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Tiling the plane

Tiling peaks
with diamonds
with right-faceted diamonds
with multi-faceted diamonds

Making diamonds decreasing
B,n-factorisation
spine,vertebrae-factorisation
self-commutation of some term rewrite system

Take-aways



tiling the plane (Hao Wang 1961)

decision problem
given set of tiles, can it tile the plane?
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tiling the plane

decision problem
given set of tiles, can it tile the plane?

I D4 o R K KX
[ T 1 D4 | X1 X

conjecture
any solution will be periodic, so decidable



tiling the plane

decision problem
given set of tiles, can it tile the plane?

I D4 o R K KX
[ T 1 D4 | X1 X

refutation
no, aperiodic tiling; simulate Turing machine (halting iff plane not tiled; Berger 1966)
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diamonds (Newman 1942, Hindley 1964, Rosen 1973)

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>
» 71 ={a— b}
> T2 ={f(x) = g(f(x)), f(x) = h(x)}
—» is repetition of —; problem equivalent to Church—Rosser (14— U —2)* C —»p - 1«



diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

» 71 ={a— b}

> T2 = {f(x) = g(f(x)),(x) = h(x)}

commutation diamond (14 - —2 C —5 - 14)

no critical peaks between 71, 7>, and for non-critical peaks:
» - — C —-< (rules linear)
» - — C —-< (rules linear)



diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

» 71 ={a— b}

> T2 = {f(x) = g(f(x)),(x) = h(x)}

commutation diamond (14 - —2 C —5 - 14)

no critical peaks between 71, 7>, and for non-critical peaks:
> i > C
> — = C =

more precisely 7<- =5 C =77 [«
and random descent (reductions to common reduct have same length)
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diamonds

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» 71 ={a— b}

> T2 = {f(x) = g(f(x)),(x) = h(x)}



diamonds

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>
» 71 ={a— b}
> T2 = {f(x) = g(f(x)),(x) = h(x)}
a.k.a. preponement, postponement, commutation over, separation; problem equivalent
to (—1 U —2)" C —2 - —»1; note —, —1-factorisation is 1<—, —p-commutation

factorisation diamond (—1 - —2 € —5 - —1)

no critical peaks between 7?1,7’2, and for non-critical peaks:
» —.— C —-— (rules linear)
» —.— C —-— (rules linear)



diamonds

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» 71 ={a— b}

> o = {F(x) > g(F(x)), F(x) — h(x)}
a.k.a. preponement, postponement, commutation over, separation; problem equivalent
to (—1 U —2)" C —2 - —»1; note —, —1-factorisation is 1<—, —p-commutation
factorisation diamond (—1 - —2 € —5 - —1)
no critical peaks between 7?1,7’2, and for non-critical peaks:

> .- C—-—

> .- C ==

no critical peaks between 'Tl_l,’Tg means no overlap between rhss of 71 and lhss of 75:
T1 does not create 7. commutation is factorisation up to symmetry.



diamonds

factorisation problem (—»1 - —5 C =5 - —17)
for term rewrite systems 71 and 7>
» 71 ={a— b}
> T = {F(x) = g((x)), F(x) — h(x)}
a.k.a. preponement, postponement, commutation over, separation; problem equivalent
to (—1 U —2)* C — - —»1; note —, —1-factorisation is 14—, —p-commutation
factorisation diamond (—1 - —» € — - —1)
no critical peaks between 7’1*1,75, and for non-critical peaks:
> .- C—-—
> .- C—-—
commutation and factorisation of given rewrite system independent

a— b, a— ¢ has —,—-factorisation, no —,—-commutation
b — a, a— ¢ has —,—-commutation, no —,—-factorisation
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right-faceted diamonds (Hindley 1964, Huet 1978)

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>
» 71 ={)\y.Py — P} (n-reduction in A-calculus, as HRS rule)
» T ={(Ax.-M(x)) N = M(N)} (B-reduction in A-calculus, as HRS rule)

B is replicating, not linear; moreover 2 critical peaks; no diamonds



right-faceted diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

» 71 ={\y.Py— P}

> T = {(Ax.-M(x)) N — M(N)}

commutation right-faceted diamond (14— - —2 C —5 - 1)
> Ax.M(x) < Ay.(Ax.M(x))y — Ay.M(y) (trivial critical peak, up to «)
» PN <« (Ay.Py)N — PN (trivial critical peak)
» <. — C — .« (non-critical peaks; n linear, /3 replicating)



right-faceted diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

» 71 ={\y.Py— P}

> T = {(Ax.-M(x)) N — M(N)}

commutation right-faceted diamond (14— - —2 C —5 - 1)
> Ax.M(x) < Ay.(Ax.M(x))y — Ay.M(y)
> PN+ (Ay.Py)N— PN
R i

more precisely 1« - =7 C —>2§m - 1«—; valleys for critical peaks not rectangular;
resolved by adjoining empty —1,—2 steps (technique 17)



right-faceted diamonds
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right-faceted diamonds
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right-faceted diamonds
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right-faceted diamonds
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right-faceted diamonds
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right-faceted diamonds

factorisation problem (—»7 - =5 C —5 - —17)

for term rewrite systems 71 and 7>
» 71 ={P — Ay.Py} (m-expansion in \-calculus)
> T = {(Ax.-M(x)) N — M(N)}

2 critical peaks (between 7, ! and 73); no diamonds



right-faceted diamonds

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» 71 ={P = \y.Py}

> T = {(Ax.-M(x)) N — M(N)}

factorisation right-faceted diamond (—7 - —2 C —5 - —1)
> Ax.M(x) — Ay.(Ax.M(x))y — A\y.M(y)
> PN 5 (Ay.Py)N — PN
> - C -



right-faceted diamonds

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» 71 ={P = \y.Py}

> T = {(Ax.-M(x)) N — M(N)}

factorisation right-faceted diamond (—7 - —2 C —5 - —1)

> Ax.M(x) — Ay.(Ax.M(x))y — A\y.M(y)
» PN — (Ay.Py)N — PN
> - C -

B3, n~L-factorisation is 71, 3-commutation



right-faceted diamonds
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multi-faceted diamonds (Newman 42, de Bruijn 1978, vO 1994)

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

> 71 =H ,a—c}

» To={a— b,b—d}
both right- and left-faceted diamonds



multi-faceted diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

> 71 =H ,a—c}

» To={a— b,b—d}

commutation multi-faceted diamond (14— - —2 C —»; - 1«)
critical peaks between 71, 75:

» . — C < -« (right faceted)

» - — C — - —(left-faceted)

Counterexample ¢ 1< a 1222 b —, d to local commutation = commutation
(Kleene).



multi-faceted diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

> T1={ ,a—c,d— e}

» T,={a—b,b—d,c—e}

commutation multi-faceted diamond (14— - —2 C —»; - 1«)
critical peaks between 71, 75:

> = C -

> = C ==

Counterexample ¢ 1< a 122 b —, d to local commutation = commutation
(Kleene). Adjoining ¢ —, e 14 d shows even if commutation holds, that need not be
provable by local commutation tiling (reusing Endrullis, Grabmayer)



multi-faceted diamonds

commutation problem (14— - = C =5 - 14=7)
for term rewrite systems 71 and 7>

> T1={ ,a—c,d— e}

» T,={a—b,b—d,c—e}

commutation multi-faceted diamond (14— - —2 C —»; - 1«)

critical peaks between 71, 75:
> 5 C (adjoining empty —-step to get rectangular tile)
> 5 C (adjoining empty < -step to get rectangular tile)

Counterexample ¢ 1< a 1222 b —, d to local commutation = commutation
(Kleene). Adjoining ¢ —, e 14— d shows even if commutation holds, that need not be
provable by local commutation tiling (reusing Endrullis, Grabmayer)



multi-faceted diamonds

horizontal
vertical

splitting point



multi-faceted diamonds
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multi-faceted diamonds
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multi-faceted diamonds
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multi-faceted diamonds
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multi-faceted diamonds

splitting

> if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)



multi-faceted diamonds

splitting
> if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)

» local commutation = commutation, if —1 U —; terminating (Newman 1942,
Backhouse & Doornbos 1994), even if just —7 - — terminating (Pous 2005)



multi-faceted diamonds

splitting
> if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)
» local commutation = commutation, if —1 U —; terminating (Newman 1942,
Backhouse & Doornbos 1994), even if just —7 - — terminating (Pous 2005)
» extended Kleene example commuting but not terminating ... 7 Avoid splitting by
adjoining certain reductions in valleys as single steps (technique 1; faceting).



multi-faceted diamonds

splitting

> if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)

» local commutation = commutation, if —1 U —; terminating (Newman 1942,
Backhouse & Doornbos 1994), even if just —7 - — terminating (Pous 2005)

» extended Kleene example commuting but not terminating ... 7 Avoid splitting by
adjoining certain reductions in valleys as single steps (technique 1; faceting).

» ¢+ b (adjoined to Ty for c < - < b)
a—d (adjoined to 75 for a — - — d)



multi-faceted diamonds

splitting

>

>

>

if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)

local commutation = commutation, if —1 U —» terminating (Newman 1942,
Backhouse & Doornbos 1994), even if just —7 - — terminating (Pous 2005)

extended Kleene example commuting but not terminating ...? Avoid splitting by
adjoining certain reductions in valleys as single steps (technique 1; faceting).

c« b

a—d

new critical peaks:

c b—d
c<a—d



multi-faceted diamonds

splitting

>

>

if tiling is infinite, there is an infinite reduction through infinitely many horizontal
and vertical splitting points (alternatingly)

local commutation = commutation, if —1 U —» terminating (Newman 1942,
Backhouse & Doornbos 1994), even if just —7 - — terminating (Pous 2005)

extended Kleene example commuting but not terminating ...? Avoid splitting by
adjoining certain reductions in valleys as single steps (technique 1; faceting).

c« b

a—d

new critical peaks:

c<+ b—d joinable by ¢ — e < d into diamond
c+ a—d joinable by ¢ — e < d into diamond
4 tiles in total, all (square) diamonds



multi-faceted diamonds
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multi-faceted diamonds
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multi-faceted diamonds

question
characterise shape of multi-faceted diamonds such that tiling always terminates?



multi-faceted diamonds

question
characterise shape of multi-faceted diamonds such that tiling always terminates?

note colors alternate (between red and ) along infinite reduction



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

A%




multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

any well-founded order; here rainbow color order



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

middle facet in valley same color as opposite facet in peak



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

facets before middle, smaller color than adjacent facet in peak



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

facets after middle, smaller color than either facet in peak



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

//Ak

tiling peaks terminates for any set of decreasing diamonds (de Bruijn 1978)



multi-faceted diamonds

idea
order the facets in valley below peak such that colors decrease along infinite reduction

M

tiling peaks terminates for any set of decreasing diagrams (de Bruijn 1978)



B,n-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» Ti={\yv.Py— P}

> T = {(Ax.-M(x)) N — M(N)}



(3,m-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for term rewrite systems 71 and 7>

» Ti={\yv.Py— P}

> T = {(Ax.-M(x)) N — M(N)}

factorisation decreasing diamond?

> (Ay.(Ax.M(x))y) N — (Ax.M(x)) N — M(N) (n~1,3 critical peak)
(Ay.(Ax.-M(x))y) N = (Ax.M(x)) N — M(N) (valley of left-faceted diamond)
» . — C—-— (non-critical peaks; right faceted diamonds)



B,n-factorisation

factorisation problem (—»1 - =5 C —»p - —17?)
for term rewrite systems 71 and 7>

» Ti={\y.Py— P}

> T ={(Ax-M(x)) N — M(N)}

factorisation decreasing diamond?

> (Ay.(Ax.M(x))y) N — (Ax.M(x)) N — M(N)
(Ay.(Ax.M(x))y) N = (Ax.M(x)) N — M(N)
> . =>C =

first 3 in critical valley is specialisation of § (technique 2; Hirokawa et al. 2019)

» (Ax.M(x)) N — M(N) if x occurs < 1 times in M
» (Ax.M(x))N— M(N) if x occurs > 1 times in M

renders al diamonds decreasing






spine,vertebrae-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for rewrite systems 71 and 7T, on the set of A-terms
» 71 = — may contract any [-redex at vertebrae position (¢ 1*)
» 7, = — may contract any [-redex at spine position (€ 1%)
note =g = —U—



spine,vertebrae-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for rewrite systems 71 and 7T, on the set of A-terms
» 71 = — may contract any (3-redex at vertebrae position

» 7, = — may contract any (3-redex at spine position

factorisation decreasing diamond for —, —7
» no critical peaks (— cannot create —; spine closed under prefix)
» — . — C — - —g (non-critical peak; — cannot replicate —)
note —4 here is development of residuals of — after — (both from source)



spine,vertebrae-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for rewrite systems 71 and 7T, on the set of A-terms
» 71 = — may contract any (3-redex at vertebrae position

» 7, = — may contract any (3-redex at spine position

factorisation decreasing diamond for —, —7
» no critical peaks

» — . — C — - —g (non-critical peak; — cannot replicate —)

example
(Ax.x x) ((A\y.y) z) — (Ax.x x) z — z z factorises to

(Axxx) (Ay.y) 2) = (Ay.y) 2((Ay-y) 2) = z((Ay.y) z) = zz
may yield multiple —, —-steps = choose to facet —-developments as —



spine,vertebrae-factorisation

factorisation problem (—»7 - =5 C —5 - —17)
for rewrite systems 71 and 7T, on the set of A-terms
» 71 = — may contract any (3-redex at vertebrae position

» 7, = — may contract any (3-redex at spine position

factorisation decreasing diamond for —, —7
> still no critical peaks
» .- C—-—-»3C —-—-— (non-critical peak; is decreasing diamond)

development of —-step is —-reduction (cf. Mellies’ segmentation property)



spine,vertebrae-factorisation

factorisation problem (—»1 - —5 C =5 - —17)
for rewrite systems 71 and 7T, on the set of A-terms
» 71 = — may contract any (-redex at vertebrae position

> 7, = — may contract any [-redex at spine position

factorisation decreasing diamond for —, —7

P still no critical peaks

» - .- C—-—»3C —.—-— (non-critical peak; is decreasing diamond)

adaptations
same critical peak analysis works for head,internal-factorisation for S-reduction:

» head-steps have unique origin along internal steps (head-positions closed under
prefix; if rhs of step overlaps/is above head-redex then step is itself head)

» developing a set of internal redexes yields internal reduction



self-commutation of some term rewrite system

some term rewrite system

» three rules of which the 1st is (self-)replicating, the other two —, — linear



self-commutation of some term rewrite system

some term rewrite system

» three rules of which the 1st is (self-)replicating, the other two —, — linear

» for non-critical peaks facet developments of 1st as —, ordered above —,—-steps



self-commutation of some term rewrite system

some term rewrite system

» three rules of which the 1st is (self-)replicating, the other two —, — linear

» for non-critical peaks facet developments of 1st as —, ordered above —,—-steps
» for critical peaks:

bq 12171

fourth diagram then not decreasing, but only linear specialisation — of — needed



self-commutation of some term rewrite system

some term rewrite system

» three rules of which the 1st is (self-)replicating, the other two —, — linear
» for non-critical peaks facet developments of 1st as —, ordered above —,—-steps
» critical peaks after adjoining linear specialisation —:

fifth diagram not decreasing, but — U — U — terminating (SOL, Hamana 2020)



self-commutation of some term rewrite system

some term rewrite system

» three rules of which the 1st is (self-)replicating, the other two —, — linear

» for non-critical peaks facet developments of 1st as —, ordered above —,—-steps
» critical peaks after adjoining linear specialisation —:
4 12151
A VN AN
BN X
ZaN ZEN A V&N

fifth diagram not decreasing, but — U — U — terminating (SOL, Hamana 2020)
» source labelling these (all still ordered below —), all decreasing = confluence



take-aways

» commutation = factorisation, up to symmetry
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» commutation = factorisation, up to symmetry

» for structured (string, term, ...) rewrite systems, analysed via critical peaks, i.e.
overlaps between left- respectively right-hand sides of 1st, left-hand sides of 2nd



take-aways

» commutation = factorisation, up to symmetry

» for structured (string, term, ...) rewrite systems, analysed via critical peaks, i.e.
overlaps between left- respectively right-hand sides of 1st, left-hand sides of 2nd
» two techniques for making diagrams decreasing

1. faceting: adjoining certain reductions in valleys as rules (parallel steps, developments
for term rewriting, left-divisors of Garside-element for braids, empty reductions)
2. specialisation: adjoining rules in context,substitution as rules



take-aways

» commutation = factorisation, up to symmetry

» for structured (string, term, ...) rewrite systems, analysed via critical peaks, i.e.
overlaps between left- respectively right-hand sides of 1st, left-hand sides of 2nd

» two techniques for making diagrams decreasing

1. faceting: adjoining certain reductions in valleys as rules
2. specialisation: adjoining rules in context,substitution as rules

» diagrammatic: every peak filled by local commutation diagrams if decreasing



take-aways from Newman 1942

>
>

that rewriting is not about relations, but steps

his lemma and its homotopic strengthening: for terminating and locally confluent
rewrite system all diagrams (cycles) deformable into the empty diagram (cf.
Squier 1987, Kraus & von Raumer 2020)

diamond property and random descent (Toyama 1992, vO 2007, T & vO 2016)
axiomatic residuals (Hindley, Glauert & Khasidashvili, Mellies, Terese)
(a-equivalence error in application to A-calculus; but expect it applies to TRSs)

interest in least upperbounds (left to future work; cf. orthogonality in term
rewriting or braids; faceting by least way to extend co-initial steps)
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