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Involutive monoids (0.4)

A well-founded order on French strings (0.4)

An application to proving confluence (0.2)



Boustrophedon

Gortyn code, Crete, 5th century B.C. (wikipedia)
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Boustrophedon

Martinus Nijhoff, Het kind en ik, Nieuwe Gedichten, 1934
(Hortus Botanicus, Universiteitsmuseum Utrecht, next to pond)



Boustrophedon

. . . . . .

EN TELKENS ALS IK EVEN
TSI W TEH KI TAD ETKI NK

LIET HIJ HET WATER BEVEN
TSI WEGTI U DRE W TEH NE



Boustrophedon

. . . . . .

EN TELKENS ALS IK EVEN
TSI W TEH KI TAD ETKI NK

LIET HIJ HET WATER BEVEN
TSI WEGTI U DRE W TEH NE

How to represent linearly?



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ −1

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition èv̀èǹ juxtaposed to ḱń́iḱt́é gives èv̀èǹḱń́iḱt́é

▸ empty string ε

▸ −1

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ −1

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1 t̀è̀lk̀èǹs̀ mirrors śńéḱ́lét́

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1

▸ L̂ set of French Strings on L (â for either à or á)

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



French strings (châınes)

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



Monoid of strings

(sr)q = s(rq) (associativity)
sε = ε (right identity)
εs = s (left identity)

ε−1 = ε (derived)

Proof.

ε−1 = εε−1 = (ε−1)
−1
ε−1 = (εε−1)

−1
= (ε−1)

−1
= ε



Involutive monoid of French strings

(sr)q = s(rq) (associativity)
sε = ε (right identity)
εs = s (left identity)

(s−1)−1 = s (involutive)

(sr)−1 = r−1s−1 (anti-automorphic)

ε−1 = ε (derived)

Proof.

ε−1 = εε−1 = (ε−1)
−1
ε−1 = (εε−1)

−1
= (ε−1)

−1
= ε



Involutive monoid of French strings

(sr)q = s(rq) (associativity)
sε = ε (right identity)
εs = s (left identity)

(s−1)−1 = s (involutive)

(sr)−1 = r−1s−1 (anti-automorphic)

ε−1 = ε (derived)

Proof.

ε−1 = εε−1 = (ε−1)
−1
ε−1 = (εε−1)

−1
= (ε−1)

−1
= ε



Involutive monoid of French strings

(sr)q = s(rq) (associativity)
sε = ε (right identity)
εs = s (left identity)

(s−1)−1 = s (involutive)

(sr)−1 = r−1s−1 (anti-automorphic)

ε−1 = ε (derived)

Proof.

ε−1 = εε−1 = (ε−1)
−1
ε−1 = (εε−1)

−1
= (ε−1)

−1
= ε



Involutive monoid

Definition
set with

▸ associative binary operation ⋅

▸ identity element e

▸ involutive anti-automorphism −1

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) (associative)
a ⋅ e = a (right identity)
e ⋅ a = a (left identity)

(a−1)−1 = a (involutive)

(a ⋅ b)−1 = b−1 ⋅ a−1 (anti-automorphic)

ε−1 = ε (derived)



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ integers with addition, zero, unary minus

▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ positive rationals with multiplication, one, inverse

▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group

▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ natural numbers with addition, zero, identity map

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ multisets with multiset sum, empty multiset, identity map

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ commutative monoid with identity map

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ commutative monoid (examples (N,+,0), ([L],⊎, [ ]))

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ commutative monoid (examples (N,+,0), ([L],⊎, [ ]))

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ number pairs with pointwise addition, (0,0), swapping

(n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k ,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ commutative monoid (examples (N,+,0), ([L],⊎, [ ]))

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ number triples with composition given by
(n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k ,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1))

▸ commutative monoid (examples (N,+,0), ([L],⊎, [ ]))

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ number triples with composition given by
(n1,m1, k1) ⋅ (n2,m2, k2) = (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2),
zero (0,0,0), involution (n,m, k)−1 = (k ,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸ involutive monoid to itself (identity)

▸▸ French strings → multisets (letters)



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → number pairs (grave,acute)
ćèńàr̀↦ (3,2)

▸ French strings → multisets (letters)



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ number pairs → natural numbers (sum)
(3,2) ↦ 5

▸ French strings → multisets (letters)



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)
composition of previous two

▸ French strings → multisets (letters)



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)
b́áŕb̀àŕó↦ [a, a,b,b,o, r , r]



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ French strings → diagrams

ćèńàr̀↦



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ diagrams → triples

↦ (3,5,2) cf.
3

5

2



Involutive monoid homomorphisms

Definition
maps preserving operations

Examples

▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ French strings → triples (area)
composition of previous two



Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L



Freeness of involutive monoid of French Strings

L

M

f



Freeness of involutive monoid of French Strings

L

M

f

M,c,e,i
forget

INVOLUTIVE MONOIDSET



Freeness of involutive monoid of French Strings

L

M

f

L̂, ,ε, −1

M,c,e,i
forget

enrich

INVOLUTIVE MONOIDSET



Freeness of involutive monoid of French Strings

L

M

f

L̂, ,ε, −1

M,c,e,i
forget

enrich

INVOLUTIVE MONOIDSET

L̂



Freeness of involutive monoid of French Strings

L

M

f

`↦ `̀
L̂, ,ε, −1

M,c,e,i
forget

enrich

INVOLUTIVE MONOIDSET

L̂



Freeness of involutive monoid of French Strings

L

M

f

`↦ `̀

∃!f̂

L̂, ,ε, −1

M,c,e,i

f̂

forget

enrich

INVOLUTIVE MONOIDSET

L̂



Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Proof.
L̂ in bijection via `̀ ↦ ` with

N ∶∶= e ∣ ` ∣ i(`) ∣ c(`,N) ∣ c(i(`),N)

N set of normal forms on L for TRS completing axioms

c(c(x , y), z) → c(x , c(y , z))

c(x , e) → x

c(e, x) → x

i(i(x)) → x

i(c(x , y)) → c(i(y), i(x))

i(e) → e
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Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Proof.
L̂ in bijection via `̀ ↦ ` with

N ∶∶= e ∣ ` ∣ i(`) ∣ c(`,N) ∣ c(i(`),N)

N set of normal forms on L for TRS completing axioms
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Involutive monoid on French terms L♯

Definition
certain terms on certain French strings
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters
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terms on strings on ≻-ordered letters
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity

∀ letters ∃ ≻-relating letter in ancestor

k `ε

ε ε ε

ε

♭
♯

mk`m

≻-incomparable
m m



Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity
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Involutive monoid on French terms L♯

Definition
terms on French strings on ≻-ordered letters where ♭ ○ ♯ identity
operations on L♯ defined via L̂, e.g. t ⋅ u = (t♭u♭)♯
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A well-founded order on French terms

▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on compatible with marks

▸ signature ordered by via

ε ε ε
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A well-founded order on French terms

▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with marks

▸ signature ordered by via
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12 13 3 2
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´̀ `̀ `̀
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A well-founded order on French terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with marks
▸ signature ordered by » = (

≻mul
> ) via (

multiset
area

)

2 2
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A well-founded order on French strings/terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with marks
▸ signature ordered by » = (

≻mul
> ) via (

multiset
area

)

»lpo
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Properties of »lpo

▸ head of term »-related to heads of all subterms

▸ »lpo an ordered monoid

▸ s ˆ̀r »lpo s{`≻}r

Proof.
induction on length sr , cases whether ` is ≻-maximal in s ˆ̀r

yes decrease in multiset of head
no induction on substring/term ˆ̀ is in

▸ s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r

Proof.
induction on length sr , cases whether `,m are ≻-maximal in s ´̀m̀r

both decrease in area of head
´̀ decrease in the substring/term to the right of ´̀

m̀ decrease in the substring/term to the left of m̀
neither induction on substring/term ´̀m̀ is in
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Properties of »lpo

▸ head of term »-related to heads of all subterms

▸ »lpo not an ordered monoid
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Filling in locally decreasing diagram decreases
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps
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»lpo at work
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Filling in local diagrams ¬
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Conclusion

▸ alternative correctness proof of decreasing diagrams
(De Bruijn,vO,Klop,de Vrijer,Bezem,Jouannaud)

▸ confluence of ≻-maximal steps modulo non-≻-maximal steps

▸ Newman’s Lemma+Lemma of Hindley–Rosen
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Conclusion

▸▸ alternative correctness proof of decreasing diagrams

▸ confluence of ≻-maximal steps modulo non-≻-maximal steps

bous

▸ Newman’s Lemma (multiset)+Lemma of Hindley–Rosen (area)
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Conclusion

▸▸ alternative correctness proof of decreasing diagrams

▸ confluence of ≻-maximal steps modulo non-≻-maximal steps

bous

▸ Newman’s Lemma+Lemma of Hindley–Rosen

▸ decreasing diagrams modulo: involutive letters ˙̀, i.e. ˙̀−1 = ˙̀



Conclusion

▸ alternative correctness proof of decreasing diagrams

▸ confluence of ≻-maximal steps modulo non-≻-maximal steps

bous

▸ Newman’s Lemma+Lemma of Hindley–Rosen

▸ involutive rewriting (% ∶ s → r converse of %−1 ∶ s−1→ r−1)



Het kind en ik

Ik zou een dag uit vissen,
ik voelde mij moedeloos.
Ik maakte tussen de lissen
met de hand een wak in het kroos.

Er steeg licht op van beneden
uit de zwarte spiegelgrond.
Ik zag een tuin onbetreden
en een kind dat daar stond.

Het stond aan zijn schrijftafel
te schrijven op een lei.
Het woord onder de griffel
herkende ik, was van mij.

Maar toen heeft het geschreven,
zonder haast en zonder schroom,
al wat ik van mijn leven
nog ooit te schrijven droom.

En telkens als ik even
knikte dat ik het wist,
liet hij het water beven
en het werd uitgewist.

Hetkindenik

Ikzoueendaguitvissen,
ikvoeldemijmoedeloos.
Ikmaaktetussendelissen
metdehandeenwakinhetkroos.

Ersteeglichtopvanbeneden
uitdezwartespiegelgrond.
Ikzageentuinonbetreden
eneenkinddatdaarstond.

Hetstondaanzijnschrijftafel
teschrijvenopeenlei.
Hetwoordonderdegriffel
herkendeik,wasvanmij.

Maartoenheefthetgeschreven,
zonderhaastenzonderschroom,
alwatikvanmijnleven
nogooitteschrijvendroom.

Entelkensalsikeven
kniktedatikhetwist,
liethijhetwaterbeven
enhetwerduitgewist.





TeReSe business meeting
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