
Multi-redexes and multi-treks induce residual systems
least upper bounds and left-cancellation up to homotopy

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

http://cl-informatik.uibk.ac.at


1. Residual systems

2. Multi-redexes

3. Conclusions

Buenos Aires (Virtual); IWC 2021 23–07–2021 0



Rewrite systems

Definition (Rewrite system [Newman 42])

rewrite system→ comprises:

I a set of objects

I a set of (rewrite) steps

I functions src, tgt mapping a step to its source, target object

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1

https://doi.org/10.2307/2269299


Rewrite systems

Definition (Rewrite system)

rewrite system→ comprises:

I a set of objects

I a set of steps

I functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

I steps as first-class citizens (theory of computation!)

I rewrite relation R is system: step b
a from a to b if a R b

I formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1



Rewrite systems

Definition (Rewrite system)

rewrite system→ comprises:

I a set of objects

I a set of steps

I functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

I steps as first-class citizens

I rewrite (binary endo)relation R is system: step b
a from a to b if a R b

I formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1



Rewrite systems

Definition (Rewrite system)

rewrite system→ comprises:

I a set of objects

I a set of steps

I functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

I steps as first-class citizens

I rewrite relation R is system: step b
a from a to b if a R b

I formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1



Rewrite systems

Definition (Rewrite system)

rewrite system→ comprises:

I a set of objects

I a set of steps

I functions src, tgt mapping a step to its source, target object

Remark (Omnipresence of rewrite systems)

I steps as first-class citizens

I rewrite relation R is system: step b
a from a to b if a R b

I formally same as multidigraph and quiver
(here the name steps signals interest in transformational properties)

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1



Rewrite systems

Definition (Rewrite system)

rewrite system→ comprises:

I a set of objects

I a set of steps

I functions src, tgt mapping a step to its source, target object

Remark (the rewrite method)

derive properties of (empty,finite,infinite) computations from those of steps

→-steps used to generate first compositions→∗ (trees of composable steps),
next paths/reductions� (quotienting out composition monoid), and then
quasi-orders (quotienting out parallel paths)

Buenos Aires (Virtual); IWC 2021 23–07–2021 1



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; modulo α
(i use many- and multi- to signal series resp. parallel quantities)

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]
(src(β(x.φ, ψ)) := (λx.src(φ)) src(ψ) and tgt(β(x.φ, ψ)) := tgt(φ)[x:=tgt(ψ)])

Example

I

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep (λx.x) ((λy.y) z) ◦−→ z

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are distinct (single) steps I (I z)→β I z

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are outer and inner steps I (I z)→β I z

Remark

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are outer and inner steps I (I z)→β I z

Remark

◦−→β is Tait–Martin-Löf step (aka parallel reduction [Takahashi 95])

Buenos Aires (Virtual); IWC 2021 23–07–2021 2

https://doi.org/10.1006/inco.1995.1057


Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are outer and inner steps I (I z)→β I z

Remark

multisteps by adjoining β-rule as symbol to signature [vO 97]
(this reification of rules works for string/term/graph/. . . rewrite systems)

Buenos Aires (Virtual); IWC 2021 23–07–2021 2

https://doi.org/10.1007/3-540-62950-5_80


Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are outer and inner steps I (I z)→β I z

Remark

advantages: compact (multi)step representations; stay in term language
(no disadvantages; no need for inference system; src, tgt instead)

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Example: Church’s λβ-calculus as rewrite system

Definition (Multistep rewrite system ◦−→β)

I objects are multisteps without βs

I multisteps φ ::= x | λx.φ | φφ | β(x.φ, φ), for x in variables; step→β if one β

I homomorphic extension mapping β(x.φ, ψ) to lhs (λx.φ)ψ and rhs φ[x:=ψ]

Example

I β(x.x, β(y.y, z)) multistep I (I z) ◦−→ z with I := λx.x

I β(x.x, I z) and Iβ(y.y, z) are outer and inner steps I (I z)→β I z

Remark

advantages: compact (multi)step representations; stay in term language
(no disadvantages; all there is to know: no need for annotations of relations)

Buenos Aires (Virtual); IWC 2021 23–07–2021 2



Residuation as Skolemisation of the diamond property

Definition (Diamond property)

→ has the diamond property if ∀ peak b ← a→ c

ca

b

Remark ()

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Diamond property)

→ has the diamond property if ∀ peak b ← a→ c, ∃ valley b→ d ← c

b d

ca

Remark ()

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Diamond property)

→ has the diamond property if ∀ peak b φ← a→ψ c

φ

ψ

Remark ()

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Diamond property)

→ has the diamond property if ∀ peak b φ← a→ψ c, ∃ valley b→ψ′ d φ′← c

φ′φ

ψ

ψ′

Remark ()

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

→ has the diamond property if ∀ peak b φ← a→ψ c, b→f(φ,ψ) d g(φ,ψ)← c

f (φ, ψ)φ

ψ

g(ψ, φ)

Remark ()

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

→ has the diamond property if ∀ peak b φ← a→ψ c, b→φ/ψ d ψ/φ← c

φ/ψφ

ψ

ψ/φ

Remark (Symmetrisation)

may totally order objects =⇒ may assume f ,g same residuation function /

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Residuation as Skolemisation of the diamond property

Definition (Skolemised diamond property)

→ has the diamond property if ∀ peak b φ← a→ψ c, b→φ/ψ d ψ/φ← c

φ/ψφ

ψ

ψ/φ

Remark (Diamond from steps =⇒ reductions =⇒ quasi-orders)

confluence of→ is diamond property of�; upper bound (d of b, c) in quasi-order

Buenos Aires (Virtual); IWC 2021 23–07–2021 3



Example: no residuation for→β

Example (Failure of diamond for →β)

I for peak z β(x.x,z)← I z→β(x.x,z) z, only empty valley z; no diamond

I for peak δ z δ β(x.x,z)← δ (I z)→β(x.x x,I z) I z (I z) with δ := λx.x x
only duplicating valley δ z→ z z← (I z) z← I z (I z)

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: no residuation for→β

Example (Failure of diamond for →β)

I for peak z β(x.x,z)← I z→β(x.x,z) z, only empty valley z

I for peak δ z δ β(x.x,z)← δ (I z)→β(x.x x,I z) I z (I z) with δ := λx.x x
only duplicating valley δ z→ z z← (I z) z← I z (I z) ; no diamond

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: no residuation for→β

Example (Failure of diamond for →β)

I for peak z β(x.x,z)← I z→β(x.x,z) z, only empty valley z

I for peak δ z δ β(x.x,z)← δ (I z)→β(x.x x,I z) I z (I z) with δ := λx.x x
only duplicating valley δ z→ z z← (I z) z← I z (I z)

Faceting to the rescue

Idea: adjoin reduction (many-step) in valley as (single) step
(here: adjoin z : z and I z β(x.x, z) · β(x.x, z) z : I z (I z)→ (I z) z→ z z as steps)

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: no residuation for→β

Example (Failure of diamond for →β)

I for peak z β(x.x,z)← I z→β(x.x,z) z, only empty valley z

I for peak δ z δ β(x.x,z)← δ (I z)→β(x.x x,I z) I z (I z) with δ := λx.x x
only duplicating valley δ z→ z z← (I z) z← I z (I z)

I z β(x.x, z)

z z

I z (I z)δ (I z)

δ z

I z z

β(x.x, z) z

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: no residuation for→β

Example (Failure of diamond for →β)

I for peak z β(x.x,z)← I z→β(x.x,z) z, only empty valley z

I for peak δ z δ β(x.x,z)← δ (I z)→β(x.x x,I z) I z (I z) with δ := λx.x x
only duplicating valley δ z→ z z← (I z) z← I z (I z)

adjoin reduction as step

z z

I z (I z)δ (I z)

δ z

I z z I z β(x.x, z) · β(x.x, z) I

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Remark

multisteps ◦−→β are (notation for) repeated faceting for→β

(like completion but goal now to get beautiful diamonds, not complete system)

is multistep

z z

I z (I z)δ (I z)

δ z

I z z β(x.x, z) β(x.x, z)

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Lemma

◦−→β has the diamond property

Proof idea.

define residuation / and join ∨ such that if φ, ψ co-initial =⇒
φ ∨ ψ and φ · (ψ/φ) have same source,target, join ∨ commutative

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Lemma

◦−→β has the diamond property

Proof idea.

define residuation / and join ∨ such that if φ, ψ co-initial =⇒
φ ∨ ψ and φ · (ψ/φ) have same source,target, join ∨ commutative

ψ

φ

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Lemma

◦−→β has the diamond property

Proof idea.

define residuation / and join ∨ such that if φ, ψ co-initial =⇒
φ ∨ ψ and φ · (ψ/φ) have same source,target, join ∨ commutative

φ ∨ ψ

ψ/φ

ψ

φ

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Lemma

◦−→β has the diamond property

Proof idea.

define residuation / and join ∨ such that if φ, ψ co-initial =⇒
φ ∨ ψ and φ · (ψ/φ) have same source,target, join ∨ commutative

φ ∨ ψ

ψ/φ

ψ

φ φ/ψψ ∨ φ

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Example: residuation for ◦−→β

Proof.

defining join ∨ and residuation / as follows works (induction on multisteps):

φ ψ φ ∨ ψ φ/ψ

β(x.φ′, φ′′) (λx.ψ′)ψ′′ β(x.φ′ ∨ ψ′, φ′′ ∨ ψ′′) β(x.φ′/ψ′, φ′′/ψ′′)

(λx.φ′)φ′′ β(x.ψ′, ψ′′) , , (φ′/ψ′)[x:=φ′′/ψ′′]

β(x.φ′, φ′′) β(x.ψ′, ψ′′) , , , ,

x x x x

λx.φ′ λx.ψ′ λx.φ′ ∨ ψ′ λx.φ′/ψ′

φ′φ′′ ψ′ψ′′ (φ′ ∨ ψ′)(φ′′ ∨ ψ′′) (φ′/ψ′)(φ′′/ψ′′)

is Tait–Martin-Löf proof: short by multistep notation, commutation of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 4



Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation
(should but did not apply to β (Schroer review); first α-error in literature?)

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4


Ubiquity of residuation

Example (Residuation in rewriting (replication))

I [Church–Rosser 36]: λβ-development

I [Newman 42]: axiomatic residuation

I Hindley 60s and 70s: axiomatic residuation for β

I [Lévy 78]: λβ-calculus permutation equivalence, optimality, cube, . . .

I Huet & Lévy 79: first-order TRS residuation, neededness

I [Huet 86]: prism, FSCD

I Khasidashvili & Glauert 90s: axiomatic neededness, optimality, . . .

I Terese 03: residual systems (presented next), equivalence of equivalences

I [Melliès 02]: axiomatic multi-redexes/treks (presented after)

in concurrency (linear): [Mazurkiewicz 70s], [Stark 89], [Winskel 89], Wolfram,
. . . Buenos Aires (Virtual); IWC 2021 23–07–2021 5

https://doi.org/10.2307/1989762
https://doi.org/10.2307/2269299
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://pauillac.inria.fr/~huet/PUBLIC/Formal_Structures.ps.gz
https://doi.org/10.1007/3-540-45610-4_4
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1016/0304-3975(89)90050-9
https://doi.org/10.1007/BFb0013026


Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

1 is loop (one for each object)

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

(4) is Lévy’s cube:

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

Intuition: residuation makes join semi-lattice =⇒ least upper bounds

I residuation diamond =⇒ commutativity of join (seen above)

I unit law (2) =⇒ idempotence of join

I cube law (4) =⇒ associativity of join

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

Remark (only intuition)

in general no order (steps need not compose), join need not exist ( q−→ in OTRSs)

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Residual systems

Definition (Residual system, Terese 03)

residual system 〈→,1, /〉 has for co-initial φ, ψ, χ in rewrite system→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

Example

◦−→β is residual system for / having joins with terms (trivial multisteps) as 1

Buenos Aires (Virtual); IWC 2021 23–07–2021 6



Ubiquity of residual systems/algebras (single object)

Example

I residual systems: combinatory logic, λβ, orthogonal (first- and higher-order)
term rewrite systems, positive braids, associativity, self-distributivity, . . . ,
any confluent countable rewrite system (for contrived notion of lub)

I commutative residual algebras: numbers with monus, (measurable)
(multi)sets with difference, positive natural numbers with dovision, . . .

I semi-lattices induce residual systems, categories having push-outs induce
residual systems (for epis)

I commutative residual algebras have multiset representation theorem, are
equivalent to commutative BCK algebras with relative cancellation, induce
lattice-ordered groups (groupoids for residual systems; with provisos), . . .

I inclusion–exclusion principle, [EWD 1313], Bayes’ Theorem,. . .

Buenos Aires (Virtual); IWC 2021 23–07–2021 7

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html


Ubiquity of residual systems/algebras

Example

I residual systems: combinatory logic, λβ, orthogonal (first- and higher-order)
term rewrite systems, positive braids, associativity, self-distributivity, . . . ,
any confluent countable rewrite system

I commutative residual algebras: numbers with monus, (measurable)
(multi)sets with difference, positive natural numbers with dovision, . . .

I semi-lattices induce residual systems, categories having push-outs induce
residual systems (for epis)

I commutative residual algebras have multiset representation theorem, are
equivalent to commutative BCK algebras with relative cancellation, induce
lattice-ordered groups (groupoids for residual systems; with provisos), . . .

I inclusion–exclusion principle, [EWD 1313], Bayes’ Theorem,. . .

Buenos Aires (Virtual); IWC 2021 23–07–2021 7

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html


Ubiquity of residual systems/algebras

Example

I residual systems: combinatory logic, λβ, orthogonal (first- and higher-order)
term rewrite systems, positive braids, associativity, self-distributivity, . . . ,
any confluent countable rewrite system

I commutative residual algebras: numbers with monus, (measurable)
(multi)sets with difference, positive natural numbers with dovision, . . .

I semi-lattices induce residual systems, categories having push-outs induce
residual systems (for epis)

I commutative residual algebras have multiset representation theorem, are
equivalent to commutative BCK algebras with relative cancellation, induce
lattice-ordered groups (groupoids for residual systems; with provisos), . . .

I inclusion–exclusion principle, [EWD 1313], Bayes’ Theorem,. . .

Buenos Aires (Virtual); IWC 2021 23–07–2021 7

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html


Ubiquity of residual systems/algebras

Example

I residual systems: combinatory logic, λβ, orthogonal (first- and higher-order)
term rewrite systems, positive braids, associativity, self-distributivity, . . . ,
any confluent countable rewrite system

I commutative residual algebras: numbers with monus, (measurable)
(multi)sets with difference, positive natural numbers with dovision, . . .

I semi-lattices induce residual systems, categories having push-outs induce
residual systems (for epis)

I commutative residual algebras have multiset representation theorem, are
equivalent to commutative BCK algebras with relative cancellation, induce
lattice-ordered groups (groupoids for residual systems; with provisos), . . .

I inclusion–exclusion principle, [EWD 1313], Bayes’ Theorem,. . .

Buenos Aires (Virtual); IWC 2021 23–07–2021 7

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html


Ubiquity of residual systems/algebras

Example

I residual systems: combinatory logic, λβ, orthogonal (first- and higher-order)
term rewrite systems, positive braids, associativity, self-distributivity, . . . ,
any confluent countable rewrite system

I commutative residual algebras: numbers with monus, (measurable)
(multi)sets with difference, positive natural numbers with dovision, . . .

I semi-lattices induce residual systems, categories having push-outs induce
residual systems (for epis)

I commutative residual algebras have multiset representation theorem, are
equivalent to commutative BCK algebras with relative cancellation, induce
lattice-ordered groups (groupoids for residual systems; with provisos), . . .

I inclusion–exclusion principle, [EWD 1313], Bayes’ Theorem,. . .

Buenos Aires (Virtual); IWC 2021 23–07–2021 7

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1313.html


Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system 〈→,1, /, ·〉 with composition · and for coinitial φ, ψ, χ in ARS→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

χ/(φ · ψ) = (χ/φ)/ψ (7)

(φ · ψ)/χ = (φ/χ) · (ψ/(χ/φ)) (8)

Buenos Aires (Virtual); IWC 2021 23–07–2021 8



Residual systems with composition

Definition (Residual system with composition, Terese 03)

residual system 〈→,1, /, ·〉 with composition · and for coinitial φ, ψ, χ in ARS→:

φ/1 = φ (1)

φ/φ = 1 (2)

1/φ = 1 (3)

(φ/ψ)/(χ/ψ) = (φ/χ)/(ψ/χ) (4)

χ/(φ · ψ) = (χ/φ)/ψ (7)

(φ · ψ)/χ = (φ/χ) · (ψ/(χ/φ)) (8)

composite identities (7) and (8):

Buenos Aires (Virtual); IWC 2021 23–07–2021 8



Facts on residual systems (with composition)

Lemma (Terese 03)

I 〈→,1, /〉 generates reduction system w/ composition on→∗ up to 1 · 1 = 1
(by tiling with diamonds and cubes)

I 4 is quasi-order with φ 4 ψ := φ/ψ = 1

I ' is congruence for operations with ' := 4 ∩<
I '-quotient of→∗ gives category for� with push-outs, epis

I natural order on reductions partial order with lubs and · left-cancellation

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Facts on residual systems (with composition)

Lemma (Terese 03)

I 〈→,1, /〉 generates reduction system w/ composition on→∗ up to 1 · 1 = 1

I 4 is quasi-order with φ 4 ψ := φ/ψ = 1 (natural or projection order)

I ' is congruence for operations with ' := 4 ∩<
I '-quotient of→∗ gives category for� with push-outs, epis

I natural order on reductions partial order with lubs and · left-cancellation

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Facts on residual systems (with composition)

Lemma (Terese 03)

I 〈→,1, /〉 generates reduction system w/ composition on→∗ up to 1 · 1 = 1

I 4 is quasi-order with φ 4 ψ := φ/ψ = 1

I ' is congruence for operations with ' := 4 ∩< =⇒ may be quotiented out

I '-quotient of→∗ gives category for� with push-outs, epis

I natural order on reductions partial order with lubs and · left-cancellation

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Facts on residual systems (with composition)

Lemma (Terese 03)

I 〈→,1, /〉 generates reduction system w/ composition on→∗ up to 1 · 1 = 1

I 4 is quasi-order with φ 4 ψ := φ/ψ = 1

I ' is congruence for operations with ' := 4 ∩<
I '-quotient of→∗ gives category for� with push-outs, epis

(identify multistep, development: β(x.x, z)β(x.x, z) ' I z β(x.x, z) · β(x.x, z) I)

I natural order on reductions partial order with lubs and · left-cancellation

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Facts on residual systems (with composition)

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Facts on residual systems (with composition)

Lemma (recent)

I 〈→,1, /〉 generates reduction system w/ composition on→∗ up to 1 · 1 = 1

I 4 is quasi-order with φ 4 ψ := φ/ψ = 1

I ' is congruence for operations with ' := 4 ∩<
I '-quotient of→∗ gives category for� with push-outs, epis

I natural order on reductions partial order with lubs and · left-cancellation
(φ ∨ ψ definable by φ · (ψ/φ); is Bayes’ Theorem P(A ∩ B) = P(A) · P(B | A))

Buenos Aires (Virtual); IWC 2021 23–07–2021 9



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β (→β ⊆ ◦−→β ⊆�β)

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉
4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉
4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉

4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉
4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉
4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Example: category with pushouts/epis from→β

Construction stages:

1 facet→β-steps =⇒ multisteps ◦−→β

2 ◦−→β has diamond property =⇒ residuation /

3 check residual laws (1)–(4) for / =⇒ residual system 〈 ◦−→β,1, /〉
4 generate rs with composition 〈 ◦−→∗β,1∗, /∗, ·〉 on multistep reductions

5 quotient out ' =⇒ category w/ pushouts,epis 〈�β,1
∗, /∗, ·〉 on reductions

Remark

faceting also works for positive/generalised braids, associativity, ortho TRSs or
HRSs, . . . but first step can also be done by magic (as long as the rest works)

Buenos Aires (Virtual); IWC 2021 23–07–2021 10



Axioms on multi-redexes of [Melliès 02]

Axioms

(self-destruction, SD) no redex has a residual after itself (as step)

(finiteness, F) every redex has finitely many residuals after a step

(finite developments, FD) developments of multi-redexes are finite

(permutation, PERM) every peak φ, ψ of steps can be completed by a valley of
complete developments of the residuals of ψ after φ, respectively the residu-
als of φ after ψ, such that both legs of the resulting local confluence diagram
induce the same redex-trace relation

Buenos Aires (Virtual); IWC 2021 23–07–2021 11

https://doi.org/10.1007/3-540-45610-4_4


Visualisation and formalisation of multi-redex axioms

χ
ψ ψ′

χ′

φ′

φ

Remark

some rewrite system

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


Visualisation and formalisation of multi-redex axioms

redexes as reified steps from objects

χ
ψ ψ′

χ′

φ′

φ

χ

ψ

φ

φ′

ψ′

χ′

Remark

redex is reified step from a given object; multi-redex is set of such

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


Visualisation and formalisation of multi-redex axioms

redex-tracing relating redexes in source,target of step

χ
ψ ψ′

χ′

φ′

φ

χ

ψ

φ

φ′

ψ′

χ′

Remark

redex-tracing of step relating redexes in its source and target (residuals)
pointwise extended to multi-redexes

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


Visualisation and formalisation of multi-redex axioms

complete development of {ψ, χ}

χ
ψ ψ′

χ′

φ′

φ

χ

ψ

φ

φ′

ψ′

χ′

Remark

development of multi-redex as reduction only contracting residuals
complete if no residuals remaining

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


Visualisation and formalisation of multi-redex axioms

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


Visualisation and formalisation of multi-redex axioms

Axioms

(SD) (φ Jφ〉〉) = ∅ where Jφ〉〉 is redex-trace relation of φ

(F) (ψ Jφ〉〉) is finite for co-initial φ, ψ

(FD) φ1 · . . . · φn development of multi-redex Φ if φi+1 ∈ (Φ Jφ1 · . . . · φi〉〉) for all i
complete if no residuals remaing

(PERM) each peak φ, ψ of steps is completed by valley γ, δ of complete develop-
ments of (ψ Jφ〉〉), (φ Jψ〉〉) with Jφ · γ〉〉 = Jψ · δ〉〉

Example (→β)

developments and redex-tracing as in [Church–Rosser 36]; axioms hold

Buenos Aires (Virtual); IWC 2021 23–07–2021 12

https://doi.org/10.2307/1989762


From multi-redexes to multisteps

Lemma

〈 ◦−→,1, /〉 is a residual system having joins, for ◦−→ the rewrite system having as
objects the objects of→, and as steps a multi-redex aΦ : a ◦−→ b if there is a
complete development of Φ from a to b; 1a defined as ∅; and residual Φ/Ψ
defined as (Φ JΨ〉〉) (for Ψ any complete development of Ψ).

Lemma

' = ≡l

Corollary

reductions up to local homotopy have push-outs and are epis.

Buenos Aires (Virtual); IWC 2021 23–07–2021 13



From multi-redexes to multisteps

Lemma

〈 ◦−→,1, /〉 is a residual system having joins, for ◦−→ the rewrite system having as
objects the objects of→, and as steps a multi-redex aΦ : a ◦−→ b if there is a
complete development of Φ from a to b; 1a defined as ∅; and residual Φ/Ψ
defined as (Φ JΨ〉〉) (for Ψ any complete development of Ψ).

Proof intuition.

all complete developments of Φ same redex-tracing by (PERM), by induction
(FD) guarantees no∞ interaction of redexes in Φ =⇒ induction measure

Lemma

' = ≡l

Corollary

reductions up to local homotopy have push-outs and are epis.

Buenos Aires (Virtual); IWC 2021 23–07–2021 13



From multi-redexes to multisteps

Lemma

〈 ◦−→,1, /〉 is a residual system having joins, for ◦−→ the rewrite system having as
objects the objects of→, and as steps a multi-redex aΦ : a ◦−→ b if there is a
complete development of Φ from a to b; 1a defined as ∅; and residual Φ/Ψ
defined as (Φ JΨ〉〉) (for Ψ any complete development of Ψ).

Definition

local homotopy ≡l on reductions with the same sources/targets obtained by
identifying legs of (PERM) diagrams
formally: equivalence generated by closing φ ·γ ≡l ψ · δ for peaks φ, ψ and valleys
γ, δ given by (PERM) under composition: if γ ≡l γ

′ then δ′ · γ · ε′ ≡l δ
′ · γ′ · ε′.

Lemma

' = ≡l

Corollary

reductions up to local homotopy have push-outs and are epis.

Buenos Aires (Virtual); IWC 2021 23–07–2021 13



From multi-redexes to multisteps

Lemma

〈 ◦−→,1, /〉 is a residual system having joins, for ◦−→ the rewrite system having as
objects the objects of→, and as steps a multi-redex aΦ : a ◦−→ b if there is a
complete development of Φ from a to b; 1a defined as ∅; and residual Φ/Ψ
defined as (Φ JΨ〉〉) (for Ψ any complete development of Ψ).

Lemma

' = ≡l

Proof.

by showing ' = ≡ = ≡l where ≡ is square homotopy obtained by identifying
legs of diamonds of multisteps
embeddings needed to mediate between→-reductions and ◦−→-reductions

Corollary

reductions up to local homotopy have push-outs and are epis.

Buenos Aires (Virtual); IWC 2021 23–07–2021 13



From multi-redexes to multisteps

Lemma

〈 ◦−→,1, /〉 is a residual system having joins, for ◦−→ the rewrite system having as
objects the objects of→, and as steps a multi-redex aΦ : a ◦−→ b if there is a
complete development of Φ from a to b; 1a defined as ∅; and residual Φ/Ψ
defined as (Φ JΨ〉〉) (for Ψ any complete development of Ψ).

Lemma

' = ≡l

Corollary

reductions up to local homotopy have push-outs and are epis.

Buenos Aires (Virtual); IWC 2021 23–07–2021 13



Conclusions

I residuation =⇒ upper bounds (of pairs of co-initial steps)

I residual system =⇒ least upper bounds (of finite co-initial steps)

I multi-redexes =⇒ sufficient to construct residual system

Buenos Aires (Virtual); IWC 2021 23–07–2021 14



Reflections

I no light between residuation and confluence
(papers stating to prove confluence not using residuals: empty statement)

I residuation breaks primacy of composition
(residuation total but composition only partial)

I residuation a perspective on causality (cf. Winskel 89, Terese 03, Wolfram)
(does causality involve FD? philosophical/ysics question; cf. proceedings)

I FFD (finite family developments) corresponds to FD of 2-rewriting.
important but subtle (see proceedings): suggest to formalise FFD (for HRSs)

I residuation in founding papers of: λ-calculus (Church & Rosser, TLCA),
rewriting (Newman, RTA), and in FSCD book (Huet)
(FSCD PC/SC does not respect this: suggest to remove RTA/TLCA/FSCD book
from FSCD page and from CfP)

Buenos Aires (Virtual); IWC 2021 23–07–2021 15


	Residual systems
	Multi-redexes
	Conclusions

