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Standard notions

Newman modern notations | use
cell step —
path conversion *
descending path | reduction/rewriting seq. | —
lower bound common reduct l
upper bound common ancestor T
property A Church—Rosser property | «* C « - —
property B confluence property “-»C -« (1<)
property C semi-confluence — > C =«
property D local confluence — = C =«
derivate residual /
conversion calc. A-calculus



Plan

Monday

formalism: abstract rewrite relations (whether, Terese Ch. 1)
A set of objects

— C A x A rewrite relation on A

confluence property, lower bounds

proof method: decreasing diagrams (Terese Ch. 14)
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proof method: Z property



Plan

Wednesday

formalism: abstract rewrite systems (how, Terese Ch. 8)
A set of objects

— set of rewrite steps with source/target maps
orthogonality, greatest lower bounds

axiomatisation: residual systems (Terese Ch. 8.7)

vV vV vV VvV VvV Vv Y

proof method: confluification into multi-steps
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Confluence vs. orthogonality

o/ /¢

confluence, lower bound via witnessing residual function /



Confluence vs. orthogonality

orthogonality, other lower bounds ...



Confluence vs. orthogonality

orthogonality, best among lower bounds?



Confluence vs. orthogonality

orthogonality, greatest lower bound



Confluence vs. orthogonality

=--------

orthogonality, greatest lower bound = doing work of both?



Confluence vs. orthogonality

=--------

orthogonality, greatest lower bound = doing work of both?



Confluence vs. orthogonality

=--------

orthogonality, greatest lower bound # doing work of both in /(/K)



Confluence vs. orthogonality

orthogonality, greatest lower bound w.r.t. notion of same work =



How to axiomatise orthogonality?
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How to axiomatise orthogonality?

for rewriting (steps not transitive)
Newman 1942:

The purpose of this paper is to make a start on a general theory of “sets of
moves’’ by obtaining some conditions under which the answers to both the above
questions are favorable. The results are essentially about “partially-ordered”
systems, i.e. sets in which there is a transitive relation >, and sufficient condi-
tions are given for every two elements to have a lower bound (i.e. for the set to
be “directed”) if it is known that every two ‘“‘sufficiently near” elements have a
lower bound. What further conditions are required for the existence of a
greatest lower bound is not relevant to the present purpose, and is reserved for a
later discussion.
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source and target functions
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Abstract rewrite system

Definition
ARS — is (A, ®, src, tgt)
» A set of objects a, b, c, ...
> & set of steps ¢, ¥, x, ...
» src, tgt: P— A
source and target functions

¢ : a— b denotes step ¢ with source a and target b

a d
v
b ——= ¢

ARS is directed graph, e.g.
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J represents non-nesting of redexes
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Newman's axioms for residuals

(Jv) If £Jn, £ | n has precisely one member.
(Jo) If meti|Sand mek|§, and if &JE or &1 = &, then mImor m = 7.

J represents non-nesting of redexes

Example (Schroer)

A-calculus does not satisfy Newman's axioms

w(Ay.wy) = (Ay.wy)y.wy — w(Ay.wy) — (Ay.wy)\y.wy
with w = Ax.xx

» by (J2) residuals of wy are (mutually) J-related.
» by (J2) whole term and wy-redex are (mutually) J-related.

> the wy-redex is duplicated violating (J1).
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Definition
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» objects: terms over alphabet

> steps: terms over function symbols + rule names
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From term rewrite system to ARS

named combinatory logic (CL) rules:
ux): Ix — x
k(x,y): Kxy — x
(oy.2): Sz — xe(y2)

Definition
multi-step ARS —e—:

» objects: terms over alphabet

> steps: terms over function symbols + rule names

» src(f(S)) = f(src(s)) with f function symbol

src(o(5)) = I(src(5)) with o(X) name of rule /(X) — r(X)

step ARS —: restriction of —e— steps to exactly one rule name
(IK) = I(IK) — IK 1(«(K)): I(IK)— IK



Steps vs. multi-steps vs. full-developments

step —: contract one redex-pattern



Steps vs. multi-steps vs. full-developments

)
/\AA
;o\ I\
AR
\ — T A

multi-step —e— (development): contract some redex-patterns




Steps vs. multi-steps vs. full-developments

/A
a4A4,

full-development —e—: contract all redex-patterns

o> C o> C —»



Residuals

Intuition
residual of step ¢ after step ):
what remains (to be done) of step ¢ after doing 1.



Residuals

Intuition
residual of step ¢ after step :
what remains (to be done) of step ¢ after doing 1.

Example

residual of /(t(K)) : I(IK) —e— IK after
(IK) : I(IK) —— IK?



Residuals

Intuition
residual of step ¢ after step :
what remains (to be done) of step ¢ after doing 1.

Example

residual of /(t(K)) : I(IK) —e— IK after
(IK) © (1K) —o IK?

UK) @ 1K - KI



Residuals

Intuition
residual of step ¢ after step :
what remains (to be done) of step ¢ after doing 1.

Example

residual of /(t(K)) : I(IK) —e— IK after
(IK) : I(IK) —— IK?

UK): IK - K!

and conversely?



Residuals

Intuition
residual of step ¢ after step :
what remains (to be done) of step ¢ after doing 1.

Example

residual of /(t(K)) : I(IK) —e— IK after
(IK) = I(IK) o~ IK?

UK) @ 1K - KI

and conversely?

same (but now residual is blue!)
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Residuals

Intuition
residual of step ¢ after step :
what remains (to be done) of step ¢ after doing 1.

Example

residual of SIK(/K) —e— SIKK after
SIK(IK) —— I(IK)(K(IK))?
I(IK)(K(IK)) - IK(KK)!

and conversely?

SIKK -~ IK(KK)!



Residuals

Intuition
residual of step ¢ after step 1):
what remains (to be done) of step ¢ after doing 1.

o/ v/¢

¢/v and 1 /¢: multi-steps ending in same object
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» 1 the empty step for each object (doing nothing)
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Residual system

Definition
residual system is ARS — extended with
» 1 the empty step for each object (doing nothing)
» / the residual map from pairs of (co-initial) steps to steps

» satisfying axioms

¢/¢ ~ 1
/L~ ¢
1/ ~ 1
(¢/9)/(x/¥) =~ (¢/x)/(¥/x) (cube)

Exercise
show that third axiom is derivable



Cube axiom

(2/9)/ (/) = (9/x)/ (¥ /x)

»/x

®/x
X/

o/¢




Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping
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Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping
» multi-steps as steps
» residual operation defined by induction on multi-steps
f(¢17 ) ¢n)/f(¢1, ) %) f(¢1/1/11, cee a¢n/1/}n)
o(é1,- .-, 6n)/1(¥1, ..., ¥n) o(P1/Y1, -+, Bn/Pn)
(1, én)/0(¥1, ..., ¥n) r(o1/¢1,- - dn/tn)
o(P1,- - Pn)/ oW1, s 0n) = r(d1/d1,. .., In/tn)

for every rule o(x1,...,xn) 1 I(x1,...,%n) = r(x1,...,%n)

Example

> 1((K))/UIK) = «(K)
> SIK(«(K))/s(1, K, 1K) = 1(«(K))(K((K)))
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Residual order
Definition
¢ < if ¢/t ~ 1 (nothing remains)

Theorem
< is a quasi-order

Proof.

> reflexivity: ¢/¢ ~ 1
> transitivity: if ¢/¢ ~ 1 and ¢)/x ~ 1 then ¢/x ~ 1

Exercise
< is not necessarily a partial order (anti-symmetric)

Theorem
residual systems preserved by quotienting by < N 2.
yields a system having a residual order which is partial order.
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how to define residual system for sequences of (multi-)steps?



From (multi-steps) to sequences

how to define residual system for sequences of (multi-)steps?

X
(¢/¢)/x \\//2¢/1/))
/(v ox) = (¢/1)/x

(b ox)/o=(¢/d)o(x/(9/¥))

take residuals (multi-)stepwise



Residual system with composition

extending residual operation to sequences generates:
Definition
Residual system with composition

» 1 the empty reduction

» / the residual map from pairs of (co-initial) reductions to
reductions

» o the composition map on composable reductions
>

¢/¢ ~ 1
¢/l ~ ¢
1/¢p ~ 1
(¢/¢)/(X1/¢i & gqﬁ/x)/(@b/x)
x/(po) ~ (x/0)/¢
(Poy)/x = (&/x)o(¥/(x/9))
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Residual order gives greatest lower bound

Theorem

residual systems with composition preserved by quotienting by
SN2,

yields a system having a residual order which is partial order.
¢ o/ is greatest lower bound of ¢, 1

Example

» orthogonal TRSs
» interaction nets
» M\-calculus

» orthogonal higher-order term rewriting systems



Residual order gives greatest lower bound

Theorem

residual systems with composition preserved by quotienting by
SN2,

yields a system having a residual order which is partial order.
¢ o/ is greatest lower bound of ¢, 1

Example

» orthogonal TRSs

> interaction nets

» A-calculus

» orthogonal higher-order term rewriting systems
> ...
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Non-standard examples of residual systems

» sorting

» braids

» self-distributivity
>

>

associativity



Sorting by swapping adjacent elements



Sorting by swapping adjacent elements

2R
i

b
b

T

b

;
.

Reduction steps: arrows start at first element of swapped pair




Sorting by swapping adjacent elements

c b a
A
b c a c a b

X X
b a c a c b
a b c

reduction steps: inversions in blue, anti-inversions in red



Inversion sort local confluence diagrams

/ ba\
ab = ab

same
baxy
abxy bayx
W A
abyx

independent

cba

N

bca cab
q /4
bac acb
abc

self-overlap



Residual system for inversion sort

» 1 the empty step

» / the residual map from pairs of steps to steps

»
¢/p ~ 1
¢/l = ¢
1/ ~ 1
(e/V)/(x/¥) =~ (/X)) (% /x)



Residual system for inversion sort

Theorem
inversion sorting gives a residual system

Proof.
step ¢ from list £ is multi-inversion: relation ~ s.t. if ij

» out-of-order: £ =...i...j... buti>j;

» transitive: ifﬁ(, then 17<

» scopic: if £=...i...k...j..., then either i7<orﬁ<
define 1 to be the empty relation,

define ¢ /v as (¢ U )T — 1.

Example

(cba — g, bca)/(cba —  cab) = (cab ——; abc)



Braid problem



Braid problem

(O <Fr <=»

<=

Q>



Braid problem

W WA = W

WD W o= BN

«Or «Fr o«



Braid confluence diagrams
S\ N\
S PER
'/\ / /)
X | \ P

o //

self-o

mdependent

reductions end in topologically equivalent (=) braids



Braid confluence diagrams

/\ i i+1

. \\ //.
i+ 1Y B
\

Vo
[
\JVI

a

reduction steps labelled by gap# of crossing
jrjiifli—j|>2and i(i+1)i~(i+1)i(i+1)



Sorting vs. braiding

» sorting is braiding without crossing strands (inverting) twice
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Sorting vs. braiding

> sorting is braiding without crossing strands (inverting) twice
» model braids as ‘repeated sorting’

» model braids as reduction sequences of multi-inversions



Orthogonality of braids

Theorem
braiding gives a residual system with composition

Proof.

» steps are sequences of multi-inversions
» without out-of-order restriction
» define o to be formal composition

» / on sequences defined via composition laws



Orthogonality of braids

Example

N;ﬁ
Il

1 5 3

/

6

i

3 1 5 2 6 4

=
/—.




Self-distributivity: (x-y)-z~(x-z)-(y-2)



Self-distributivity: (x-y)-z~(x-z)-(y-2)

Interpret as first projection



Self-distributivity: (x-y)-z~(x-z)-(y-2)

Interpret as an ACl-operation

~—

(x-y)-z =a y-z

(z-2))
y-2z)-2)
)

)

‘<

—~~

><><><><

(
(
(
(z-(y-2)
=a (x-2)-(y-z

Examples: disjunction/union, conjunction /intersection



Self-distributivity: (x-y)-z~(x-z)-(y-2)

N\

S

Interpret as ‘middle’
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N\

a
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Interpret as ‘middle’

c

N\
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Self-distributivity: (x-y)-z~(x-z)-(y-2)

Interpret as ‘middle’
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» applicative notation: - infix, associating to left
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» applicative notation: - infix, associating to left
» as expansion rule better behaved than as reduction rule
» a single critical pair:
WXyZz

wxz(yz)
wyz(xyz) wz(xz)(yz)

wz(yz)(xyz) —= wz(yz)(xz(yz))



Self-distributivity rule: xyz — xz(yz) critical pair

» applicative notation: - infix, associating to left
» as expansion rule better behaved than as reduction rule
» a single critical pair:

/W Xyz\
wxz(yz)
wyz(xyz) wz(xz)(yz)

wz(yz)(xyz) —= wz(yz)(xz(yz))

> w represents spine ...



Spine rectification

/@\ - @/@\@
/N AN

Spine is stable!



Spine rectification

If you don't have a spine, they can’t break you

©——©
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» elements on spine juxtaposed
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» rule to be applied modulo associativity
» the critical pair becomes:

x|yl

Ixiyllz] [x][z]ly[=]]

1[2Ix[y][=]] [2]Ix[2]][y[2]]
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Self-distributivity rule: [y][z] — [z][y[z]]

» elements on spine juxtaposed
» rule to be applied modulo associativity
» the critical pair becomes:

x|yl
i i+1

Ixiyllz] [x]z]ly[=]]

I+1 I

1[2Ix[y][=]] [2]Ix[2]][y[2]]

i i+1

[21ly (2] Ix ][zl —=2] y [21]Ix 2]y [2]]]

» almost braiding, but one extra step ...



Braiding vs. self-distributivity

» [yllz] — [z][y[z]] swaps z and y, remembering y crossed z. ..
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Braiding vs. self-distributivity

» [yllz] — [z][y[z]] swaps z and y, remembering y crossed z. ..
> braids.
» self-distributivity braids inside memory. ..

> extra step.



Orthogonality of self-distributivity

Theorem
self-distributivity gives a residual system

Idea.
Multi-distribution defined similar to multi-conversions, but

> relates positions in the (rectified) term

» may relate only to right-wing uncles; (pig)(pj) with i < j

» must be left-convex; (pigi1g2)(pj) implies (pig1)(pj)
/ as before; constructed by using standard residual theory to relate
positions before and after the (non-linear) term rewrite step O



Substitution lemma of A-calculus as self-distributivity

(Ay.(Ax.M)N

N

(Ax-Mly: P])/V[y =P] Ay Mx:=N])P

N ¥
My:=P][x:=N[y:=P]] = M[x:=N][y:=P]

Substitution Lemma of the A-calculus



Substitution lemma of A-calculus as self-distributivity
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Critical pair for A-calculus with explicit substitutions



Substitution lemma of A-calculus as self-distributivity

Ay.(Ax.M)N)P

7\

(Ax./\/l[y::P])l\l\[y::P] (/\y/.M[x::N])P

N 4
My:=P][x:=N[y:=P]] — M[x:=N][y:=P]

Critical pair for A-calculus with explicit substitutions
Is this rule in itself confluent? (left-to-right no)



Substitution lemma of A-calculus as self-distributivity

(Ay.(Ax.M)N)P

VAN

()\x./\/l[y::P])l\l\[y::P] (/\y/.M[x::N])P

A4
My:=P][x:=N[y:=P]] — M[x:=N][y:=P]

Critical pair for A-calculus with explicit substitutions
This is self-distributivity, so even orthogonal!



Confluification

Definition
confluification if local confluence completed by sequences, adjoin
these to steps.
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Confluification

Definition
confluification if local confluence completed by sequences, adjoin
these to steps.

» for orthogonal term rewriting systems: parallel reductions

» for A-calculus: developments



From residual systems with composition to algebras

Example

» multi-inversions in sorting
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From residual systems with composition to algebras

Example
» multi-inversions in sorting
braids
self-distributivity

>
>
» orthogonal term rewriting systems ([-reduction, CL)
> associativity
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From residual systems with composition to algebras

Example

multi-inversions in sorting
braids
self-distributivity

>
>
>
» orthogonal term rewriting systems ([-reduction, CL)
> associativity

>

>

also many residual algebras (singleton carrier) ...



Residual algebras (with composition)

» natural numbers (as steps from object to itself)
» - (cut-off subtraction), 0 (zero), + (addition);

n-n = 0

n=0 =~ n
0-n = 0
(n=m)=(k=m) = (n=k)=(m=k)
0+0 ~ O
k=(n+m) =~ (k=n)=m
(n+m)—k ~ (n=k)+(m=(k=n))

Generated from its



Residual algebras (with composition)

» natural numbers (as steps from object to itself)
» - (cut-off subtraction), 0 (zero), + (addition);

n-n = 0

n=0 =~ n
0-n = 0
(n=m)=(k=m) = (n=k)=(m=k)
0+0 =~ O
k—=(n+m) ~ (k=n)=m
(n+m)~k = (n=k)+(m=(k=n))

Truth-values with reverse implication, false (no composition)

Positive natural numbers with cut-off division, 1, multiplication



Residual algebras (with composition)

> multisets over some set (as steps from object to itself)

» — (multiset difference), ) (empty multiset), W (multiset sum);

M —
M —
0 — 0
(M= N) = (K- N) (
Pwd ~ 0
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Residual algebras (with composition)

> multisets over some set (as steps from object to itself)

» — (multiset difference), ) (empty multiset), W (multiset sum);

M—-M 0
M — 0 M
0—M 0
(M=N)—(K—=N) ~ (M—K)—(N-K)
Dwo 0
K —(MwN) (K—-M)—-N
(MYN)—-K (M- K)y(N— (K- M))

Sets with set-difference, (3, disjoint union.



Residual algebras (with composition)

> multisets over some set (as steps from object to itself)

» — (multiset difference), ) (empty multiset), W (multiset sum);

M—-M 0
M — 0 M
0—M 0
(M=N)—(K—=N) ~ (M—K)—(N-K)
Dwo 0
K —(MwN) (K—-M)—-N
(MYN)—-K (M- K)y(N— (K- M))

all compositions are commutative



commutative residual algebras

Definition

commutative residual algebra with composition (CRAC) satisfies
(¢/¥)/¢ =~ 1
¢/(¢/y) ~ ¥/(¢/d)

(follows from computing (¢ 0 ¢)/(v o ¢) =~ 1I)
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Definition
commutative residual algebra with composition (CRAC) satisfies
(o/¥)/¢ =~ 1
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commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies
(6/0))6 ~ 1
¢/(9/b) =~ »/(/))
» 2nd equation states commutativity of intersection ¢/(¢ /1)
» Very useful for equational reasoning about multisets in Coq.
> Iso to commutative BCK algebras with relative cancellation
» In above examples < well-founded; a < b if a/b~ 1.
» Other interesting CRACs?
» every well-founded CRAC iso to multiset CRAC



Conclusion

» decreasing diagrams: well-founded indexing
» Z-property: bullet-function

» orthogonal systems: axiomatised residual operation
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