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Z ⇒ •−→ strategy is hyper-cofinal

Definition (•-strategy)

a •−→ b if a is not a normal form and b = a•
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Z ⇒ •−→ strategy is hyper-cofinal

Definition
•−→ hyper-cofinal, if for any reduction which eventually always

contains a •−→-step, any co-initial reduction can be extended to
reach the first



Z ⇒ •−→ strategy is hyper-cofinal

hyper-cofinal ⇒
I confluent

I (hyper-)normalising

I bullet-fast . . .
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Some models:

I ACI operations

I take middle of points in space

I substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)
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x• = x (ts)• = t•[s•]
with t[s] uniform distribution of s over t:

t[x1:=x1s, x2:=x2s, . . .]

Proof.

I (Sequentialisation) ts � t[s];

I (Substitution) t[s][r ] � t[r ][s[r ]]

I (Self) t � t•;

I (Z) s � t• � s•, if t → s.
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for • the full reduction map (map to normal form).
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(normalisation) which is the same as the normal form a• of a
(confluence).

Corollary

Z-property for typed λ-calculi (by confluence and termination)
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Example: λ-calculus

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full development
contracting all redexes present:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is an abstraction, M• = λx .M ′

= M•N• otherwise

Proof.
By induction on M:

I (Substitution) M[y :=P][x :=N] = M[x :=N][y :=P[x :=N]];

I (Self) M � M•;

I (Rhs) M•[x :=N•] � M[x :=N]•; and

I (Z) M → N ⇒ N � M• � N•.
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Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))
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g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•



Example: weakly orthogonal term rewriting systems

Definition
Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

I λ-calculus with β and η : λx .Mx →M, if x 6∈ M;

I predecessor/successor S(P(x)))→ x P(S(x))→ x ;

I parallel-or.

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•



Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•



Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•



Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•



Example: weakly orthogonal term rewriting systems

Theorem
Weakly orthogonal first/higher-order term rewrite systems have the
Z-property, for • full inside-out development

Proof.

c(x)→ x

f (f (x))→ f (x)

g(f (f (f (x))))→ g(f (f (x)))

Then g(f (f (c(f (f (x))))))→ g(f (f (f (f (x))))) gives Z:
g(f (f (c(f (f (x))))))• = g(f (f (x))) = g(f (f (f (f (x)))))•

Outside-in not monotonic: not g(f (f (x))) � g(f (f (f (x))))!



Non-examples



Some properties of •s
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I •1 ◦ •2 has Z, if •i do.

I slower order: •1 ≤ •2, if ∀a, a•1 � a•2 ;

I •i ≤ •1 ◦ •2;

I no slowest/minimally slow/fastest/maximally fast;

I for normalising/finite systems: go to ‘normal’ form fastest.

Used to get ideas about (confluent) systems which do not have Z
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Exercises on Z

Exercise
(favourite Z?)
Does your favourite confluent rewrite system have the Z-property?



Exercises on Z

Exercise
(orthogonal systems)

I Verify that for the λ-calculus the full-development bullet map
indeed has the Z-property, by verifying (Substition), (Self),
(Rhs), and (Z)

I Inductively define a full-development function on terms, for
orthogonal TRSs, and verify that it does have the Z-property
for these TRSs.



Exercises on Z

Exercise
(superdevelopments)
Adapt the proof of the first item of the previous exercise to show:

Theorem
(λx .M)N →M[x :=N] has the Z-property, for • full super-
development contracting all redexes present or upward created:

x• = x
(λx .M)• = λx .M•

(MN)• = M ′[x :=N•] if M is a term, M• = λx .M ′

= M•N• otherwise

Example

I I • = I ; (I = λx .x)

I (I (II ))• = I , (III )• = I ;

I ((λxy .x)zw)• = z ;

I ((λxy .Iyx)zI )• = Iz



Exercises on Z

Exercise
(Z vs. decreasing diagrams)*
Can you prove confuence of braids or λ-calculus or orthogonal
TRSs using decreasing diagrams (other than via the completeness
result)?



Exercises on Z

Exercise
(βη)*
Does the λ-calculus with β-reduction and restricted η-expansion,
i.e. the inverse of η-reduction restricted so that it never creates a
β-redex (generates a new β-redex), have the Z-property?



Exercises on Z

Exercise
(properties of •s)
Prove the properties of • as given on page 75 of these slides.
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