vdash s \ge t \iff s \to_{\mathcal{R}}^* t$$

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

valid ← derivable ← convertible

For equational specification ${\mathcal E}$

$$\mathcal{E} \models s = t \iff \mathcal{E} \vdash s = t \iff s \leftrightarrow_{\mathcal{E}}^* t$$

For rewriting logic specification \mathcal{R}

$$\mathcal{R} \models s \ge t \iff \mathcal{R} \vdash s \ge t \iff s \to_{\mathcal{R}}^* t$$

For term rewriting system \mathcal{T}

 $\mathcal T$ admits a compatible well-founded monotone algebra $\iff \to_{\mathcal T}^+$ is terminating

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

valid ← derivable ← convertible

For equational specification ${\mathcal E}$

$$\mathcal{E} \models s = t \iff \mathcal{E} \vdash s = t \iff s \leftrightarrow_{\mathcal{E}}^* t$$

For rewriting logic specification \mathcal{R}

$$\mathcal{R} \models s \ge t \iff \mathcal{R} \vdash s \ge t \iff s \to_{\mathcal{R}}^* t$$

For term rewriting system \mathcal{T}

 ${\mathcal T}$ admits a compatible well-founded monotone algebra $\iff \to_{\mathcal T}^+$ is terminating

follows from:

$$\mathcal{T} \models s > t \iff \mathcal{T} \vdash s > t \iff s \to_{\mathcal{T}}^+ t$$

Title Page

Contents

Page 4 of 28

Go Back

Full Screen

Close

Quit

1. Motivation

valid ←⇒ derivable ←⇒ convertible

For equational specification ${\mathcal E}$

$$\mathcal{E} \models s = t \iff \mathcal{E} \vdash s = t \iff s \leftrightarrow_{\mathcal{E}}^* t$$

For rewriting logic specification \mathcal{R}

$$\mathcal{R} \models s \ge t \iff \mathcal{R} \vdash s \ge t \iff s \to_{\mathcal{R}}^* t$$

For term rewriting system \mathcal{T}

 ${\mathcal T}$ admits a compatible well-founded monotone algebra $\iff \to_{\mathcal T}^+$ is terminating

follows from:

$$\mathcal{T} \models s > t \iff \mathcal{T} \vdash s > t \iff s \to_{\mathcal{T}}^+ t$$

Problem 1 Same result?

Home Page Title Page Contents Page 5 of 28 Go Back Full Screen Close

Quit

2. Equational specification

Equational specification $\mathcal{E}\mathcal{M}\mathit{ul}$

Title Page

Contents

Page 5 of 28

Go Back

Full Screen

Close

Quit

2. Equational specification

Equational specification $\mathcal{E}\mathcal{M}\mathit{ul}$

signature Σ 0, S, A, M.

Title Page

Contents

Page 5 of 28

Go Back

Full Screen

Close

Quit

2. Equational specification

Equational specification $\mathcal{EM}ul$

signature
$$\Sigma$$
 0, S, A, M.

equations over Σ

$$\begin{array}{rcl} \mathbf{A}(x,\mathbf{0}) & \approx & x \\ \mathbf{A}(x,\mathbf{S}(y)) & \approx & \mathbf{S}(\mathbf{A}(x,y)) \\ \mathbf{M}(x,\mathbf{0}) & \approx & \mathbf{0} \\ \mathbf{M}(x,\mathbf{S}(y)) & \approx & \mathbf{A}(x,\mathbf{M}(x,y)) \end{array}$$

Title Page

Contents

Page 5 of 28

Go Back

Full Screen

Close

Quit

2. Equational specification

Equational specification $\mathcal{EM}ul$

signature
$$\Sigma$$
 0, S, A, M.

equations over Σ

$$\begin{array}{rcl} \mathbf{A}(x,\mathbf{0}) & \approx & x \\ \mathbf{A}(x,\mathbf{S}(y)) & \approx & \mathbf{S}(\mathbf{A}(x,y)) \\ \mathbf{M}(x,\mathbf{0}) & \approx & \mathbf{0} \\ \mathbf{M}(x,\mathbf{S}(y)) & \approx & \mathbf{A}(x,\mathbf{M}(x,y)) \end{array}$$

equation considered w.r.t. $\mathcal{EM}ul$

$$\mathbf{M}(\mathbf{S}(x),\mathbf{S}(\mathbf{0})) \ \approx \ \mathbf{S}(x) \tag{1}$$

Home Page Title Page Contents Page 6 of 28 Go Back Full Screen Close Quit

Title Page

Contents

Page 7 of 28

Go Back

Full Screen

Close

Quit

2.1. Validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

Title Page

Contents

Page 7 of 28

Go Back

Full Screen

Close

Quit

2.1. Validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

equation $s \approx t$ holds in \mathcal{A} $\mathcal{N}at \models \mathtt{A}(\mathtt{0},\mathtt{S}(\mathtt{0})) \approx \mathtt{A}(\mathtt{S}(\mathtt{0}),\mathtt{0})$ (since 1=1) $\mathcal{N}at \not\models \mathtt{A}(\mathtt{0},\mathtt{0}) \approx \mathtt{S}(\mathtt{0})$ (since $0 \neq 1$) open equation holds, if so for all assignments α

Title Page

Contents

Page 7 of 28

Go Back

Full Screen

Close

Quit

2.1. Validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

equation $s \approx t$ holds in \mathcal{A} $\mathcal{N}at \models \mathtt{A}(\mathtt{0},\mathtt{S}(\mathtt{0})) \approx \mathtt{A}(\mathtt{S}(\mathtt{0}),\mathtt{0})$ (since 1=1) $\mathcal{N}at \not\models \mathtt{A}(\mathtt{0},\mathtt{0}) \approx \mathtt{S}(\mathtt{0})$ (since $0 \neq 1$) open equation holds, if so for all assignments α

 \mathcal{A} models \mathcal{E} , if all equations hold $\mathcal{N}at \models \mathcal{E}\mathcal{M}ul$ $s \approx t$ valid in \mathcal{E} , if holds in any model $\mathcal{E} \models \mathtt{M}(\mathtt{S}(x),\mathtt{S}(\mathtt{0})) \approx \mathtt{S}(x)$

Title Page

Contents

Page 8 of 28

Go Back

Full Screen

Close

Quit

2.2. Derivability

s pprox t derivable (in equational logic) from ${\cal E}$

$$\frac{(s \approx t \in E)}{s \approx t} \quad \frac{s \approx t}{\sigma(s) \approx \sigma(t)} \quad \frac{s_1 \approx t_1 \dots s_n \approx t_n}{f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)}$$

$$\frac{s \approx t}{s \approx s} \quad \frac{s \approx t}{t \approx s} \quad \frac{s \approx t}{s \approx u}$$

 σ substitution, f function symbol

$$\frac{\frac{\mathbf{M}(x,0)\approx0}{\mathbf{M}(x,\mathbf{S}(y))\approx\mathbf{A}(x,\mathbf{M}(x,y))}{\frac{\mathbf{M}(\mathbf{S}(x),\mathbf{S}(0))\approx\mathbf{A}(\mathbf{S}(x),\mathbf{M}(\mathbf{S}(x),0))}{\mathbf{M}(\mathbf{S}(x),\mathbf{S}(0))\approx\mathbf{A}(\mathbf{S}(x),\mathbf{M}(\mathbf{S}(x),0))\approx\mathbf{A}(\mathbf{S}(x),\mathbf{M}(\mathbf{S}(x),0))\approx\mathbf{S}(x)}}{\frac{\mathbf{A}(\mathbf{S}(x),\mathbf{M}(\mathbf{S}(x),\mathbf{S}(0))\approx\mathbf{A}(\mathbf{S}(x),\mathbf{M}(\mathbf{S}(x),0))\approx\mathbf{S}(x)}{\mathbf{A}(\mathbf{S}(x),\mathbf{S}(0))\approx\mathbf{S}(x)}}$$

Title Page

Contents

Page 9 of 28

Go Back

Full Screen

Close

Quit

2.3. Convertibility

reduction step from s to t

$$s \to_{\mathcal{E}} t$$
, if $s = C[\sigma(l)]$ and $t = C[\sigma(r)]$

C context, σ substitution, $l \approx r \in \mathcal{E}$

$$\mathtt{S}(\mathtt{A}(\mathtt{0},\mathtt{0})) \to_{\mathcal{E}} \mathtt{S}(\mathtt{0})$$

$$C:=\mathtt{S}([\,])$$
, $\sigma(x):=\mathtt{O}$, $\mathtt{A}(x,\mathtt{O})\approx x\in\mathcal{EM}ul$

Title Page

Contents

Page 9 of 28

Go Back

Full Screen

Close

Quit

2.3. Convertibility

reduction step from s to t

$$s \to_{\mathcal{E}} t$$
, if $s = C[\sigma(l)]$ and $t = C[\sigma(r)]$

C context, σ substitution, $l \approx r \in \mathcal{E}$

$$\mathtt{S}(\mathtt{A}(\mathtt{0},\mathtt{0})) \to_{\mathcal{E}} \mathtt{S}(\mathtt{0})$$

$$C := S([]), \ \sigma(x) := 0, \ A(x,0) \approx x \in \mathcal{EM}ul$$

s convertible to t

connected by backward and forward reduction steps

$$\underline{\mathrm{M}(\mathrm{S}(x),\mathrm{S}(\mathrm{O}))} \to \mathrm{A}(\mathrm{S}(x),\underline{\mathrm{M}(\mathrm{S}(x),\mathrm{O})}) \to \underline{\mathrm{A}(\mathrm{S}(x),\mathrm{O})} \to \mathrm{S}(x)$$

Home Page Title Page Contents Page 10 of 28 Go Back Full Screen Close

Quit

2.4. Proofs for equational specifications

 $\mathsf{valid} \Leftrightarrow_{\mathsf{Birkhoff}} \mathsf{derivable} \Leftrightarrow_{\mathsf{Logicality}} \mathsf{convertible}$

Home Page Title Page Contents Page 10 of 28 Go Back Full Screen Close Quit

2.4. Proofs for equational specifications

valid $\Leftrightarrow_{\mathsf{Birkhoff}}$ derivable $\Leftrightarrow_{\mathsf{Logicality}}$ convertible

- Soundness of Birkhoff by induction on derivations
- Completeness of Birkhoff by term model
- Soundness of logicality by simulation
- Completeness of logicality by derivation standardisation

Home Page Title Page Contents Page 11 of 28 Go Back Full Screen Close

Quit

2.5. Birkhoff soundness

Thm 2 valid ← derivable

Proof by induction on derivations

Home Page Title Page Contents Page 11 of 28 Go Back Full Screen Close Quit

2.5. Birkhoff soundness

Thm 2 valid ← derivable

Proof by induction on derivations

All inference rules trivially preserve validity . . .

Title Page

Contents

Page 11 of 28

Go Back

Full Screen

Close

Quit

2.5. Birkhoff soundness

Thm 2 *valid* ← *derivable*

Proof by induction on derivations

All inference rules trivially preserve validity . . .

$$\frac{s\approx t}{\sigma(s)\approx\sigma(t)}$$

needs semantic substitution lemma

$$\llbracket \mathcal{A} \cup \alpha \rrbracket (\sigma(u)) = \llbracket \mathcal{A} \cup \alpha_{\sigma} \rrbracket (u) \tag{2}$$

Home Page Title Page Contents Page 12 of 28 Go Back Full Screen Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof
Derivable equality 'is' a model

Home Page Title Page Contents Page 12 of 28 Go Back Full Screen

Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof Derivable equality 'is' a model Term algebra $\mathcal{T}(\Sigma)$ (interpret terms as themselves) not yet a model e.g. $A(0,0) \neq 0$

Title Page

Contents

Page 12 of 28

Go Back

Full Screen

Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof

Derivable equality 'is' a model

Term algebra $\mathcal{T}(\Sigma)$ (interpret terms as themselves) not yet a model e.g. $A(0,0) \neq 0$

Quotient algebra $\mathcal{T}(\Sigma)/_{\approx}$ (terms modulo derivability)

Title Page

Contents

Page 12 of 28

Go Back

Full Screen

Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof

Derivable equality 'is' a model

Term algebra $\mathcal{T}(\Sigma)$ (interpret terms as themselves) not yet a model e.g. $A(0,0) \neq 0$

Quotient algebra $\mathcal{T}(\Sigma)/_{\approx}$ (terms modulo derivability)

 $\mathcal{T}(\Sigma)/_{\approx}$ is algebra (derivable equality is congruence)

Title Page

Contents

Page 12 of 28

Go Back

Full Screen

Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof

Derivable equality 'is' a model

Term algebra $\mathcal{T}(\Sigma)$ (interpret terms as themselves) not yet a model e.g. $A(0,0) \neq 0$

Quotient algebra $\mathcal{T}(\Sigma)/_{\approx}$ (terms modulo derivability)

 $T(\Sigma)/_{\approx}$ is algebra (derivable equality is congruence)

 $\mathcal{T}(\Sigma)/_{\approx}$ is a model

all derivable equalities hold by induction on derivation. . .

Title Page

Contents

Page 12 of 28

Go Back

Full Screen

Close

Quit

2.6. Birkhoff completeness

Thm 3 *valid* \Rightarrow *derivable*

Proof

Derivable equality 'is' a model

Term algebra $\mathcal{T}(\Sigma)$ (interpret terms as themselves) not yet a model e.g. $A(0,0) \neq 0$

Quotient algebra $\mathcal{T}(\Sigma)/_{\approx}$ (terms modulo derivability)

 $\mathcal{T}(\Sigma)/_{\approx}$ is algebra (derivable equality is congruence)

 $\mathcal{T}(\Sigma)/_{\approx}$ is a model

all derivable equalities hold by induction on derivation. . .

$$s \approx t \in \mathcal{E}$$

needs syntactic substitution lemma

$$[\![\mathcal{T}(\Sigma)/_{\approx} \cup \beta]\!](u) = [\![\![\mathcal{T}(\Sigma) \cup \alpha]\!](u)]_{\approx}$$
 (3)

Home Page Title Page Contents Page 13 of 28 Go Back Full Screen Close

Quit

Home Page Title Page Contents Page 14 of 28 Go Back Full Screen Close

Quit

2.7. Logicality soundness

Thm 4 *derivable ← convertible*

Proof

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof reduction step $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ 'is' a derivation

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof $\begin{array}{l} \text{reduction step } C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)] \text{ 'is' a derivation } \\ l \to r \text{ simulated by } \frac{(s \approx t \in E)}{s \approx t} \end{array}$

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof $\begin{array}{l} \text{reduction step } C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)] \text{ 'is' a derivation} \\ l \to r \text{ simulated by } \frac{(s \approx t \in E)}{s \approx t} \\ \sigma(l) \to \sigma(r) \text{ simulated by } \frac{s \approx t}{\sigma(s) \approx \sigma(t)} \end{array}$

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof reduction step $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ 'is' a derivation $l \to r$ simulated by $\frac{(s \approx t \in E)}{s \approx t}$ $\sigma(l) \to \sigma(r)$ simulated by $\frac{s \approx t}{\sigma(s) \approx \sigma(t)}$ $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ simulated by $\frac{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}$ and $\frac{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}$ and $\frac{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}$

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof reduction step $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ 'is' a derivation $l \to r$ simulated by $\frac{(s \approx t \in E)}{s \approx t}$ $\sigma(l) \to \sigma(r)$ simulated by $\frac{s \approx t}{\sigma(s) \approx \sigma(t)}$ $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ simulated by $\frac{c[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]}{c[\sigma(s)] \to c[\sigma(s)]}$ and $\frac{c[\sigma(s)] \to c[\sigma(s)]}{c[\sigma(s)] \to c[\sigma(s)]}$ and $\frac{c[\sigma(s)] \to c[\sigma(s)]}{c[\sigma(s)] \to c[\sigma(s)]}$ conversion (back/forward steps) 'is' a derivation

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

Thm 4 *derivable* ← *convertible*

Proof $\begin{array}{l} \text{reduction step } C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)] \text{ 'is' a derivation } \\ l \to r \text{ simulated by } \frac{(s \approx t \in E)}{s \approx t} \\ \sigma(l) \to \sigma(r) \text{ simulated by } \frac{s \approx t}{\sigma(s) \approx \sigma(t)} \\ C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)] \text{ simulated by } \\ \frac{s_1 \approx t_1 \quad \dots \quad s_n \approx t_n}{f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)} \text{ and } \frac{1}{s \approx s} \\ \text{conversion (back/forward steps) 'is' a derivation } \\ \text{backward simulated by } \frac{s \approx t}{t_{s+1}} \\ \end{array}$

Title Page

Contents

Page 14 of 28

Go Back

Full Screen

Close

Quit

2.7. Logicality soundness

 $s \approx s$

Thm 4 derivable ← convertible

Proof reduction step $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ 'is' a derivation $l \rightarrow r$ simulated by $\frac{(s \approx t \in E)}{r}$ $\sigma(l) \to \sigma(r) \text{ simulated by } \frac{s \approx t}{\sigma(s) \approx \sigma(t)}$ $C[\sigma(l)] \to_{\mathcal{E}} C[\sigma(r)]$ simulated by $\frac{\ddot{s_1} \approx \ddot{t_1} \quad \dots \quad \ddot{s_n} \approx \dot{t_n}}{f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)} \text{ and } \frac{}{s \approx s}$ conversion (back/forward steps) 'is' a derivation backward simulated by $\frac{s \approx t}{}$ steps simulated by

Home Page Title Page Contents Page 15 of 28 Go Back Full Screen Close Quit

2.8. Logicality completeness

Thm 5 *derivable* ⇒ *convertible*

Proof
Derivation standardises to conversion

Title Page

Contents

Page 15 of 28

Go Back

Full Screen

Close

Quit

2.8. Logicality completeness

Thm 5 *derivable* ⇒ *convertible*

Proof

Derivation standardises to conversion

standardisation: commute derivations in wrong order

$$\frac{s \approx t \quad t \approx u}{\underbrace{s \approx u}_{u \approx s}} \leadsto \underbrace{\frac{s \approx t}{t \approx s}} \quad \frac{t \approx u}{u \approx t}$$

Title Page

Contents

Page 15 of 28

Go Back

Full Screen

Close

Quit

2.8. Logicality completeness

Thm 5 *derivable* ⇒ *convertible*

Proof

Derivation standardises to conversion

standardisation: commute derivations in wrong order

$$\frac{s \approx t \quad t \approx u}{\frac{s \approx u}{u \approx s}} \leadsto \frac{s \approx t}{t \approx s} \quad \frac{t \approx u}{u \approx t}$$

process terminates, by recursive path order

$$r_1(r_2(\vec{x_1}), \dots, r_2(\vec{x_n})) \leadsto$$

 $r_2(r_1(x_{11}, \dots, x_{1n}), \dots, r_1(x_{m1}, \dots, x_{mn}))$

Home Page Title Page Contents Page 16 of 28 Go Back Full Screen Close Quit

3. Sub-equational specifications

Arise by removing some of derivation rules

Home Page Title Page Contents Page 16 of 28 Go Back Full Screen Close

Quit

3. Sub-equational specifications

Arise by removing some of derivation rules

equational specification: remove nothing rewriting logic specification: remove symmetry strict specification: remove reflexivity as well term rewriting specification: also transitivity etc.

Home Page Title Page Contents Page 16 of 28 Go Back Full Screen Close Quit

3. Sub-equational specifications

Arise by removing some of derivation rules

equational specification: remove nothing rewriting logic specification: remove symmetry strict specification: remove reflexivity as well term rewriting specification: also transitivity etc.

Problem 6 Proofs are not parametric

Home Page Title Page Contents Page 16 of 28 Go Back Full Screen Close

Quit

3. Sub-equational specifications

Arise by removing some of derivation rules

equational specification: remove nothing rewriting logic specification: remove symmetry strict specification: remove reflexivity as well term rewriting specification: also transitivity etc.

Problem 6 Proofs are not parametric

Solution 7 *Make proofs parametric Remove dependencies between derivation rules*

Home Page Title Page Contents Page 17 of 28 Go Back Full Screen Close

Quit

3.1. Sub-equational specifications

Sub-equational specification $\mathcal{M}\mathit{ul}$

Home Page Title Page Contents Page 17 of 28 Go Back Full Screen

Close

Quit

3.1. Sub-equational specifications

Sub-equational specification $\mathcal{M}\mathit{ul}$

 $\begin{array}{l} \textbf{signature} \ \Sigma \\ \textbf{0, S, A, M.} \end{array}$

Title Page

Contents

Page 17 of 28

Go Back

Full Screen

Close

Quit

3.1. Sub-equational specifications

Sub-equational specification $\mathcal{M}ul$

signature Σ 0, S, A, M.

statements over Σ

$$\begin{split} & (\mathbf{A}(x,\mathbf{O}),x) \\ & (\mathbf{A}(x,\mathbf{S}(y)),\mathbf{S}(\mathbf{A}(x,y))) \\ & (\mathbf{M}(x,\mathbf{O}),\mathbf{O}) \\ & (\mathbf{M}(x,\mathbf{S}(y)),\mathbf{A}(x,\mathbf{M}(x,y))) \end{split}$$

subset of inference modes

```
{(embedding), (compatibility), (reflexivity), (symmetry), (transitivity)}
```

Home Page Title Page Contents Page 18 of 28 Go Back Full Screen Close Quit

3.2. Sub-equational specification examples

```
equational spec {(embedding), (compatibility),
  (reflexivity), (symmetry), (transitivity)}
```

```
rewriting logic spec {(embedding), (compatibility), (reflexivity), (transitivity)}
```

```
strict spec {(embedding), (compatibility),
  (transitivity)}
```

Title Page

Contents

Page 19 of 28

Go Back

Full Screen

Close

Quit

3.3. Sub-validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

Title Page

Contents

Page 19 of 28

Go Back

Full Screen

Close

Quit

3.3. Sub-validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

relation R models statements which hold statement (s,t) holds in (\mathcal{A},R) if $s^{\mathcal{A}}$ R $t^{\mathcal{A}}$ open statement holds, if so for all assignments α

Title Page

Contents

Page 19 of 28

Go Back

Full Screen

Close

Quit

3.3. Sub-validity

algebra \mathcal{A} interprets signature (carrier, operations) $\mathcal{N}at$ interprets Σ as set of natural numbers $\mathcal{N}at$ interprets 0, S, A and M as zero, successor, addition and multiplication

relation R models statements which hold statement (s,t) holds in (\mathcal{A},R) if $s^{\mathcal{A}}$ R $t^{\mathcal{A}}$ open statement holds, if so for all assignments α

relational model of $\mathcal{M}ul$ if

$$\frac{(s,t) \in \mathcal{M}ul}{s R t} \text{ (emb)} \quad \frac{a_1, \dots, a_n = [R] \ b_1, \dots, b_n}{f^{\mathcal{A}}(a_1, \dots, a_n) \ R \ f^{\mathcal{A}}(b_1, \dots, b_n)} \text{ (comp)}$$

$$\frac{a R b}{b R a} \text{ (ref)} \quad \frac{a R b}{b R a} \text{ (sym)} \quad \frac{a R b}{a R c} \text{ (trans)}$$

Title Page

Contents

Page 20 of 28

Go Back

Full Screen

Close

Quit

3.4. Sub-validity examples

 $(\mathcal{N}at,=)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma), \leftrightarrow^*)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma), \rightarrow^*)$ is a relational model of rewriting logic spec $\mathcal{M}ul$

Title Page

Contents

Page 20 of 28

Go Back

Full Screen

Close

Quit

3.4. Sub-validity examples

 $(\mathcal{N}at,=)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma), \leftrightarrow^*)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma),
ightharpoonup^*)$ is a relational model of rewriting logic spec $\mathcal{M}ul$ but not of $\mathcal{M}ul$ as equational logic spec

 $(\mathcal{T}(\Sigma),=)$ is **not** a relational model of equational logic spec $\mathcal{M}ul$

Title Page

Contents

Page 20 of 28

Go Back

Full Screen

Close

Quit

3.4. Sub-validity examples

 $(\mathcal{N}at, =)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma), \leftrightarrow^*)$ is a relational model of equational logic spec $\mathcal{M}ul$

 $(\mathcal{T}(\Sigma), \to^*)$ is a relational model of rewriting logic spec $\mathcal{M}ul$ but not of $\mathcal{M}ul$ as equational logic spec

 $(\mathcal{T}(\Sigma),=)$ is **not** a relational model of equational logic spec $\mathcal{M}ul$

model: relational model no non-trivial congruences

Title Page

Contents

Page 21 of 28

Go Back

Full Screen

Close

Quit

3.5. Sub-derivability

(s,t) derivable from ${\cal S}$

$$\frac{(s,t) \in S}{\sigma(s) \, \underline{\mathcal{S}} \, \sigma(t)} \, (\text{emb}) \quad \frac{s_1, \dots, s_n = [\underline{\mathcal{S}}] \, t_1, \dots, t_n}{f(s_1, \dots, s_n) \, \underline{\mathcal{S}} \, f(t_1, \dots, t_n)} \, (\text{comp})$$

$$\frac{s \underline{\mathcal{S}} t}{t \underline{\mathcal{S}} s}$$
 (ref) $\frac{s \underline{\mathcal{S}} t}{t \underline{\mathcal{S}} s}$ (sym) $\frac{s \underline{\mathcal{S}} t}{s \underline{\mathcal{S}} u}$ (trans)

Rule only if allowed inference mode

Note: no congruence, no substitution

Title Page

Contents

Page 21 of 28

Go Back

Full Screen

Close

Quit

3.5. Sub-derivability

(s,t) derivable from $\mathcal S$

$$\frac{(s,t) \in S}{\sigma(s) \, \underline{\mathcal{S}} \, \sigma(t)} \, (\text{emb}) \quad \frac{s_1, \dots, s_n = [\underline{\mathcal{S}}] \, t_1, \dots, t_n}{f(s_1, \dots, s_n) \, \underline{\mathcal{S}} \, f(t_1, \dots, t_n)} \, (\text{comp})$$

$$\frac{s \underline{\mathcal{S}} t}{s \underline{\mathcal{S}} s}$$
 (ref) $\frac{s \underline{\mathcal{S}} t}{t \underline{\mathcal{S}} s}$ (sym) $\frac{s \underline{\mathcal{S}} t}{s \underline{\mathcal{S}} u}$ (trans)

Rule only if allowed inference mode

Note: no congruence, no substitution

$$\frac{\frac{\overline{\left(\mathsf{M}(\mathsf{S}x,\mathsf{0}),\mathsf{0}\right)}\left(\sigma\right)}{\left(\mathsf{M}(\mathsf{S}x,\mathsf{S}0),\mathsf{A}(\mathsf{S}x,\mathsf{M}(\mathsf{S}x,\mathsf{0}))\right)}\left(\mathsf{comp},\mathsf{A}\right)}{\frac{\overline{\left(\mathsf{A}(\mathsf{S}x,\mathsf{M}(\mathsf{S}x,\mathsf{0})),\mathsf{A}(\mathsf{S}x,\mathsf{0})\right)}\left(\mathsf{comp},\mathsf{A}\right)}{\left(\mathsf{A}(\mathsf{S}x,\mathsf{0}),\mathsf{S}x\right)}}{\frac{\overline{\left(\mathsf{A}(\mathsf{S}x,\mathsf{M}(\mathsf{S}x,\mathsf{0})),\mathsf{S}x\right)}\left(\mathsf{trans}\right)}{\left(\mathsf{M}(\mathsf{S}x,\mathsf{S}0),\mathsf{S}x\right)}}$$

derivation for equational/rewriting logic/strict spec $\mathcal{M}ul$

Home Page Title Page Contents Page 22 of 28 Go Back Full Screen Close

Quit

3.6. Sub-convertibility

The sub-convertibility relation obtained as closure under inference modes in order

Title Page

Contents

Page 22 of 28

Go Back

Full Screen

Close

Quit

3.6. Sub-convertibility

The sub-convertibility relation obtained as closure under inference modes in order

for equational specification sub-convertibility is convertibility $\leftrightarrow^*_{\mathcal{M}\mathit{ul}}$

for rewriting logic specification sub-convertibility is rewritability/reachability $\to_{\mathcal{M}ul}^*$

for strict specification sub-convertibility is strict reachability $\rightarrow^+_{\mathcal{M}ul}$

Home Page Title Page Contents Page 23 of 28 Go Back Full Screen Close Quit

3.7. Proofs for sub-equational specifications

 $sub-valid \Leftrightarrow_{Sub-Birkhoff} sub-derivable \Leftrightarrow_{Sub-logicality} sub-convertible$

Home Page Title Page Contents Page 23 of 28 Go Back Full Screen Close Quit

3.7. Proofs for sub-equational specifications

 $sub-valid \Leftrightarrow_{Sub-Birkhoff} sub-derivable \Leftrightarrow_{Sub-logicality} sub-convertible$

- Soundness of sub-Birkhoff by induction on derivations
- Completeness of sub-Birkhoff by relational term model followed by quotient construction
- Soundness of sub-logicality by simulation
- Completeness of sub-logicality by derivation standardisation

Home Page Title Page Contents Page 24 of 28 Go Back Full Screen Close Quit

3.8. Sub-Birkhoff soundness

Thm 8 *sub-valid* ← *sub-derivable*

Proof by induction on derivations

3.8. Sub-Birkhoff soundness

Thm 8 *sub-valid* ← *sub-derivable*

Proof by induction on derivations

All inference rules trivially preserve validity . . .

Title Page

Contents

Page 24 of 28

Go Back

Full Screen

Close

Quit

3.8. Sub-Birkhoff soundness

Thm 8 *sub-valid* ← *sub-derivable*

Proof by induction on derivations

All inference rules trivially preserve validity . . .

$$\frac{(s,t) \in S}{\sigma(s) \, \underline{\mathcal{S}} \, \sigma(t)} \, (\text{emb})$$

needs semantic substitution lemma

Home Page Title Page Contents Page 25 of 28 Go Back Full Screen Close

Quit

3.9. Sub-Birkhoff completeness

Thm 9 *sub-valid* \Rightarrow *sub-derivable*

Proof
Sub-derivability 'is' a relational model
Quotiented sub-derivability 'is' a model

Home Page Title Page Contents Page 25 of 28 Go Back Full Screen Close Quit

3.9. Sub-Birkhoff completeness

Thm 9 *sub-valid* \Rightarrow *sub-derivable*

Proof

Sub-derivability 'is' a relational model

Quotiented sub-derivability 'is' a model

Relational term model:

Term algebra $\mathcal{T}(\Sigma)$ paired up with derivable equality

Note: this is a relational model

Title Page

Contents

Page 25 of 28

Go Back

Full Screen

Close

Quit

3.9. Sub-Birkhoff completeness

Thm 9 *sub-valid* \Rightarrow *sub-derivable*

Proof

Sub-derivability 'is' a relational model

Quotiented sub-derivability 'is' a model

Relational term model:

Term algebra $\mathcal{T}(\Sigma)$ paired up with derivable equality

Note: this is a relational model

Quotienting out maximal congruence yields model all derivable equalities hold by induction on derivation

$$\frac{(s,t) \in S}{\sigma(s) \ \underline{\mathcal{S}} \ \sigma(t)}$$

needs syntactic substitution lemma

Home Page Title Page Contents Page 26 of 28 Go Back Full Screen Close Quit

3.10. Logicality soundness

Thm 10 sub-derivable \Leftarrow sub-convertible

Proof sub-conversion is a sub-derivation

Home Page Title Page Contents Page 27 of 28 Go Back Full Screen Close Quit

3.11. Logicality completeness

Thm 11 derivable \Rightarrow convertible

Proof

Derivation standardises to conversion

Title Page

Contents

Page 27 of 28

Go Back

Full Screen

Close

Quit

3.11. Logicality completeness

Thm 11 derivable \Rightarrow convertible

Proof

Derivation standardises to conversion

standardisation: commute derivations in wrong order

	(emb)	(comp)	(ref)	(sym)	(trans)
$\overline{\text{(emb)}}$	х	mon	mon	mon	mon
(comp)	X	X	(ref)	(sym)	(trans)
(ref)	x	X	X	mon	mon
(sym)	x	X	X	x	(trans)
(trans)	x	X	X	x	X

Vertically: property to be preserved under closing

Horizontally: with respect to indicated inference rule

Note: chosen order is important

Home Page Title Page Contents Page 28 of 28 Go Back Full Screen Close

Quit

4. Conclusion

Parametrised sound- and completeness results

4. Conclusion

Parametrised sound- and completeness results

Attend RTA 2004

Regisration is open now