Z

Patrick Dehornoy Vincent van Oostrom

Theoretische Filosofie Universiteit Utrecht Nederland

May 6, 2008

Intuitions

Consequences

Confluence Hyper-cofinality

Examples

Braids

Self-distributivity

Normalising and confluent relations

 λ -calculus

 λ -calculus with explicit substitutions

Weakly orthogonal term rewriting systems

Z vs.angle

Non-examples

Conclusions

A rewrite relation \rightarrow has the Z-property

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to b

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet}

A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step $a \rightarrow b$ from a to b there exists a many-step reduction $b \rightarrow a^{\bullet}$ from b to a^{\bullet} and there exists a many-step reduction $a^{\bullet} \rightarrow b^{\bullet}$ from a^{\bullet} to b^{\bullet}

 $\exists \bullet : A \mathbin{\rightarrow} A, \forall a,b \in A : a \mathbin{\rightarrow} b \Rightarrow b \mathbin{\twoheadrightarrow} a^\bullet, a^\bullet \mathbin{\twoheadrightarrow} b^\bullet$

Z intuitions

Z intuitions

Z intuitions

Definition

 \rightarrow confluent, if $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \leftarrow$

$confluence \Rightarrow$

- uniqueness of normal forms
- consistent, if some objects not joinable (distinct normal forms)
- ▶ decidable, if → is terminating

Theorem
If a rewrite relation has the Z-property, then it is confluent
Proof.

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Theorem

If a rewrite relation has the Z-property, then it is confluent

Definition (•-strategy)

 $a \longrightarrow b$ if a is not a normal form and $b = a^{\bullet}$

Definition

→ hyper-cofinal, if for any reduction which eventually always contains a →-step, any co-initial reduction can be extended to reach the first

hyper-cofinal \Rightarrow

- confluent
- ▶ (hyper-)normalising
- ▶ bullet-fast . . .

Theorem

→ is hyper-cofinal

Proof.

=

Theorem

→ is hyper-cofinal

Theorem

→ is hyper-cofinal

Theorem

→ is hyper-cofinal

Theorem

→ is hyper-cofinal

Theorem

→ is hyper-cofinal

Theorem

→ is hyper-cofinal

Examples

Definition

Braid rewriting: cross adjacent strands, right over left.

Definition

Braid rewriting: cross adjacent strands, right over left.

Example:

Definition

Braid rewriting: cross adjacent strands, right over left.

Example:

Up to topological equivalence:

Theorem

Braid rewriting has the Z-property, for • full crossing

Example

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

Theorem

Braid rewriting has the Z-property, for • full crossing

Proof.

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

Some models:

- ► ACI operations
- take middle of points in space
- substitution

Definition

Self-distributivity, rewrite relation generated by $xyz \rightarrow xz(yz)$

Some models:

- ► ACI operations
- take middle of points in space
- substitution

In depth: Braids and Self-distributivity (Dehornoy 2000)

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$

with t[s] uniform distribution of s over t:

$$t[x_1:=x_1s, x_2:=x_2s, \ldots]$$

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, \ldots]$

Example

- $(xy)^{\bullet} = x[y] = x[x := xy] = xy;$
- $(xyz)^{\bullet} = (xy)[x:=xz, y:=yz] = xz(yz).$

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, \ldots]$

Proof.

Theorem

Self-distributivity has the Z-property, for ● full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof.

By induction on t:

▶ (Sequentialisation) $ts \rightarrow t[s]$;

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof.

- ▶ (Sequentialisation) $ts \rightarrow t[s]$;
- ▶ (Substitution) $t[s][r] \rightarrow t[r][s[r]]$

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof.

- ▶ (Sequentialisation) $ts \rightarrow t[s]$;
- ▶ (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- ► (Self) $t \rightarrow t^{\bullet}$;

Theorem

Self-distributivity has the Z-property, for • full distribution:

$$x^{\bullet} = x$$
 $(ts)^{\bullet} = t^{\bullet}[s^{\bullet}]$
with $t[s]$ uniform distribution of s over t :
 $t[x_1:=x_1s, x_2:=x_2s, ...]$

Proof.

- ▶ (Sequentialisation) $ts \rightarrow t[s]$;
- ▶ (Substitution) $t[s][r] \rightarrow t[r][s[r]]$
- ► (Self) $t \rightarrow t^{\bullet}$;
- $\blacktriangleright (Z) \qquad s \twoheadrightarrow t^{\bullet} \twoheadrightarrow s^{\bullet}, \text{ if } t \longrightarrow s.$

Theorem

Normalising and confluent relations have the Z-property, for ullet the full reduction map (map to normal form).

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since b reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of a (confluence).

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since b reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of a (confluence).

Corollary

Z-property for typed λ -calculi (by confluence and termination)

Theorem

Normalising and confluent relations have the Z-property, for \bullet the full reduction map (map to normal form).

Proof.

If $a \to b$, then $b \to a^{\bullet} \to b^{\bullet}$ since b reduces to its normal form b^{\bullet} (normalisation) which is the same as the normal form a^{\bullet} of a (confluence).

Corollary

Z-property for typed λ -calculi (by confluence and termination) Here reverse: use Z-property to establish meta-theory

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Example

- $I^{\bullet} = I; (I = \lambda x.x)$
- $(I(II))^{\bullet} = I, (III)^{\bullet} = II;$
- $((\lambda xy.x)zw)^{\bullet} = (\lambda y.z)w;$
- $((\lambda xy.lyx)zI)^{\bullet} = (\lambda y.yz)I;$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

By induction on M:

► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- ► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$; and

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- ► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$; and
- $\blacktriangleright (Z) \qquad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for • full development contracting all redexes present:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is an abstraction, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

By induction on M:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- $\qquad \qquad \land \quad \mathsf{Rhs}) \qquad M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}; \text{ and }$
- $\blacktriangleright (Z) \qquad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$

Same method works for all orthogonal first/higher-order TRSs

Theorem

 $(\lambda x.M)N \to M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Example

- $I^{\bullet} = I; (I = \lambda x.x)$
- $((\lambda xy.x)zw)^{\bullet} = z;$
- $((\lambda xy.lyx)zl)^{\bullet} = lz$

Theorem

 $(\lambda x.M)N \to M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M:

► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;

Theorem

 $(\lambda x.M)N \to M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- ► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$; and

Theorem

 $(\lambda x.M)N \rightarrow M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- ► (Rhs) $M^{\bullet}[x:=N^{\bullet}] \rightarrow M[x:=N]^{\bullet}$; and
- $\blacktriangleright (Z) \qquad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$

Theorem

 $(\lambda x.M)N \to M[x:=N]$ has the Z-property, for \bullet full superdevelopment contracting all redexes present or upward created:

$$x^{\bullet} = x$$

 $(\lambda x.M)^{\bullet} = \lambda x.M^{\bullet}$
 $(MN)^{\bullet} = M'[x:=N^{\bullet}]$ if M is a term, $M^{\bullet} = \lambda x.M'$
 $= M^{\bullet}N^{\bullet}$ otherwise

Proof.

Same ('an abstraction' \mapsto 'a term') proof by induction on M:

- ► (Substitution) M[y:=P][x:=N] = M[x:=N][y:=P[x:=N]];
- ► (Self) $M \rightarrow M^{\bullet}$;
- $\qquad \qquad \land \quad \mathsf{Rhs}) \qquad M^{\bullet}[x:=N^{\bullet}] \twoheadrightarrow M[x:=N]^{\bullet}; \text{ and }$
- $\blacktriangleright (Z) \qquad M \to N \Rightarrow N \twoheadrightarrow M^{\bullet} \twoheadrightarrow N^{\bullet}.$

Moral: possibly more than one witnessing map for Z-property

Example: λ -calculus with explicit substitutions

Theorem

 $\lambda\sigma$ has the Z-property, for ullet the map composed of first σ -normalisation (ullet), then a Beta-full development (ullet)

Example: λ -calculus with explicit substitutions

Theorem

 $\lambda\sigma$ has the Z-property, for ullet the map composed of first σ -normalisation (\triangleright), then a Beta-full development (\longrightarrow)

Proof.

Example: λ -calculus with explicit substitutions

Theorem

 $\lambda\sigma$ has the Z-property, for ullet the map composed of first σ -normalisation (ullet), then a Beta-full development (ullet)

Proof.

Works for other explicit substitution/proof calculi as well.

Definition

Rewrite system is weakly orthogonal, if only trivial critical pairs.

Definition

Rewrite system is weakly orthogonal, if only trivial critical pairs.

Example

- ▶ λ -calculus with β and η : $\lambda x.Mx \rightarrow M$, if $x \notin M$;
- ▶ predecessor/successor S(P(x))) → x P(S(x)) → x;
- parallel-or.

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for \bullet full inside-out development

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for \bullet full inside-out development

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for \bullet full inside-out development

Proof.

$$c(x) \rightarrow x$$

$$f(f(x)) \rightarrow f(x)$$

$$g(f(f(f(x)))) \rightarrow g(f(f(x)))$$

Then
$$g(f(f(c(f(f(x)))))) \to g(f(f(f(f(x)))))$$
 gives Z: $g(f(f(c(f(f(x))))))^{\bullet} = g(f(f(x))) = g(f(f(f(x)))))^{\bullet}$

Theorem

Weakly orthogonal first/higher-order term rewrite systems have the Z-property, for • full inside-out development

Proof.

$$c(x) \rightarrow x$$

$$f(f(x)) \rightarrow f(x)$$

$$g(f(f(f(x)))) \rightarrow g(f(f(x)))$$

Then
$$g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(x)))))$$
 gives Z: $g(f(f(c(f(f(x))))))^{\bullet} = g(f(f(x))) = g(f(f(f(x)))))^{\bullet}$
Outside-in not monotonic: not $g(f(f(x))) \rightarrow g(f(f(f(x))))!$

Z vs. angle

- Dehornoy: Z-property of → for •;
- ► Takahashi: angle (\langle) property of \rightarrow for \bullet : $\exists \neg \bullet \rightarrow, \rightarrow \subseteq \neg \bullet \rightarrow \subseteq \neg \bullet$

Z vs. angle

- Dehornoy: Z-property of → for •;
- ► Takahashi: angle (\langle) property of \rightarrow for \bullet : $\exists \neg \bullet \rightarrow$, $\rightarrow \subseteq \neg \bullet \rightarrow \subseteq \neg \bullet$

 \longrightarrow steps are divisors of \longrightarrow

Theorem for any map \bullet , $Z \Leftrightarrow \langle$ Proof.

```
Theorem for any map \bullet, Z \Leftrightarrow \langle Proof. (If)
```

$$a \longrightarrow b$$

```
Theorem for any map \bullet, Z \Leftrightarrow \langle Proof. (If)
```

```
Theorem for any map \bullet, Z \Leftrightarrow \langle Proof. (If)
```



```
Theorem for any map \bullet, Z \Leftrightarrow \langle Proof. (If)
```


Theorem

for any map \bullet , $Z \Leftrightarrow \langle$

Proof.

(only if) Def. $a \rightarrow b$ if b between a and a^{\bullet} , i.e. $a \rightarrow b \rightarrow a^{\bullet}$:

- ▶ Suppose $a \longrightarrow b$.
 - ▶ $a \rightarrow b \rightarrow a^{\bullet}$ by definition of \rightarrow .
 - ▶ $a woheadrightarrow b \Rightarrow a^{\bullet} woheadrightarrow b^{\bullet}$ (monotonicity of \bullet) by Z
 - ▶ $b \rightarrow a^{\bullet} \rightarrow b^{\bullet}$ so $b \rightarrow a^{\bullet}$ by definition of \rightarrow .

Non-examples

▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- $\blacktriangleright \ \to \ \text{has Z-property iff} \ \to^= \ \text{has IZ-property};$

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ightharpoonup has Z-property iff ightharpoonup has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ightharpoonup has Z-property iff ightharpoonup has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.
- ▶ slower order: $\bullet_1 \le \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ightharpoonup has Z-property iff ightharpoonup has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.
- ▶ slower order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;
- $\bullet_i \leq \bullet_1 \circ \bullet_2;$

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ightharpoonup has Z-property iff ightharpoonup has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.
- ▶ slower order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;
- $\bullet_i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ightharpoonup has Z-property iff ightharpoonup has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.
- ▶ slower order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;
- $\bullet_i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;
- ▶ for normalising/finite systems: go to 'normal' form fastest.

- ▶ if $a \rightarrow b$ then $a^{\bullet} \rightarrow b^{\bullet}$;
- ▶ \rightarrow has Z-property iff \rightarrow has IZ-property;
- ▶ $\bullet_1 \circ \bullet_2$ has Z, if \bullet_i do.
- ▶ slower order: $\bullet_1 \leq \bullet_2$, if $\forall a, a^{\bullet_1} \rightarrow a^{\bullet_2}$;
- $\bullet_i \leq \bullet_1 \circ \bullet_2;$
- no slowest/minimally slow/fastest/maximally fast;
- for normalising/finite systems: go to 'normal' form fastest.

Used to get ideas about (confluent) systems which do not have Z

\mathbb{Z} does not have Z

\mathbb{Z} does not have Z

for given integer, no upper bound on steps from it

\mathbb{Z} does not have Z

not finitely branching, no finite TRS

for given integer, no upper bound on steps from it

$\hat{\mathbb{Z}}$ does not imply Z

$\hat{\mathbb{Z}}$ does not imply Z

$$n(x) \rightarrow p(x)$$
 $n(1) \rightarrow 0$ $0 \rightarrow p(1)$ $n(s(x)) \rightarrow n(x)$ $p(x) \rightarrow p(s(x))$

$\hat{\mathbb{Z}}$ does not imply Z

\mathbb{Z}^{\flat} does have Z

finitely branching, finite TRS, no transitivity

$$\longrightarrow$$
 -2 \longrightarrow -1 \longrightarrow 0 \longrightarrow 1 \longrightarrow 2 \longrightarrow

\mathbb{Z}^{\flat} does have Z

finitely branching, finite TRS, no transitivity

$$-- -2$$
 $-- 0$ $-- 1$ $-- 2$ $-- Z$ trivial $(i^{\bullet} = i + 1)$

\mathbb{Z}^{\flat} does have Z

finitely branching, finite TRS, no transitivity

Examples show:

- ▶ confluent ⇒ Z
- transitivity might be harmful

▶ Surprise: $Z \Leftrightarrow angle$;

- ▶ Surprise: $Z \Leftrightarrow angle$;
- Claim: gives simplest confluence proofs;

- ightharpoonup Surprise: $Z \Leftrightarrow angle$;
- Claim: gives simplest confluence proofs;
- ▶ Conjecture: β with restricted η -expansion does not have Z;

- ▶ Surprise: $Z \Leftrightarrow angle$;
- Claim: gives simplest confluence proofs;
- ▶ Conjecture: β with restricted η -expansion does not have Z;
- Problem: characterise systems having Z-property;

- ▶ Surprise: $Z \Leftrightarrow angle$;
- Claim: gives simplest confluence proofs;
- ▶ Conjecture: β with restricted η -expansion does not have Z;
- Problem: characterise systems having Z-property;
- Puzzle: is Z a modular property of TRSs?;

- ▶ Surprise: Z ⇔ angle;
- Claim: gives simplest confluence proofs;
- ▶ Conjecture: β with restricted η -expansion does not have Z;
- Problem: characterise systems having Z-property;
- Puzzle: is Z a modular property of TRSs?;
- ► Further work: Garside categories ⇔ residual systems.