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Z

Definition

rewrite system→ comprises:

I a set of objects

I a set of (rewrite) steps

I functions src, tgt mapping a step to its source, target object

Definition (Z)
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Z

b•

a b

a•

Definition (Z)

→ has the Z-property if there is a (bullet) map • from objects to objects such
that for any step a→ b from a to b there exist many-step reductions b� a•

from b to a• (upper bound) and a• � b• from a• to b• (monotonic)
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Z

b•

a b

a•

Definition (Z)

∃• : A→ A,∀a,b ∈ A : a→ b =⇒ b� a•, a• � b•
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Z =⇒ confluence

Theorem

If→ has the Z-property, then→ is confluent

Proof.

an+1

b0

a0 a1 a2 a3
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Z =⇒ confluence

Theorem

If→ has the Z-property, then→ is confluent

Proof.

b•
0

a0 a1 a2 a3 an+1

b0 a•
0

Z
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Z =⇒ confluence
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Z
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Z =⇒ confluence

Theorem

If→ has the Z-property, then→ is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•
0 a•

1 a•
2
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Z =⇒ confluence

Theorem

If→ has the Z-property, then→ is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•
0 a•

1 a•
2 a•

n

induction

Z
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Z =⇒ confluence

Theorem

If→ has the Z-property, then→ is confluent

Proof.

induction

a0 a1 a2 a3 an+1

b0 a•
0 a•

1 a•
2 a•

n
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Z =⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

I strategy is sub-system of→ having same normal forms
(CBV is strat for λV, not for λ; strats allowed to be non-deterministic)

I many-step strategy is→+-strategy

I a •−→ a• if a is not a normal form
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Definition (•-strategy)

I strategy is sub-system of→ having same normal forms

I many-step strategy is→+-strategy
(strat for many step system)

I a •−→ a• if a is not a normal form
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Z =⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

I strategy is sub-system of→ having same normal forms

I many-step strategy is→+-strategy

I a •−→ a• if a is not a normal form

is many-step strat: if a not normal, a→ b for some b, so b� a• by Z, so a→+ a•
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Z =⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

I strategy is sub-system of→ having same normal forms

I many-step strategy is→+-strategy

I a •−→ a• if a is not a normal form

is many-step strat: if a not normal, a→ b for some b, so b� a• by Z, so a→+ a•

Definition (hyper-cofinality)

I hyper-strategy: always eventually do a strategy step

I for property P, strategy is hyper-P if hyper-strategy is P

I cofinal: for each strategy reduction any co-initial reduction extendible to it
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Z =⇒ •−→ strategy is hyper-cofinal

hyper: always eventually a •−→-step

a0 a1
a2 a3

a4 a5
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Z =⇒ •−→ strategy is hyper-cofinal

a5

a0 a1
a2 a3

a4
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Z =⇒ •−→ strategy is hyper-cofinal

cofinal

a0 a1
a2 a3

a4 a5
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Z =⇒ •−→ strategy is hyper-cofinal

Theorem

•−→ is hyper-cofinal

Proof.

induction

=Z

a•
n+1

induction

a•
n

Z

a•
0b0

a0 an+1 a•
n+1
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Z =⇒ •−→ strategy is hyper-cofinal

Theorem

•−→ is hyper-cofinal

Proof.

induction

a1

b a•
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Some structured rewrite systems having Z-property

idea for constructing •-function for inductive structures

I suppose to have upper bounds~t• of sub-structures~t of f(~t) by induction

I ponder critical peak between those and head step for any rule f(~̀)→ r

t•1

t•2
t•3

upper bound?

t1

`1 `2 `3

t3

t2

f

f
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Example of Z: λ-calculus

idea for constructing •-function for λ-calculus

I ponder critical peak (λx.M•)N• ← (λx.M)N→ M[x:=N]

I contracting (λx.M•)N• reduces to M•[x:=N•] reduces to M[x:=N]• for • GK

(λx.M•)N•

(λx.M)N M[x:=N]

ub? M[x:=N]•

Theorem ()

→β has the Z-property for • full development:

(λx.M)• = λx.M• x• = x

(MN)• = M′[x:=N•] if MN is a and M• = λx.M′, otherwise M•N•

Proof by induction on term M:

I (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]

I (Extensive) M� M•

I (Rhs) M•[x:=N•]� M[x:=N]•

I (Z) M→ N =⇒ N� M• � N•
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I contracting (λx.M•)N• reduces to M•[x:=N•] reduces to M[x:=N]• for • GK

Rhs
(λx.M•)N•

(λx.M)N M[x:=N]

M•[x:=N•] M[x:=N]•

Gross–Knuth
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Example of Z: λ-calculus

Theorem (Loader)
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→β has the Z-property for • full development (Gross–Knuth):

(λx.M)• = λx.M• x• = x
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I I• = I; (I = λx.x)

I (I(II))• = I, (III)• = II;
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Example of Z: λ-calculus

Theorem (Loader)

→β has the Z-property for • full development (Gross–Knuth):

(λx.M)• = λx.M• x• = x

(MN)• = M′[x:=N•] if MN is a redex and M• = λx.M′, otherwise M•N•

Proof by induction on term M:

I (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]

I (Extensive) M� M•

I (Rhs) M•[x:=N•]� M[x:=N]•

I (Z) M→ N =⇒ N� M• � N•

works for all orthogonal structured rewrite systems
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Example of Z: λ-calculus

Theorem (cf. Aczel)

→β has the Z-property for • full superdevelopment:

(λx.M)• = λx.M• x• = x

(MN)• = M′[x:=N•] if MN is a term and M• = λx.M′, otherwise M•N•

Proof by induction on term M:

I (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]]

I (Extensive) M� M•

I (Rhs) M•[x:=N•]� M[x:=N]•

I (Z) M→ N =⇒ N� M• � N•

full superdevelopment; shortest mechanized proof
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Example of Z: self-distributivity

Definition

self-distributivity generated by rule xyz→ xz(yz)

idea: distribute of 2nd argument to leaves of 1st argument
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Example of Z: self-distributivity

Theorem (Dehornoy)

self-distributivity has Z-property for • full distribution, t[s] uniform distribution:
x• = x (ts)• = t•[s•] t[s] = t[x1:=x1s, x2:=x2s, . . .]

Proof by induction on term t:

I (Sequentialisation) ts� t[s]

I (Substitution) t[s][r]� t[r][s[r]]

I (Extensive) t � t•

I (Z) s� t• � s•, if t → s
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Confluent rewrite systems not having the Z-property
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Transitivity considered harmful

Example (Confluent but not admitting Z)

confluent (by decreasing diagrams); no transitive steps (own transitive reduct)

I consider arbitrary a at the top

I a• must be at bottom, left of a as upper bound of steps from a

I consider arbitrary b at top, strictly left of a•

I a• →+ b• by b• being an upper bound of steps from b

I b• � a• by b� a and monotonicity; contradiction

Example (less-than on Z does not have Z, but transitive reduct does)
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Transitivity considered harmful

Example (Confluent but not admitting Z)

a•

b a

Example (less-than on Z does not have Z, but transitive reduct does)

1−1 0−2 2
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Transitivity considered harmful

Example (Confluent but not admitting Z)

a•

b a

Example (less-than on Z does not have Z, but transitive reduct does)

−1 10−2 2

for given integer, no upper bound on steps from it
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Further examples of rewrite systems having Z

Lemma (Some sufficient conditions for Z)

Z holds if

I confluent and (weakly) normalising: map to the normal form

I locally confluent and terminating: • maps a to arbitrary a• in nf s.t. a� a•

I orthogonal: contract all redexes in structure

I confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

I weakly orthogonal: contract maximal redex-set

I explicit substitutions: compose maps for Beta and subs (Nakazawa & Fujita)

I generalized braids: Garside element tiling genererators (w/ Hans Zantema)

Buenos Aires (Virtual); FSCD 2021 19–07–2021 9
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I confluent and finite: map to any object in normal form quotienting out SCCs

Example (Some further concrete systems)

I weakly orthogonal: contract maximal redex-set (psps, not psps)

I explicit substitutions: compose maps for Beta and subs (Nakazawa & Fujita)

I generalized braids: Garside element tiling genererators (w/ Hans Zantema)
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Angle

a

a•

Definition (Terese 2003)

◦−→ has triangle property if there is a (bullet) map • from objects to objects such
that for any step a ◦−→ b from a to b there exists a step b ◦−→ a• from b to a•
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〈

a

a•

Definition (〈)

∃• : A→ A,∀a,b ∈ A : a ◦−→ b =⇒ b ◦−→ a•
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Z vs. 〈
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Z vs. 〈

Theorem

for any map •, Z ⇐⇒ exists→ ⊆ ◦−→ ⊆� such that 〈

Proof.
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Z vs. 〈

Theorem

for any map •, Z ⇐⇒ exists→ ⊆ ◦−→ ⊆� such that 〈

Proof.

(⇐= ) see paper
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Z vs. 〈

Theorem

for any map •, Z ⇐⇒ exists→ ⊆ ◦−→ ⊆� such that 〈

Proof.

(=⇒ ) define a ◦−→ b if b between a and a•, i.e. a� b� a•:
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Syntax-free developments

Recover results on developments in syntax-free way?

a ◦−→ b defined as a� b� a• can be seen as a •-development, as a syntax-free
definition of development (Church & Rosser) relative to •. which results on
developments can be recovered for •-developments, i.e. in a syntax-free way?
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Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Example (Developments do not coincide with •-developments)

let • be full-development map (contract all redexes in term) for orthogonal TRS

I rules a→ b→ c→ a; non-terminating/cyclic
a• = b but a •-develops to c

I rules a→ b→ c, f(x)→ d; erasing
f(a)• = d but f(a) •-develops to f(c)

I rules g(x)→ h(x)→ i(x)→ x; collapsing
i(h(g(a)))• = i(h(a)) but i(h(g(a))) •-develops to i(h(i(a)))
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Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments
and •-developments coincide.

Buenos Aires (Virtual); FSCD 2021 19–07–2021 12



Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments
and •-developments coincide.

Proof.

conditions guarantee absence of syntactic accidents (Lévy): t � s� t• ,
at most one reduction up to permutation equivalence between two terms =⇒
development t � t•, so each step in t � s contracts residual of redex in t =⇒
t � s is a development.
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Syntax-free developments

Recover results on developments in syntax-free way?

which results on developments can be recovered for •-developments?

Theorem

for terminating, non-collapsing, and non-erasing orthogonal TRSs, developments
and •-developments coincide.

Remark

can be regained for arbitrary orthogonal TRSs by lifting: add creation depths (to
overcome collapsingness and non-termination; Hyland–Wadsworth/Lévy labels)
to yield reconstructibility, and memory (to overcome erasingness; cf.
Nederpelt’s scars) to yield invertibility. Question: other systems (λ, SD)?
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Conclusion

I introduced Z-property

I showed interest of Z: entails confluence, gives hyper-cofinal strategy
(computable if • is), allows to characterise recurrence (Statman),. . .

I convenient because of choice of monotonic upper bound function •
does not always exist though even if confluent

I equivalent to triangle property (e.g. Takahashi) but conceptually minimal:
no need for separate inductive definition of parallel reduction

I spin-off: syntax-free notion of •-development; left-divisors
(complete developments) of parallel reduction not closed under left-division

Buenos Aires (Virtual); FSCD 2021 19–07–2021 13



Conclusion

I introduced Z-property

I showed interest of Z: entails confluence, gives hyper-cofinal strategy
(computable if • is), allows to characterise recurrence (Statman),. . .

I convenient because of choice of monotonic upper bound function •
does not always exist though even if confluent

I equivalent to triangle property (e.g. Takahashi) but conceptually minimal:
no need for separate inductive definition of parallel reduction

I spin-off: syntax-free notion of •-development; left-divisors
(complete developments) of parallel reduction not closed under left-division

Buenos Aires (Virtual); FSCD 2021 19–07–2021 13



Conclusion

I introduced Z-property

I showed interest of Z: entails confluence, gives hyper-cofinal strategy
(computable if • is), allows to characterise recurrence (Statman),. . .

I convenient because of choice of monotonic upper bound function •
does not always exist though even if confluent

I equivalent to triangle property (e.g. Takahashi) but conceptually minimal:
no need for separate inductive definition of parallel reduction

I spin-off: syntax-free notion of •-development; left-divisors
(complete developments) of parallel reduction not closed under left-division

Buenos Aires (Virtual); FSCD 2021 19–07–2021 13



Conclusion

I introduced Z-property

I showed interest of Z: entails confluence, gives hyper-cofinal strategy
(computable if • is), allows to characterise recurrence (Statman),. . .

I convenient because of choice of monotonic upper bound function •
does not always exist though even if confluent

I equivalent to triangle property (e.g. Takahashi) but conceptually minimal:
no need for separate inductive definition of parallel reduction

I spin-off: syntax-free notion of •-development; left-divisors
(complete developments) of parallel reduction not closed under left-division

Buenos Aires (Virtual); FSCD 2021 19–07–2021 13



Conclusion

I introduced Z-property

I showed interest of Z: entails confluence, gives hyper-cofinal strategy
(computable if • is), allows to characterise recurrence (Statman),. . .

I convenient because of choice of monotonic upper bound function •
does not always exist though even if confluent

I equivalent to triangle property (e.g. Takahashi) but conceptually minimal:
no need for separate inductive definition of parallel reduction

I spin-off: syntax-free notion of •-development; left-divisors
(complete developments) of parallel reduction not closed under left-division

Buenos Aires (Virtual); FSCD 2021 19–07–2021 13



Further future work?

I find methods for showing the Z-property does not hold (λβη?)

I try to turn Z into automatable method (for confluence tools)?

I what exactly do programming languages want to import?
PLFA (Wadler, Kokke) uses some version of angle/Z to get confluence

I what exactly do proof assistants want to import (for partial functions)?
Agda (Cockx) allows some version of angle/Z to get confluence
Dedukti allows confluent HRS rules (external check, e.g. via CSI-ho or ACPH)

I does your favourite rewrite system have the Z-property?

I . . .
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