
Abstract Rewriting

ISR 2008, Obergurgl, Austria

Vincent van Oostrom

Theoretical Philosophy
Utrecht University

Netherlands

16:00 – 17:30, Mon/Wednesday July 23, ISR 2008



Reintroduction



Abstract rewriting

I Newman 1942 (confluence, orthogonality)

I Hindley, Rosen, de Bruijn (orthogonality, commutation)

I Klop, Huet, Geser (abstract reduction as framework)

I Jouannaud/Kirchner, Ohlebusch (rewriting modulo)

I Melliès, Khasidashvili (standardisation, neededness)

I Ghani/Lüth (substitution)

I . . .



Abstract rewriting

I Newman 1942 (confluence, orthogonality)

I Hindley, Rosen, de Bruijn (orthogonality, commutation)

I Klop, Huet, Geser (abstract reduction as framework)

I Jouannaud/Kirchner, Ohlebusch (rewriting modulo)

I Melliès, Khasidashvili (standardisation, neededness)

I Ghani/Lüth (substitution)

I . . .



Standard notions

Newman modern notations I use

cell step →
path conversion ↔∗

descending path reduction/rewriting seq. �
lower bound common reduct ↓
upper bound common ancestor ↑
property A Church–Rosser property ↔∗ ⊆� ·�
property B confluence property � ·� ⊆� ·� (↑ ⊆ ↓)
property C semi-confluence ← ·� ⊆� ·�
property D local confluence ← · → ⊆� ·�

derivate residual /
conversion calc. λ-calculus



Plan

I Monday

I formalism: abstract rewrite relations (whether, Terese Ch. 1)

I A set of objects

I → ⊆ A× A rewrite relation on A

I confluence property, lower bounds

I proof method: decreasing diagrams (Terese Ch. 14)

I proof method: Z property



Plan

I Wednesday

I formalism: abstract rewrite systems (how, Terese Ch. 8)

I A set of objects

I → set of rewrite steps with source/target maps

I orthogonality, greatest lower bounds

I axiomatisation: residual systems (Terese Ch. 8.7)

I proof method: confluification into multi-steps



Confluence vs. orthogonality

confluence, lower bound



Confluence vs. orthogonality

ψ/φ

φ ψ

φ/ψ

confluence, lower bound via witnessing residual function /



Confluence vs. orthogonality

ψ/φ

φ ψ

φ/ψ

orthogonality, other lower bounds . . .



Confluence vs. orthogonality

ψ/φ

φ ψ

φ/ψ

orthogonality, best among lower bounds?



Confluence vs. orthogonality

φ ψ

φ/ψ ψ/φ

orthogonality, greatest lower bound



Confluence vs. orthogonality

φ ψ

φ/ψ ψ/φ

?

orthogonality, greatest lower bound = doing work of both?



Confluence vs. orthogonality

φ ψ

φ/ψ ψ/φ

orthogonality, greatest lower bound = doing work of both?



Confluence vs. orthogonality

φ ψ

φ/ψ ψ/φ

orthogonality, greatest lower bound 6= doing work of both in I (IK )



Confluence vs. orthogonality

≈

!

φ ψ

φ/ψ ψ/φ

orthogonality, greatest lower bound w.r.t. notion of same work ≈



How to axiomatise orthogonality?

for rewriting (steps not transitive)
Newman 1942:



How to axiomatise orthogonality?

for rewriting (steps not transitive)

Newman 1942:



How to axiomatise orthogonality?

for rewriting (steps not transitive)
Newman 1942:



Abstract rewrite system

Definition
ARS → is 〈A,Φ, src, tgt〉

I A set of objects a, b, c , . . .

I Φ set of steps φ, ψ, χ, . . .

I src, tgt : Φ→ A
source and target functions

φ : a→ b denotes step φ with source a and target b

ARS is directed graph, e.g.

a

cb

d

φ



Abstract rewrite system

Definition
ARS → is 〈A,Φ, src, tgt〉

I A set of objects a, b, c , . . .

I Φ set of steps φ, ψ, χ, . . .

I src, tgt : Φ→ A
source and target functions

φ : a→ b denotes step φ with source a and target b

ARS is directed graph, e.g.

a

cb

d

φ



Abstract rewrite system

Definition
ARS → is 〈A,Φ, src, tgt〉

I A set of objects a, b, c , . . .

I Φ set of steps φ, ψ, χ, . . .

I src, tgt : Φ→ A
source and target functions

φ : a→ b denotes step φ with source a and target b

ARS is directed graph, e.g.

a

cb

d

φ



Newman’s axioms for residuals

J represents non-nesting of redexes

Example (Schroer)

λ-calculus does not satisfy Newman’s axioms
ω(λy .ωy)→ (λy .ωy)λy .ωy → ω(λy .ωy)→ (λy .ωy)λy .ωy
with ω = λx .xx

I by (J2) residuals of ωy are (mutually) J-related.

I by (J2) whole term and ωy -redex are (mutually) J-related.

I the ωy -redex is duplicated violating (J1).



Newman’s axioms for residuals

J represents non-nesting of redexes

Example (Schroer)

λ-calculus does not satisfy Newman’s axioms
ω(λy .ωy)→ (λy .ωy)λy .ωy → ω(λy .ωy)→ (λy .ωy)λy .ωy
with ω = λx .xx

I by (J2) residuals of ωy are (mutually) J-related.

I by (J2) whole term and ωy -redex are (mutually) J-related.

I the ωy -redex is duplicated violating (J1).



Newman’s axioms for residuals

J represents non-nesting of redexes

Example (Schroer)

λ-calculus does not satisfy Newman’s axioms
ω(λy .ωy)→ (λy .ωy)λy .ωy → ω(λy .ωy)→ (λy .ωy)λy .ωy
with ω = λx .xx

I by (J2) residuals of ωy are (mutually) J-related.

I by (J2) whole term and ωy -redex are (mutually) J-related.

I the ωy -redex is duplicated violating (J1).



Newman’s axioms for residuals

J represents non-nesting of redexes

Example (Schroer)

λ-calculus does not satisfy Newman’s axioms
ω(λy .ωy)→ (λy .ωy)λy .ωy → ω(λy .ωy)→ (λy .ωy)λy .ωy
with ω = λx .xx

I by (J2) residuals of ωy are (mutually) J-related.

I by (J2) whole term and ωy -redex are (mutually) J-related.

I the ωy -redex is duplicated violating (J1).



Newman’s axioms for residuals

J represents non-nesting of redexes

Example (Schroer)

λ-calculus does not satisfy Newman’s axioms
ω(λy .ωy)→ (λy .ωy)λy .ωy → ω(λy .ωy)→ (λy .ωy)λy .ωy
with ω = λx .xx

I by (J2) residuals of ωy are (mutually) J-related.

I by (J2) whole term and ωy -redex are (mutually) J-related.

I the ωy -redex is duplicated violating (J1).



From term rewrite system to ARS

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

combinatory logic (CL) rules:

Ix → x
Kxy → x
Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name

ι(IK ) : I (IK ) ◦−→ IK I (ι(K )) : I (IK ) ◦−→ IK
I (IK ) : I (IK ) ◦−→ I (IK ) ι(ι(K )) : I (IK ) ◦−→ K



From term rewrite system to ARS

named combinatory logic (CL) rules:

ι(x) : Ix → x
κ(x , y) : Kxy → x

ς(x , y , z) : Sxyz → xz(yz)

Definition
multi-step ARS ◦−→:

I objects: terms over alphabet

I steps: terms over function symbols + rule names

I src(f (~s)) = f (src(~s)) with f function symbol
src(%(~s)) = l(src(~s)) with %(~x) name of rule l(~x)→ r(~x)

step ARS →: restriction of ◦−→ steps to exactly one rule name

ι(IK ) : I (IK )→ IK I (ι(K )) : I (IK )→ IK



Steps vs. multi-steps vs. full-developments

step →: contract one redex-pattern



Steps vs. multi-steps vs. full-developments

multi-step ◦−→ (development): contract some redex-patterns

→ ⊆ ◦−→ ⊆�



Steps vs. multi-steps vs. full-developments

full-development •−→: contract all redex-patterns

•−→ ⊆ ◦−→ ⊆�



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of I (ι(K )) : I (IK ) ◦−→ IK after
ι(IK ) : I (IK ) ◦−→ IK?

ι(K ) : IK ◦−→ K !
and conversely?
same (but now residual is blue!)



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of I (ι(K )) : I (IK ) ◦−→ IK after
ι(IK ) : I (IK ) ◦−→ IK?
ι(K ) : IK ◦−→ K !

and conversely?
same (but now residual is blue!)



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of I (ι(K )) : I (IK ) ◦−→ IK after
ι(IK ) : I (IK ) ◦−→ IK?
ι(K ) : IK ◦−→ K !
and conversely?

same (but now residual is blue!)



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of I (ι(K )) : I (IK ) ◦−→ IK after
ι(IK ) : I (IK ) ◦−→ IK?
ι(K ) : IK ◦−→ K !
and conversely?
same (but now residual is blue!)



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of SIK (IK ) ◦−→ SIKK after
SIK (IK ) ◦−→ I (IK )(K (IK ))?

I (IK )(K (IK )) ◦−→ IK (KK )!
and conversely?
SIKK ◦−→ IK (KK )!



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of SIK (IK ) ◦−→ SIKK after
SIK (IK ) ◦−→ I (IK )(K (IK ))?
I (IK )(K (IK )) ◦−→ IK (KK )!

and conversely?
SIKK ◦−→ IK (KK )!



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of SIK (IK ) ◦−→ SIKK after
SIK (IK ) ◦−→ I (IK )(K (IK ))?
I (IK )(K (IK )) ◦−→ IK (KK )!
and conversely?

SIKK ◦−→ IK (KK )!



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

Example

residual of SIK (IK ) ◦−→ SIKK after
SIK (IK ) ◦−→ I (IK )(K (IK ))?
I (IK )(K (IK )) ◦−→ IK (KK )!
and conversely?
SIKK ◦−→ IK (KK )!



Residuals

Intuition
residual of step φ after step ψ:
what remains (to be done) of step φ after doing ψ.

ψ/φ

φ ψ

φ/ψ

φ/ψ and ψ/φ: multi-steps ending in same object



Residual system

Definition
residual system is ARS → extended with

I 1 the empty step for each object (doing nothing)

I / the residual map from pairs of (co-initial) steps to steps

I satisfying axioms

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ) (cube)

Exercise
show that third axiom is derivable



Residual system

Definition
residual system is ARS → extended with

I 1 the empty step for each object (doing nothing)

I / the residual map from pairs of (co-initial) steps to steps

I satisfying axioms

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ) (cube)

Exercise
show that third axiom is derivable



Residual system

Definition
residual system is ARS → extended with

I 1 the empty step for each object (doing nothing)

I / the residual map from pairs of (co-initial) steps to steps

I satisfying axioms

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ) (cube)

Exercise
show that third axiom is derivable



Residual system

Definition
residual system is ARS → extended with

I 1 the empty step for each object (doing nothing)

I / the residual map from pairs of (co-initial) steps to steps

I satisfying axioms

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ) (cube)

Exercise
show that third axiom is derivable



Cube axiom

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)

χ

ψ

φ

φ/ψ

φ/χ

ψ/χ

χ/ψ



Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping

I multi-steps as steps

I residual operation defined by induction on multi-steps

f (φ1, . . . , φn)/f (ψ1, . . . , ψn) = f (φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/l(ψ1, . . . , ψn) = %(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

for every rule %(x1, . . . , xn) : l(x1, . . . , xn)→ r(x1, . . . , xn)

Example

I I (ι(K ))/ι(IK ) = ι(K )

I SIK (ι(K ))/ς(I ,K , IK ) = I (ι(K ))(K (ι(K )))



Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping

I multi-steps as steps

I residual operation defined by induction on multi-steps

f (φ1, . . . , φn)/f (ψ1, . . . , ψn) = f (φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/l(ψ1, . . . , ψn) = %(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

for every rule %(x1, . . . , xn) : l(x1, . . . , xn)→ r(x1, . . . , xn)

Example

I I (ι(K ))/ι(IK ) = ι(K )

I SIK (ι(K ))/ς(I ,K , IK ) = I (ι(K ))(K (ι(K )))



Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping

I multi-steps as steps

I residual operation defined by induction on multi-steps

f (φ1, . . . , φn)/f (ψ1, . . . , ψn) = f (φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/l(ψ1, . . . , ψn) = %(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

for every rule %(x1, . . . , xn) : l(x1, . . . , xn)→ r(x1, . . . , xn)

Example

I I (ι(K ))/ι(IK ) = ι(K )

I SIK (ι(K ))/ς(I ,K , IK ) = I (ι(K ))(K (ι(K )))



Residual system for orthogonal term rewrite systems

Definition
TRS is orthogonal if left-linear and non-overlapping

I multi-steps as steps

I residual operation defined by induction on multi-steps

f (φ1, . . . , φn)/f (ψ1, . . . , ψn) = f (φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/l(ψ1, . . . , ψn) = %(φ1/ψ1, . . . , φn/ψn)

l(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

%(φ1, . . . , φn)/%(ψ1, . . . , ψn) = r(φ1/ψ1, . . . , φn/ψn)

for every rule %(x1, . . . , xn) : l(x1, . . . , xn)→ r(x1, . . . , xn)

Example

I I (ι(K ))/ι(IK ) = ι(K )

I SIK (ι(K ))/ς(I ,K , IK ) = I (ι(K ))(K (ι(K )))



Residual order

Definition
φ . ψ if φ/ψ ≈ 1 (nothing remains)

Theorem
. is a quasi-order

Proof.

I reflexivity: φ/φ ≈ 1

I transitivity: if φ/ψ ≈ 1 and ψ/χ ≈ 1 then φ/χ ≈ 1

Exercise
. is not necessarily a partial order (anti-symmetric)

Theorem
residual systems preserved by quotienting by . ∩ &.
yields a system having a residual order which is partial order.



Residual order

Definition
φ . ψ if φ/ψ ≈ 1 (nothing remains)

Theorem
. is a quasi-order

Proof.

I reflexivity: φ/φ ≈ 1

I transitivity: if φ/ψ ≈ 1 and ψ/χ ≈ 1 then φ/χ ≈ 1

Exercise
. is not necessarily a partial order (anti-symmetric)

Theorem
residual systems preserved by quotienting by . ∩ &.
yields a system having a residual order which is partial order.



Residual order

Definition
φ . ψ if φ/ψ ≈ 1 (nothing remains)

Theorem
. is a quasi-order

Proof.

I reflexivity: φ/φ ≈ 1

I transitivity: if φ/ψ ≈ 1 and ψ/χ ≈ 1 then φ/χ ≈ 1

Exercise
. is not necessarily a partial order (anti-symmetric)

Theorem
residual systems preserved by quotienting by . ∩ &.
yields a system having a residual order which is partial order.



Residual order

Definition
φ . ψ if φ/ψ ≈ 1 (nothing remains)

Theorem
. is a quasi-order

Proof.

I reflexivity: φ/φ ≈ 1

I transitivity: if φ/ψ ≈ 1 and ψ/χ ≈ 1 then φ/χ ≈ 1

Exercise
. is not necessarily a partial order (anti-symmetric)

Theorem
residual systems preserved by quotienting by . ∩ &.
yields a system having a residual order which is partial order.



From (multi-steps) to sequences

how to define residual system for sequences of (multi-)steps?

(φ/ψ)/χ

χ

φψ

φ/ψ

ψ/φ

χ/(φ/ψ)

φ/(ψ ◦ χ) ≈ (φ/ψ)/χ

(ψ ◦ χ)/φ ≈ (ψ/φ) ◦ (χ/(φ/ψ))

take residuals (multi-)stepwise



From (multi-steps) to sequences

how to define residual system for sequences of (multi-)steps?

(φ/ψ)/χ

χ

φψ

φ/ψ

ψ/φ

χ/(φ/ψ)

φ/(ψ ◦ χ) ≈ (φ/ψ)/χ

(ψ ◦ χ)/φ ≈ (ψ/φ) ◦ (χ/(φ/ψ))

take residuals (multi-)stepwise



Residual system with composition

extending residual operation to sequences generates:

Definition
Residual system with composition

I 1 the empty reduction

I / the residual map from pairs of (co-initial) reductions to
reductions

I ◦ the composition map on composable reductions

I

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)
1 ◦ 1 ≈ 1

χ/(φ ◦ ψ) ≈ (χ/φ)/ψ
(φ ◦ ψ)/χ ≈ (φ/χ) ◦ (ψ/(χ/φ))



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Residual order gives greatest lower bound

Theorem
residual systems with composition preserved by quotienting by
. ∩ &.
yields a system having a residual order which is partial order.
φ ◦ ψ/φ is greatest lower bound of φ, ψ

Example

I orthogonal TRSs

I interaction nets

I λ-calculus

I orthogonal higher-order term rewriting systems

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Non-standard examples of residual systems

I sorting

I braids

I self-distributivity

I associativity

I . . .



Sorting by swapping adjacent elements



Sorting by swapping adjacent elements

c

a

c b a

c

b

b a bc

b a c a c b

a

Reduction steps: arrows start at first element of swapped pair



Sorting by swapping adjacent elements

c

a

c b a

c

b

b a bc

b a c a c b

a

reduction steps: inversions in blue, anti-inversions in red



Inversion sort local confluence diagrams

self-overlap

ba

ab ab=

same

cba

bca

abc

bac acb

cab

independent

baxy

abxy bayx

abyx



Residual system for inversion sort

I 1 the empty step

I / the residual map from pairs of steps to steps

I

φ/φ ≈ 1
φ/1 ≈ φ
1/φ ≈ 1

(φ/ψ)/(χ/ψ) ≈ (φ/χ)/(ψ/χ)



Residual system for inversion sort

Theorem
inversion sorting gives a residual system

Proof.
step φ from list ` is multi-inversion: relation ̂ s.t. if îj

I out-of-order: ` = . . . i . . . j . . . but i > j ;

I transitive: if ĵk, then îk ;

I scopic: if ` = . . . i . . . k . . . j . . ., then either îk or ĵk

define 1 to be the empty relation,
define φ/ψ as (φ ∪ ψ)+ − ψ.

Example

(cba _ bcba
bca)/(cba _

ccba
cab) = (cab _dbcab abc)



Braid problem



Braid problem



Braid problem

5

4

1

3

3

5

1

4

3

3

2



Braid confluence diagrams

≈

=

self-overlap

same

independent

≈

reductions end in topologically equivalent (≈) braids



Braid confluence diagrams

i + 1

=

i i

i j

j i

|i − j | ≥ 2

i i + 1

i i + 1

i

reduction steps labelled by gap# of crossing
ij ≈ ji if |i − j | ≥ 2 and i(i + 1)i ≈ (i + 1)i(i + 1)



Sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



Sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



Sorting vs. braiding

I sorting is braiding without crossing strands (inverting) twice

I model braids as ‘repeated sorting’

I model braids as reduction sequences of multi-inversions



Orthogonality of braids

Theorem
braiding gives a residual system with composition

Proof.

I steps are sequences of multi-inversions

I without out-of-order restriction

I define ◦ to be formal composition

I / on sequences defined via composition laws



Orthogonality of braids

Example

6

=

1 2 3 4 5 6 1 2 3 4 5 6

1 5 2 3 4 6 3 1 5 2 6 4

13 5 2 6 4

5 3 1 42

/



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as first projection



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as an ACI-operation

(x · y) · z =A x · (y · z)

=I x · (y · (z · z))

=A x · ((y · z) · z)

=C x · (z · (y · z))

=A (x · z) · (y · z)

Examples: disjunction/union, conjunction/intersection



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c

a · b



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c

a · b



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



Self-distributivity: (x · y) · z ≈ (x · z) · (y · z)

Interpret as ‘middle’

a

b

c

b · c
a · c

a · b



Self-distributivity rule: xyz → xz(yz) critical pair
I applicative notation: · infix, associating to left

I as expansion rule better behaved than as reduction rule
I a single critical pair:

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)

I w represents spine . . .



Self-distributivity rule: xyz → xz(yz) critical pair
I applicative notation: · infix, associating to left
I as expansion rule better behaved than as reduction rule

I a single critical pair:

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)

I w represents spine . . .



Self-distributivity rule: xyz → xz(yz) critical pair
I applicative notation: · infix, associating to left
I as expansion rule better behaved than as reduction rule
I a single critical pair:

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)

I w represents spine . . .



Self-distributivity rule: xyz → xz(yz) critical pair
I applicative notation: · infix, associating to left
I as expansion rule better behaved than as reduction rule
I a single critical pair:

wxyz

wy(xy)z wxz(yz)

wz(yz)(xz(yz))

wyz(xyz) wz(xz)(yz)

wz(yz)(xyz)

I w represents spine . . .



Spine rectification

z @

y z y zx

@

@ @

@

x

Spine is stable!



Spine rectification

z @y

@ @

z

z

@@

y

If you don’t have a spine, they can’t break you



Self-distributivity rule: [y ][z ]→ [z ][y [z ]]

I elements on spine juxtaposed

I rule to be applied modulo associativity

I the critical pair becomes:

I almost braiding, but one extra step . . .



Self-distributivity rule: [y ][z ]→ [z ][y [z ]]

I elements on spine juxtaposed

I rule to be applied modulo associativity

I the critical pair becomes:

I almost braiding, but one extra step . . .



Self-distributivity rule: [y ][z ]→ [z ][y [z ]]
I elements on spine juxtaposed
I rule to be applied modulo associativity
I the critical pair becomes:

[x ][y ][z ]

[y ][x [y ]][z ] [x ][z ][y [z ]]

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

[z ][y [z ]][x [y ][z ]]

I almost braiding, but one extra step . . .



Self-distributivity rule: [y ][z ]→ [z ][y [z ]]
I elements on spine juxtaposed
I rule to be applied modulo associativity
I the critical pair becomes:

[x ][y ][z ]

i + 1i

[y ][x [y ]][z ]

i + 1

[x ][z ][y [z ]]

i

[z ][y [z ]][x [z ][y [z ]]]

[y ][z ][x [y ][z ]] [z ][x [z ]][y [z ]]

i + 1i

[z ][y [z ]][x [y ][z ]]

I almost braiding, but one extra step . . .



Braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.



Braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.



Braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.



Braiding vs. self-distributivity

I [y ][z ]→ [z ][y [z ]] swaps z and y , remembering y crossed z . . .

I braids.

I self-distributivity braids inside memory. . .

I extra step.



Orthogonality of self-distributivity

Theorem
self-distributivity gives a residual system

Idea.
Multi-distribution defined similar to multi-conversions, but

I relates positions in the (rectified) term

I may relate only to right-wing uncles; ̂(piq)(pj) with i < j

I must be left-convex; ̂(piq1q2)(pj) implies ̂(piq1)(pj)

/ as before; constructed by using standard residual theory to relate
positions before and after the (non-linear) term rewrite step



Substitution lemma of λ-calculus as self-distributivity

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]] ≈ M[x :=N][y :=P]

(λy .M[x :=N])P

Substitution Lemma of the λ-calculus



Substitution lemma of λ-calculus as self-distributivity

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions



Substitution lemma of λ-calculus as self-distributivity

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions
Is this rule in itself confluent? (left-to-right no)



Substitution lemma of λ-calculus as self-distributivity

(λx .M[y :=P])N[y :=P]

(λy .(λx .M)N)P

M[y :=P][x :=N[y :=P]]← M[x :=N][y :=P]

(λy .M[x :=N])P

Critical pair for λ-calculus with explicit substitutions
This is self-distributivity, so even orthogonal!



Confluification

Definition
confluification if local confluence completed by sequences, adjoin
these to steps.



Confluification

Definition
confluification if local confluence completed by sequences, adjoin
these to steps.

2

1
1 1

1

1
1

1

2

2 2

2

1

1 1

1

111
2 2

1

2

1 2

2

2

2 2

1

1

2

2

2

2

2

2

2

2 1

1

1

1

2 1

2

1

2

2

2

1

1
2

2

2

1

2

1
2

1

1

2

2

1 1 1 2

1

2 1

1

2

21

adjoin 12 and 21 as atomic steps, and repeat (stops directly).



Confluification

Definition
confluification if local confluence completed by sequences, adjoin
these to steps.

I for orthogonal term rewriting systems: parallel reductions

I for λ-calculus: developments



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



From residual systems with composition to algebras

Example

I multi-inversions in sorting

I braids

I self-distributivity

I orthogonal term rewriting systems (β-reduction, CL)

I associativity

I . . .

I also many residual algebras (singleton carrier) . . .



Residual algebras (with composition)

I natural numbers (as steps from object to itself)

I .− (cut-off subtraction), 0 (zero), + (addition);

n .− n ≈ 0

n .− 0 ≈ n

0 .− n ≈ 0

(n .−m) .− (k .−m) ≈ (n .− k) .− (m .− k)

0 + 0 ≈ 0

k .− (n + m) ≈ (k .− n) .−m

(n + m) .− k ≈ (n .− k) + (m .− (k .− n))

Generated from its



Residual algebras (with composition)

I natural numbers (as steps from object to itself)

I .− (cut-off subtraction), 0 (zero), + (addition);

n .− n ≈ 0

n .− 0 ≈ n

0 .− n ≈ 0

(n .−m) .− (k .−m) ≈ (n .− k) .− (m .− k)

0 + 0 ≈ 0

k .− (n + m) ≈ (k .− n) .−m

(n + m) .− k ≈ (n .− k) + (m .− (k .− n))

Truth-values with reverse implication, false (no composition)

Positive natural numbers with cut-off division, 1, multiplication



Residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))



Residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))

Sets with set-difference, ∅, disjoint union.



Residual algebras (with composition)

I multisets over some set (as steps from object to itself)

I − (multiset difference), ∅ (empty multiset), ] (multiset sum);

M −M ≈ ∅
M − ∅ ≈ M

∅ −M ≈ ∅
(M − N)− (K − N) ≈ (M − K )− (N − K )

∅ ] ∅ ≈ ∅
K − (M ] N) ≈ (K −M)− N

(M ] N)− K ≈ (M − K ) ] (N − (K −M))

all compositions are commutative



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

(follows from computing (φ ◦ ψ)/(ψ ◦ φ) ≈ 1!)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



commutative residual algebras

Definition
commutative residual algebra with composition (CRAC) satisfies

(φ/ψ)/φ ≈ 1
φ/(φ/ψ) ≈ ψ/(ψ/φ)

I 2nd equation states commutativity of intersection φ/(φ/ψ)

I Very useful for equational reasoning about multisets in Coq.

I Iso to commutative BCK algebras with relative cancellation

I In above examples � well-founded; a � b if a/b ≈ 1.

I Other interesting CRACs?

I every well-founded CRAC iso to multiset CRAC



Conclusion

I decreasing diagrams: well-founded indexing

I Z-property: bullet-function

I orthogonal systems: axiomatised residual operation


	Sorting
	Braids
	Self-distributivity
	Substitution lemma of the -calculus
	Multisets

