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Critical peak systems

Definition (Hirokawa and Middeldorp)

term rewrite system T is a critical peak system if

▸ left-linear (LL);

▸ joinable critical pairs (JCP);

▸ critical peak rules terminating modulo, SN(CPR(T )/T )

CPR(T ) = {t → ti ∣ t0 ← t → t1 is a critical peak of T }

CPR(T )/T = ↠T ⋅ →CPR(T ) ⋅ ↠T
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Critical peak rules

T

0

CPR(T ) CPR(T )

1

T
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Critical peak system examples

▸ T = {a→ b, a→ c ,b→ c , c → c};
(CPR(T ) = {a→ b, a→ c})

▸ T = {f (f (x)) → x , c → c};
(CPR(T ) = {f (f (f (x))) → f (x)})

▸ orthogonal T ;
(LL and non-overlapping, CPR(T ) = ∅)

▸ LL and terminating T with JCP.
(→CPR(T ) ⊆ →T )
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Critical peak systems are confluent

Theorem (Hirokawa & Middeldorp)

critical peak systems are confluent

Proof.
will show multisteps ○Ð→ are confluent
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critical peak systems are confluent
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multistep contracts non-overlapping redex-patterns
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Critical peak systems are confluent

Theorem (Hirokawa & Middeldorp)

critical peak systems are confluent

Proof.
labeled multistep t ○Ð→t′ s iff t ′↠ t ○Ð→ s
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Critical peak systems are confluent

Theorem (Hirokawa & Middeldorp)

critical peak systems are confluent

Proof.
labeling orthogonal peak s ○←Ðt0 t ○Ð→t1 r

t1

�

t1

t0 t0
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Critical peak systems are confluent

Theorem (Hirokawa & Middeldorp)

critical peak systems are confluent

Proof.
labeling non-orthogonal peak s ○←Ðt0 t ○Ð→t1 r

s1

JCP

r1

r1

r1

s1

s1

/�
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Critical peak systems are confluent

Theorem (Hirokawa & Middeldorp)

critical peak systems are confluent

Proof.
ordering labels by CPR(T )/T makes both cases decreasing

rainbow order on colours
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Generalising critical peak systems

generalisations of theorem in this talk:

1. from first-order to higher-order pattern rewrite systems;
(. . . extension of Theorems 2 and 3 to higher-order pattern
rewrite systems (PRSs) as defined by Mayr and Nipkow
[19] . . . )

2. from omitting trivial to development closed critical peaks;
(. . . decreasing the set CPS(T ) of critical pair steps that
need to be relatively terminating with respect to T . We
anticipate that some of the many critical pair criteria for
confluence that have been proposed in the literature (e.g.
[15, 24, 26]) can be used . . . )
(omitting trivial critical pairs due to Middeldorp and
Hirokawa)

3. from critical peak to valley steps.
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Higher-order pattern rewrite systems

Definition

▸ higher-order term rewrite system (HOTRS) is rewrite
system on αβη-equivalence classes of terms over simply
typed signature with lhss and rhss of rules of same type;
(Wolfram)

▸ higher-order pattern rewrite systems (PRS) is higher-order
term rewrite system with lhss of rules ‘first-order like’;
(Nipkow)

▸ t ○Ð→ s iff t = C`i1 . . . `in , s = Cri1 . . . rin for rules `i → ri .
(the redex-pattern occurrences in t are orthogonal)

Fact
PRS multisteps behave as for first-order term rewriting
(→ ⊆ ○Ð→ ⊆↠, orthogonal multisteps commute,
multistep factors through each of its elements)
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Pattern rewrite systems are non-borromean

case split between � and /� needs

Lemma (patterns non-borromean)

set of redex-patterns is orthogonal iff pairwise orthogonal

Theorem
higher-order critical peak systems are confluent

generalises confluence by orthogonality and by LL,JCP,SN
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Development closed critical peaks

Definition
critical peak is development closed if

Example

{f (g(x)) → h(c),g(a) → i(b), f (i(x)) → h(x),b→ c}
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Development closed critical peaks

Theorem
higher-order critical peak systems, with only critical peak rules
for non-development closed rules, are confluent

Proof.
will show confluence ○Ð→ by reduction to earlier cases (� and /�)
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Development closed critical peaks

Theorem
higher-order critical peak systems, with only critical peak rules
for non-development closed rules, are confluent

Proof.
by induction on amount of overlap # between multisteps

amount of overlap #
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Development closed critical peaks

Theorem
higher-order critical peak systems, with only critical peak rules
for non-development closed rules, are confluent

Proof.
labeling development closed peak s ○←Ðt0 t ○Ð→t1 r

#
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Development closed critical peaks

Theorem
higher-order critical peak systems, with only critical peak rules
for non-development closed rules, are confluent

Proof.
labeling development closed peak s ○←Ðt0 t ○Ð→t1 r

#t0

devclosed

t1
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Critical valley systems

Definition
higher-order pattern rewrite system T is critical valley system if

▸ left-linear (LL);

▸ joinable critical pairs (JCP);

▸ critical valley rules terminating modulo, SN(CVR(T )/T );
(see next slide for CVR(T ))

▸ development closed peaks do not contribute to CVR(T ).
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Critical valley rules

T

CVR(T )

T

CVR(T )



Critical peak
systems

Higher-order
pattern rewrite
systems

Development
closed critical
peaks

Critical valley
systems

14

Critical valley systems are confluent

Theorem
critical valley systems are confluent

Proof.
show decreasingness invariant ○←Ðt0 ⋅ ○Ð→t1 ⊆ ○Ð→t1 ⋅ ↔

∗

<
⋅ ○←Ðt0
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Critical valley systems are confluent

Theorem
critical valley systems are confluent

Proof.
as before, by induction on amount of overlap #, and cases �, /�
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Critical valley systems are confluent

Theorem
critical valley systems are confluent

Proof.
new /�-case: decrease of amount of overlap # in both corners

#

JCP #

/�



Critical peak
systems

Higher-order
pattern rewrite
systems

Development
closed critical
peaks

Critical valley
systems

15

Conclusion

▸ Extension of critical peak systems in three directions
(higher-order, development closed, valley)

▸ Combination with other critial peak criteria?



Critical peak
systems

Higher-order
pattern rewrite
systems

Development
closed critical
peaks

Critical valley
systems

15

Conclusion

▸ Extension of critical peak systems in three directions
(higher-order, development closed, valley)

▸ Combination with other critial peak criteria?


	Critical peak systems
	Higher-order pattern rewrite systems
	Development closed critical peaks
	Critical valley systems

