
Abstract Rewriting

ISR 2008, Obergurgl, Austria

Vincent van Oostrom

Theoretical Philosophy
Utrecht University

Netherlands

16:00 – 17:30, Mon/Wednesday July 21, ISR 2008

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property

if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects

such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b

there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

A rewrite relation → has the Z-property
if there is a map • from objects to objects
such that for any step a→ b from a to b
there exists a many-step reduction b � a• from b to a•

and there exists a many-step reduction a• � b• from a• to b•

Z

b•

a b

a•

∃• : A→ A, ∀a, b ∈ A : a→ b ⇒ b � a•, a• � b•

Z intuitions

a b

a• b•

Z intuitions

a b

a•

upperbound on steps

Z intuitions

monotonic

a b

a• b•

upperbound on steps

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

an+1

b0

a0 a1 a2 a3

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

b0

a0 a1 a2 a3 an+1

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

b•0

a0 a1 a2 a3 an+1

b0 a•0

Z

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

Z

a0 a1 a2 a3 an+1

b0 a•0

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

Z
a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2 a•n

induction

Z

Z ⇒ confluence

Theorem
If rewrite relation has the Z-property, then it is confluent

Proof.

induction

a0 a1 a2 a3 an+1

b0 a•0 a•1 a•2 a•n

Z ⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

a •−→ b if a is not a normal form and b = a•

Z ⇒ •−→ strategy is hyper-cofinal

Hyper: eventually always

a0 a1
a2 a3

a4 a5

Z ⇒ •−→ strategy is hyper-cofinal

a5

a0 a1
a2 a3

a4

Z ⇒ •−→ strategy is hyper-cofinal

Cofinal

a0 a1
a2 a3

a4 a5

Z ⇒ •−→ strategy is hyper-cofinal

Definition
•−→ hyper-cofinal, if for any reduction which eventually always

contains a •−→-step, any co-initial reduction can be extended to
reach the first

Z ⇒ •−→ strategy is hyper-cofinal

hyper-cofinal ⇒
I confluent

I (hyper-)normalising

I bullet-fast . . .

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

=Z

a•n+1

induction

a•n

Z

a•0b0

a0 an+1 a•n+1

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

a•0

a0

b0

an+1 a•n+1

induction

=Z

a•n+1

induction

a•n

Z

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

Z

a0

b0 a•0

an+1 a•n+1

induction

=Z

a•n+1

induction

a•n

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

a•n

a0

b0 a•0

an+1 a•n+1

Z

induction

=Z

a•n+1

induction

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

=

a0

b0 a•0

an+1

a•n+1

a•n+1

inductionZ Z

a•n

induction

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

a0

b0 a•0

an+1

a•n+1

a•n+1

=inductionZ Z

a•n

Z ⇒ •−→ strategy is hyper-cofinal

Theorem
•−→ is hyper-cofinal

Proof.

induction

a1

b a•1

an+1

a•n+1

a•n+1

=inductionZ Z

a•n

Examples

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Definition
Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

≡≡

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Example

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: braids

Theorem
Braid rewriting has the Z-property, for • full crossing

Proof.

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Definition
Self-distributivity, rewrite relation generated by xyz → xz(yz)

Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Example

I (xy)• = x [y] = x [x :=xy] = xy ;

I (xyz)• = (xy)[x :=xz , y :=yz] = xz(yz).

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: self-distributivity

Theorem
Self-distributivity has the Z-property, for • full distribution:

x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.
By induction on t:

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r] � t[r][s[r]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Example: normalising and confluent relations

Theorem
Normalising and confluent relations have the Z-property,
for • the full reduction map (map to normal form).

Proof.
If a→ b, then b � a• � b• since b reduces to its normal form b•

(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Example

I I • = I ; (I = λx .x)

I (I (II))• = I , (III)• = II ;

I ((λxy .x)zw)• = (λy .z)w ;

I ((λxy .Iyx)zI)• = (λy .yz)I ;

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.

Same method works for all orthogonal first/higher-order TRSs

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Outside-in not monotonic: not g(f (f (x))) � g(f (f (f (x))))!

Non-examples

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Some properties of •s

I if a � b then a• � b•;

I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z

Z does not have Z

1−1 0−2 2

Z does not have Z

−1 10−2 2

for given integer, no upperbound on steps from it

Z does not have Z

−1 10−2 2

not finitely branching, no finite TRS

for given integer, no upperbound on steps from it

Ẑ does not have Z

1−1 0−2 2

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Ẑ does not have Z

1−1 0−2 2

finitely branching, finite TRS

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Ẑ does not have Z

0•1−1−2

finitely branching, finite TRS

not monotonic (e.g. for −3)

0

n(x)→ p(x) n(1)→ 0 0→ p(1)

n(s(x))→ n(x)

p(x)→ p(s(x))

Z[does have Z

1−1 0−2 2

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

Z trivial (i• = i + 1)

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Z[does have Z

Z trivial (i• = i + 1)

1−1 0−2 2

finitely branching, finite TRS, no transitivity

Examples show:

I confluent 6 ⇒ Z

I transitivity might be harmful

Exercises on Z

Exercise
(favourite Z?)
Does your favourite confluent rewrite system have the Z-property?

Exercises on Z

Exercise
(orthogonal systems)

I Verify that for the λ-calculus the full-development bullet map
indeed has the Z-property, by verifying (Substition), (Self),
(Rhs), and (Z)

I Inductively define a full-development function on terms, for
orthogonal TRSs, and verify that it does have the Z-property
for these TRSs.

Exercises on Z

Exercise
(superdevelopments)
Adapt the proof of the first item of the previous exercise to show:

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Example

I I • = I ; (I = λx .x)

I (I (II))• = I , (III)• = I ;

I ((λxy .x)zw)• = z ;

I ((λxy .Iyx)zI)• = Iz

Exercises on Z

Exercise
(Z vs. decreasing diagrams)*
Can you prove confuence of braids or λ-calculus or orthogonal
TRSs using decreasing diagrams (other than via the completeness
result)?

Exercises on Z

Exercise
(βη)*
Does the λ-calculus with β-reduction and restricted η-expansion,
i.e. the inverse of η-reduction restricted so that it never creates a
β-redex (generates a new β-redex), have the Z-property?

Exercises on Z

Exercise
(properties of •s)
Prove the properties of • as given on page 75 of these slides.

Summary of first lecture

I Decreasing diagrams (complete) for confluence

I Z-property for confluence and cofinality

Summary of first lecture

I Decreasing diagrams (complete) for confluence

I Z-property for confluence and cofinality

Summary of first lecture

I Decreasing diagrams (complete) for confluence

I Z-property for confluence and cofinality

	Z
	Intuitions

	Consequences
	Confluence
	Hyper-cofinality

	Examples
	Braids
	Self-distributivity
	Normalising and confluent relations
	-calculus
	Weakly orthogonal term rewriting systems

	Non-examples

