
Dependency Pairs and Polynomial Path Orders?

Martin Avanzini and Georg Moser

Institute of Computer Science, University of Innsbruck, Austria,
{martin.avanzini,georg.moser}@uibk.ac.at

Abstract. We show how polynomial path orders can be employed ef-
ficiently in conjunction with weak innermost dependency pairs to au-
tomatically certify the polynomial runtime complexity of term rewrite
systems and the polytime computability of those functions computed
by these rewrite systems. The established techniques have been im-
plemented and we provide ample experimental data to assess the new
method.

1 Introduction

In order to measure the complexity of a (terminating) term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences—
the derivation length—as suggested by Hofbauer and Lautemann in [1]. More
precisely, the runtime complexity function with respect to a (finite and termi-
nating) TRS R relates the maximal derivation length to the size of the initial
term, whenever the set of initial terms is restricted to constructor based terms,
also called basic terms. The restriction to basic terms allows us to accurately
express the runtime complexity of programs through the runtime complexity
of TRSs. In this paper we study and combine recent efforts for the automatic
analysis of runtime complexities of TRSs. In [2] we introduced a restriction of
the multiset path order, called polynomial path order (POP∗ for short) that
induces polynomial runtime complexity if restricted to innermost rewriting. The
definition of POP∗ employs the idea of tiered recursion [3]. Syntactically this
amounts to a separation of arguments into normal and safe arguments, cf. [4].
Furthermore, Hirokawa and the second author introduced a variant of depen-
dency pairs, dubbed weak dependency pairs, that makes the dependency pair
method applicable in the context of complexity analysis, cf. [5,6].

We show how weak innermost dependency pairs can be successfully applied
in conjunction with POP∗. The following example (see [7]) motivates this study.
Consider the TRS Rbits encoding the function λx.dlog(x+ 1)e for natural num-
bers given as tally sequences:

1 : half(0)→ 0 4: bits(0)→ 0

2: half(s(0))→ 0 5: bits(s(0))→ s(0)
3 : half(s(s(x)))→ s(half(x)) 6 : bits(s(s(x)))→ s(bits(s(half(x))))

? This research is partially supported by FWF (Austrian Science Fund) projects
P20133.

It is easy to see that the TRS Rbin is not compatible with POP∗, even if we
allow quasi-precedences, see Section 4. On the other hand, employing (weak
innermost) dependency pairs, argument filtering, and the usable rules criteria in
conjunction with POP∗, polynomial innermost runtime complexity of Rbin can
be shown fully automatically.

The combination of dependency pairs and polynomial path orders turns out
to be technically involved. One of the first obstacles one encounters is that the
pair (∼>pop∗, >pop∗) cannot be used as a reduction pair, as ∼>pop∗ fails to be closed
under contexts. (This holds a fortiori for safe reduction pairs, as studied in [5].)
Conclusively, we start from scratch and study polynomial path orders in the
context of relative rewriting [8]. Based on this study an incorporation of argu-
ment filterings becomes possible so that we can employ the pair (∼>

π
pop∗, >

π
pop∗) in

conjunction with dependency pairs successfully. Here, >πpop∗ refers to the order
obtained by combining >pop∗ with the argument filtering π as expected, and

∼>
π
pop∗ denotes the extension of >πpop∗ by term equivalence, preserving the sep-

aration of safe and normal argument positions. Note that for polynomial path
orders, the integration of argument filterings is not only non-trivial, but indeed
a challenging task. This is mainly due to the embodiment of tiered recursion
in POP∗. Thus we establish a combination of two syntactic techniques for au-
tomatic runtime complexity analysis. The experimental evidence given below
indicates the power and in particular the efficiency of the provided results.

Our next contribution is concerned with implicit complexity theory, see for
example [9]. A careful analysis of our main result shows that polynomial path
orders in conjunction with (weak innermost) dependency pairs even induce poly-
time computability of the functions defined by the TRS studied. This result fits
well with recent results by Marion and Péchoux on the use of restricted forms
of the dependency pair method to characterise complexity classes like PTIME or
PSPACE, cf. [10]. Both results allow to conclude, based on different restrictions,
polytime computability of the functions defined by constructor TRSs, whose ter-
mination can be shown by the dependency pair method. Note that the results
in [10] also capture programs that admit infeasible runtime complexities, but
define functions that are computable in polytime, if suitable (and non-trivial)
program transformations are used. Such programs are outside the scope of our
results. Thus it seems that our results more directly assess the complexity of the
given programs. Note that our tool provides (for the first time) a fully automatic
application of the dependency pair method in the context of implicit complexity
theory. Here we only want to mention that for a variant of the TRS Rbin, as
studied in [10], our tool easily verifies polytime computability fully automati-
cally.

The rest of the paper is organised as follows. In Section 2 we present basic
notions and recall (briefly) the path order for FP from [11]. We then briefly recall
dependency pairs in the context of complexity analysis from [5,6], cf. Section 3.
In Section 4 we present polynomial path orders over quasi-precedences. Our
main results are presented in Section 5. We continue with experimental results
in Section 6, and conclude in Section 7.

2 The Polynomial Path Order on Sequences

We assume familiarity with the basics of term rewriting, see [12,13]. Let V denote
a countably infinite set of variables and F a signature, containing at least one
constant. The set of terms over F and V is denoted as T (F ,V) and the set of
ground terms as T (F). We write Fun(t) and Var(t) for the set of function symbols
and variables appearing in t, respectively. The root symbol rt(t) of a term t is
defined as usual and the (proper) subterm relation is denoted as E (C). We write
s|p for the subterm of s at position p. The size |t| of a term t is defined as usual
and the width of t is defined as width(t) := max{n,width(t1), . . . ,width(tn)} if
t = f(t1, . . . , tn) and n > 0 or width(t) = 1 else. Let % be a preorder on the
signature F , called quasi-precedence or simply precedence. Based on % we define
an equivalence ≈ on terms: s ≈ t if either (i) s = t or (ii) s = f(s1, . . . , sn),
t = g(t1, . . . , tn), f ≈ g and there exists a permutation π such that si ≈ tπ(i).
For a preorder %, we use %mul for the multiset extension of %, which is again
a preorder. The proper order (equivalence) induced by %mul is written as �mul

(≈mul).
A term rewrite system (TRS for short) R over T (F ,V) is a finite set of

rewrite rules l→ r, such that l /∈ V and Var(l) ⊇ Var(r). We write −→R (i−→R) for
the induced (innermost) rewrite relation. The set of defined function symbols is
denoted as D, while the constructor symbols are collected in C, clearly F = D∪C.
We use NF(R) to denote the set of normal forms ofR and set Val := T (C,V). The
elements of Val are called values. A TRS is called completely defined if normal
forms coincide with values. We define Tb := {f(v1, . . . , vn) | f ∈ D and vi ∈ Val}
as the set of basic terms. A TRS R is a constructor TRS if l ∈ Tb for all
l→ r ∈ R. Let Q denote a TRS. The generalised restricted rewrite relation Q−→R
is the restriction of −→R where all arguments of the redex are in normal form
with respect to the TRS Q (compare [14]). We define the (innermost) relative
rewriting relation (denoted as i−→R/S) as follows:

i−→R/S := R∪ S−−−−→∗S · R∪ S−−−−→R · R∪ S−−−−→∗S ,

Similarly, we set i−→ε
R/S := R∪ S−−−−→∗S · R∪ S−−−−→ε

R · R∪ S−−−−→∗S , to define an (innermost)
relative root-step.

A polynomial interpretation is a well-founded and monotone algebra (A, >)
with carrier N such that > is the usual order on natural numbers and all interpre-
tation functions fA are polynomials. Let α : V → A denote an assignment, then
we write [α]A(t) for the evaluation of term t with respect to A and α. A poly-
nomial interpretation is called a strongly linear interpretation (SLI for short)
if all function symbols are interpreted by weight functions fA(x1, . . . , xn) =∑n
i=1 xi + c with c ∈ N. The derivation length of a terminating term s with re-

spect to → is defined as dl(s,→) := max{n | ∃t. s→n t}, where →n denotes the
n-fold application of →. The innermost runtime complexity function rci

R with
respect to a TRS R is defined as rci

R(n) := max{dl(t, i−→R) | t ∈ Tb and |t| 6 n}.
If no confusion can arise rci

R is simply called runtime complexity function.
We recall the bare essentials of the polynomial path order I on sequences

(POP for short) as put forward in [11]. We kindly refer the reader to [11,2] for

motivation and examples. We recall the definition of finite approximations Ilk
of I. The latter is conceived as the limit of these approximations. The domain of
this order are so-called sequences Seq(F ,V) := T (F ∪{◦},V). Here F is a finite
signature and ◦ 6∈ F a fresh variadic function symbol, used to form sequences.
We denote sequences ◦(s1, . . . , sn) by [s1 · · · sn] and write a :: [b1 · · · bn] for the
sequence [a b1 · · · bn].

Let % denote a precedence. The order Ilk is based on an auxiliary order ml
k.

Below we set ·&lk := ml
k ∪ ≈, where ≈ denotes the equivalence on terms defined

above. We write {{t1, . . . , tn}} to denote multisets and] for the multiset sum.

Definition 1. Let k, l > 1. The order ml
k induced by % is inductively defined as

follows: s ml
k t for s = f(s1, . . . , sn) or s = [s1 · · · sn] if either

(1) si ·&lk t for some i ∈ {1, . . . , n}, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm) with f � g or t = [t1 · · · tm], s ml−1

k tj
for all j ∈ {1, . . . ,m}, and m < k + width(s),

(3) s = [s1 · · · sn], t = [t1 · · · tm] and the following properties hold:
– {{t1, . . . , tm}} = N1] · · ·]Nn for some multisets N1, . . . , Nn, and
– there exists i ∈ {1, . . . , n} such that {{si}} 6≈mul Ni, and
– for all 1 6 i 6 n such that {{si}} 6≈mul Ni we have si ml

k r for all r ∈ Ni,
and m < k + width(s).

Definition 2. Let k, l > 1. The approximation Ilk of the polynomial path order
on sequences induced by % is inductively defined as follows: s Ilk t for s =
f(s1, . . . , sn) or s = [s1 · · · sn] if either s ml

k t or

(1) si I&
l
k t for some i ∈ {1, . . . , n},

(2) s = f(s1, . . . , sn), t = [t1 · · · tm], and the following properties hold:
– s Il−1

k tj0 for some j0 ∈ {1, . . . ,m},
– s ml−1

k tj for all j 6= j0, and m < k + width(s),
(3) s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ g and [s1 · · · sn] Ilk [t1 · · · tm], or
(4) s = [s1 · · · sn], t = [t1 · · · tm] and the following properties hold:

– {{t1, . . . , tm}} = N1] · · ·]Nn for some multisets N1, . . . , Nn, and
– there exists i ∈ {1, . . . , n} such that {{si}} 6≈mul Ni, and
– for all 1 6 i 6 n such that {{si}} 6≈mul Ni we have si Ilk r for all r ∈ Ni,

and m < k + width(s).

Above we set I&lk := Ilk ∪≈ and abbreviate Ikk as Ik in the following. Note that
the empty sequence [] is minimal with respect to both orders.

It is easy to see that for k 6 l, we have mk ⊆ ml and Ik ⊆ Il and that s Ik t
implies that width(t) < width(s) + k. For a fixed approximation Ik, we define
the length of its longest decent as: Gk(t) := max{n | t = t0 Ik t1 Ik · · · Ik tn}.
The following proposition is a reformulation of Lemma 6 in [11].

Proposition 3. Let k ∈ N. There exists a polynomial interpretation A such that
Gk(t) 6 [α]A(t) for all assignments α : V → N. As a consequence, for all terms
f(t1, . . . , tn) with [α]A(ti) = O(|ti|), Gk(f(t1, . . . , tn)) is bounded by a polynomial
p in the size of t, where p depends on k only.

Note that the polynomial interpretationA employed in the proposition fulfils:
◦A(m1, . . . ,mn) =

∑n
i=1mi + n. In particular, we have [α]A([]) = 0.

3 Complexity Analysis Based on the Dependency Pair
Method

In this section, we briefly recall the central definitions and results established
in [5,6]. We kindly refer the reader to [5,6] for further examples and underly-
ing intuitions. Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote
C[t1, . . . , tn], whenever rt(ti) ∈ X for all i ∈ {1, . . . , n} and C is a n-hole con-
text containing no symbols from X . We set D] := D ∪ {f] | f ∈ D} with each
f] a fresh function symbol. Further, for t = f(t1, . . . , tn) with f ∈ D, we set
t] := f](t1, . . . , tn).

Definition 4. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then
l] → COM(u]1, . . . , u

]
n) is called a weak innermost dependency pair of R. Here

COM(t) = t and COM(t1, . . . , tn) = c(t1, . . . , tn), n 6= 1, for a fresh constructor
symbol c, the compound symbol. The set of all weak innermost dependency pairs
is denoted by WIDP(R).

Example 5. Reconsider the example Rbits from the introduction. The set of weak
innermost dependency pairs WIDP(Rbits) is given by

7: half](0)→ c1 10: bits](0)→ c3

8: half](s(0))→ c2 11: bits](s(0))→ c4

9: half](s(s(x)))→ half](x) 12: bits](s(s(x)))→ bits](s(half(x)))

We write f Bd g if there exists a rewrite rule l → r ∈ R such that f = rt(l)
and g is a defined symbol in Fun(r). For a set G of defined symbols we denote
by R�G the set of rewrite rules l→ r ∈ R with rt(l) ∈ G. The set U(t) of usable
rules of a term t is defined as R�{g | f B∗d g for some f ∈ Fun(t)}. Finally, we
define U(P) =

⋃
l→r∈P U(r).

Example 6 (Example 5 continued). The usable rules of WIDP(Rbits) consist of the
following rules: 1 : half(0)→ 0, 2 : half(s(0))→ 0, and 3: half(s(s(x)))→ half(x).

The following proposition allows the analysis of the (innermost) runtime
complexity through the study of (innermost) relative rewriting, see [5] for the
proof.

Proposition 7. Let R be a TRS, let t be a basic terminating term, and let
P = WIDP(R). Then dl(t, i−→R) 6 dl(t], i−→U(P)∪P). Moreover, suppose P is non-
duplicating and U(P) ⊆ >A for some SLI A. Then there exist constants K,L > 0
(depending on P and A only) such that dl(t, i−→R) 6 K ·dl(t], i−→P/U(P))+L · |t]|.

This approach admits also an integration of dependency graphs [15] in the
context of complexity analysis. The nodes of the weak innermost dependency
graph WIDG(R) are the elements of P and there is an arrow from s → t to
u→ v if there exist a context C and substitutions σ, τ such that tσ i−→∗R C[uτ].
Let G = WIDG(R); a strongly connected component (SCC for short) in G is a
maximal strongly connected subgraph. We write G/≡ for the congruence graph,
where ≡ is the equivalence relation induced by SCCs.

Example 8 (Example 5 continued). G = WIDG(Rbits) consists of the nodes (7)–
(12) as mentioned in Example 5 and has the following shape:

7 9 8 10 12 11

The only non-trivial SCCs in G are {9} and {12}. Hence G/≡ consists of the
nodes [7]≡–[12]≡, and edges ([a]≡, [b]≡) for edges (a, b) in G. Here [a]≡ denotes
the equivalence class of a.

We set L(t) := max{dl(t, i−→Pm/S) | (P1, . . . ,Pm) a path in G/≡, P1 ∈ Src},
where Src denotes the set of source nodes from G/≡ and S = P1 ∪ · · · ∪ Pm−1 ∪
U(P1∪· · ·∪Pm). The proposition allows the use of different techniques to analyse
polynomial runtime complexity on separate paths, cf. [6].

Proposition 9. Let R, P, and t be as above. Then there exists a polynomial p
(depending only on R) such that dl(t], i−→P/U(P)) 6 p(L(t])).

4 The Polynomial Path Order over Quasi-Precedences

In this section, we briefly recall the central definitions and results established in
[2,16] on the polynomial path order. We employ the variant of POP∗ based on
quasi-precendences, cf. [16].

As mentioned in the introduction, POP∗ relies on tiered recursion, which is
captured by the notion of safe mapping. A safe mapping safe is a function that
associates with every n-ary function symbol f the set of safe argument positions.
If f ∈ D then safe(f) ⊆ {1, . . . , n}, for f ∈ C we fix safe(f) = {1, . . . , n}.
The argument positions not included in safe(f) are called normal and denoted
by nrm(f). We extend safe to terms t 6∈ V. We define safe(f(t1, . . . , tn)) :=
{ti1 , . . . , tip} where safe(f) = {i1, . . . , ip}, and we define nrm(f(t1, . . . , tn)) :=
{tj1 , . . . , tjq} where nrm(f) = {j1, . . . , jq}. Not every precedence is suitable for
>pop∗, in particular we need to assert that constructors are minimal.

We say that a precedence % is admissible for POP∗ if the following is sat-
isfied: (i) f � g with g ∈ D implies f ∈ D, and (ii) if f ≈ g then f ∈ D if
and only if g ∈ D. In the sequel we assume any precedence is admissible. We
extend the equivalence ≈ to the context of safe mappings: s safe≈ t, if (i) s = t,
or (ii) s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ≈ g and there exists a permuta-
tion π so that si

safe≈ tπ(i), where i ∈ safe(f) if and only if π(i) ∈ safe(g) for
all i ∈ {1, . . . , n}. Similar to POP, the definition of the polynomial path order
>pop∗ makes use of an auxiliary order >pop.

Definition 10. The auxiliary order >pop induced by % and safe is inductively
defined as follows: s = f(s1, . . . , sn) >pop t if either

(1) si ∼>pop t for some i ∈ {1, . . . , n}, and if f ∈ D then i ∈ nrm(f), or

(2) t = g(t1, . . . , tm), f � g, f ∈ D and s >pop tj for all j ∈ {1, . . . ,m}.

Definition 11. The polynomial path order >pop∗ induced by % and safe is in-
ductively defined as follows: s = f(s1, . . . , sn) >pop∗ t if either s >pop t or

(1) si ∼>pop∗ t for some i ∈ {1, . . . , n}, or
(2) t = g(t1, . . . , tm), f � g, f ∈ D, and

– s >pop∗ tj0 for some j0 ∈ safe(g), and
– for all j 6= j0 either s >pop tj, or sB tj and j ∈ safe(g), or

(3) t = g(t1, . . . , tm), f ≈ g, nrm(s) >mul
pop∗ nrm(t) and safe(s) ∼>

mul
pop∗ safe(t).

Above we set ∼>pop := >pop ∪ safe≈ and ∼>pop∗ := >pop∗ ∪ safe≈. Here >mul
pop∗ and ∼>

mul
pop∗

refer to the strict and weak multiset extension of ∼>pop∗ respectively.
The intuition of >pop is to deny any recursive call, whereas >pop∗ allows

predicative recursion: by the restrictions imposed by the mapping safe, recur-
sion needs to be performed on normal arguments, while a recursively computed
result must only be used in a safe argument position, compare [4]. Note that
the alternative s B tj for j ∈ safe(g) in Definition 11(2) guarantees that POP∗

characterises the class of polytime computable functions. The proof of the next
theorem follows the pattern of the proof of the Main Theorem in [2], but the
result is stronger due to the extension to quasi-precedences.

Theorem 12. Let R be a constructor TRS. If R is compatible with >pop∗, i.e.,
R ⊆ >pop∗, then the innermost runtime complexity rci

R induced is polynomially
bounded.

Note that Theorem 12 is too weak to handle the TRS Rbits as the (necessary)
restriction to an admissible precedence is too strong. To rectify this, we analyse
POP∗ in Section 5 in the context of relative rewriting.

An argument filtering (for a signature F) is a mapping π that assigns to
every n-ary function symbol f an argument position i ∈ {1, . . . , n} or a (possibly
empty) list {k1, . . . , km} of argument positions with 1 6 k1 < · · · < km 6 n.
The signature Fπ consists of all function symbols f such that π(f) is some list
{k1, . . . , km}, where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =


t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(tk1), . . . , π(tkm
)) if t = f(t1, . . . , tn) and π(f) = {k1, . . . , km} .

Definition 13. Let π denote an argument filtering, and >pop∗ a polynomial path
order. We define s >πpop∗ t if and only if π(s) >pop∗ π(t), and likewise s ∼>

π
pop∗ t

if and only if π(s) ∼>pop∗ π(t).

Example 14 (Example 5 continued). Let π be defined as follows: π(half) = 1 and
π(f) = {1, . . . , n} for each n-ary function symbol other than half. Compatibility
of WIDP(Rbits) with >πpop∗ amounts to the following set of order constraints:

half](0) >pop∗ c1 bits](0) >pop∗ c3 half](s(s(x))) >pop∗ half](x)

half](s(0)) >pop∗ c2 bits](s(0)) >pop∗ c4 bits](s(s(x))) >pop∗ bits](s(x))

In order to define a POP∗ instance >pop∗, we set safe(bits]) = safe(half) =
safe(half]) = ∅ and safe(s) = {1}. Furthermore, we define an (admissible) prece-
dence: 0 ≈ c1 ≈ c2 ≈ c3 ≈ c4. The easy verification of WIDP(Rbits) ⊆ >πpop∗ is
left to the reader.

5 Dependency Pairs and Polynomial Path Orders

Motivated by Example 14, we show in this section that the pair (∼>
π
pop∗, >

π
pop∗) can

play the role of a safe reduction pair, cf. [5,6]. Let R be a TRS over a signature
F that is innermost terminating. In the sequel R is kept fixed. Moreover, we fix
some safe mapping safe, an admissible precedence %, and an argument filtering
π. We refer to the induced POP∗ instance by >πpop∗.

We adapt safe to Fπ in the obvious way: for each fπ ∈ Fπ with corresponding
f ∈ F , we define safe(fπ) := safe(f) ∩ π(f), and likewise nrm(fπ) := nrm(f) ∩
π(f). Set Valπ := T (Cπ,V). Based on Fπ we define the normalised signature
Fn
π := {fn | f ∈ Fπ} where the arity of fn is |nrm(f)|. We extend % to Fn

π

by fn % gn if and only if f % g. Let s be a fresh constant that is minimal
with respect to %. We introduce the Buchholz norm of t (denoted as ‖t‖) as a
term complexity measure that fits well with the definition of POP∗. Set ‖t‖ :=
1 + max{n, ‖t1‖, . . . , ‖tn‖} for t = f(t1, . . . , tn) and ‖t‖ := 1, otherwise.

In the following we define an embedding from the relative rewriting relation
i−→ε
R/S into Ik, such that k depends only on TRSsR and S. This embedding pro-

vides the technical tool to measure the number of root steps in a given derivation
through the number of descents in Ik. Hence Proposition 3 becomes applicable
to establishing our main result. This intuition is cast into the next definition.

Definition 15. A predicative interpretation is a pair of mappings (Sπ,Nπ) from
terms to sequences Seq(Fn

π ∪ {s},V) defined as follows. We assume π(t) =
f(π(t1), . . . , π(tn)), safe(f) = {i1, . . . , ip}, and nrm(f) = {j1, . . . , jq}.

Sπ(t) :=

{
[] if π(t) ∈ Valπ,

[fn(Nπ(tj1), . . . ,Nπ(tjq)) Sπ(ti1) · · · Sπ(tip)] if π(t) 6∈ Valπ.

Nπ(t) := Sπ(t) :: BNπ(t)

Here the function BNπ maps a term t to the sequence [s · · · s] with ‖π(t)‖ occur-
rences of the constant s.

As a direct consequence of the definitions we have width(Nπ(t)) = ‖π(t)‖+ 1
for all terms t.

Lemma 16. There exists a polynomial p such that Gk(Nπ(t)) 6 p(|t|) for every
basic term t. The polynomial p depends only on k.

Proof. Suppose t = f(v1, . . . , vn) is a basic term with safe(f) = {i1, . . . , ip}
and nrm(f) = {j1, . . . , jq}. The only non-trivial case is when π(t) 6∈ Valπ. Then
Nπ(t) = [u Sπ(vi1) · · · Sπ(vip)] :: BNπ(t) where u = fn(Nπ(vj1), . . . ,Nπ(vjq)).

Note that Sπ(vi) = [] for i ∈ {i1, . . . , iq}. Let A denote a polynomial in-
terpretation fulfilling Proposition 3. Using the assumption ◦A(m1, . . . ,mn) =∑n
i=1mi+n, it is easy to see that Gk(Nπ(t)) is bounded linear in ‖π(t)‖ 6 |t| and

[α]A(u). As Nπ(vj) = [[] s · · · s] with ‖π(vj)‖ 6 |t| occurrences of s, Gk(Nπ(vj))
is linear in |t|. Hence from Proposition 3 we conclude that Gk(Nπ(t)) is polyno-
mially bounded in |t|. ut

The next sequence of lemmas shows that the relative rewriting relation i−→ε
R/S

is embeddable into Ik.

Lemma 17. Suppose s >πpop∗ t such that π(sσ) ∈ Valπ. Then Sπ(sσ) = [] =
Sπ(tσ) and Nπ(sσ) I1 Nπ(tσ).

Proof. Let π(sσ) ∈ Valπ, and suppose s >πpop∗ t, i.e., π(s) >pop∗ π(t) holds.
Since π(s) ∈ Valπ (and due to our assumptions on safe mappings) only clause
(1) from the definition of >pop∗ (or respectively >pop) is applicable. Thus π(t)
is a subterm of π(s) modulo the equivalence ≈. We conclude π(tσ) ∈ Valπ, and
hence Sπ(sσ) = [] = Sπ(tσ). Finally, note that ‖π(sσ)‖ > ‖π(tσ)‖ as π(tσ) is a
subterm of π(sσ). Thus Nπ(sσ) I1 Nπ(tσ) follows as well. ut

To improve the clarity of the exposition, we concentrate on the crucial cases
in the proofs of the following lemmas. The interested reader is kindly referred
to [17] for the full proof.

Lemma 18. Suppose s >πpop t such that π(sσ) = f(π(s1σ), . . . , π(snσ)) with
π(siσ) ∈ Valπ for i ∈ {1, . . . , n}. Moreover suppose nrm(f) = {j1, . . . , jq}. Then
fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) m3·‖π(t)‖ Nπ(tσ) holds.

Proof. Note that the assumption implies that the argument filtering π does
not collapse f . We show the lemma by induction on >πpop. We consider the
subcase that s >πpop t follows as t = g(t1, . . . , tm), π does not collapse on
g, f � g, and s >πpop tj for all j ∈ π(g), cf. Definition 10(2). We set u :=
fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) and k := 3 · ‖π(t)‖ and first prove u mk−1 Sπ(tσ).

If π(tσ) ∈ Valπ, then Sπ(tσ) = [] is minimal with respect to mk−1. Thus we
are done. Hence suppose nrm(g) = {j′1, . . . , j′q}, safe(g) = {i′1, . . . , i′p} and let

Sπ(tσ) = [gn(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)) Sπ(ti′1σ) · · · Sπ(ti′pσ)] .

We set v := gn(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)). It suffices to show u mk−2 v and u mk−2

Sπ(tjσ) for j ∈ safe(g). Both assertions follow from the induction hypothesis.
Now consider Nπ(tσ) = [Sπ(tσ) s · · · s] with ‖π(tσ)‖ occurrences of the con-

stant s. Recall that width(Nπ(tσ)) = ‖π(tσ)‖ + 1. Observe that fn � s. Hence
to prove u mk Sπ(tσ) it suffices to observe that width(u) + k > ‖π(tσ)‖ + 1
holds. For that note that ‖π(tσ)‖ is either ‖π(tjσ)‖ + 1 for some j ∈ π(g) or
less than k. In the latter case, we are done. Otherwise ‖π(tσ)‖ = ‖π(tjσ)‖ + 1.
Then from the definition of mk and the induction hypothesis u m3·‖π(tj)‖ Nπ(tjσ)
we can conclude width(u) + 3 · ‖π(tj)‖ > width(Nπ(tjσ)) = ‖π(tjσ)‖ + 1. Since
k > 3 · (‖π(tj)‖+ 1), width(u) + k > ‖π(tσ)‖+ 1 follows. ut

Lemma 19. Suppose s >πpop∗ t such that π(sσ) = f(π(s1σ), . . . , π(snσ)) with
π(siσ) ∈ Valπ for i ∈ {1, . . . , n}. Then for nrm(f) = {j1, . . . , jq},

(1) fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) I3·‖π(t)‖ Sπ(tσ), and
(2) fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) :: BNπ(sσ) I3·‖π(t)‖ Nπ(tσ).

Proof. The lemma is shown by induction on the definition of >πpop∗. Set u =
fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)). Suppose s >πpop∗ t follows due to Definition 11(2).
We set k := 3 · ‖π(t)‖. Let nrm(g) = {j′1, . . . , j′q} and let safe(g) = {i′1, . . . , i′p}.

Property (1) is immediate for π(tσ) ∈ Valπ, so assume otherwise. We see that
s >πpop tj for all j ∈ nrm(g) and obtain u mk−1 g

n(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)) as in
Lemma 18. Furthermore, s >πpop∗ tj0 for some j0 ∈ safe(g) and by induction
hypothesis: u Ik−1 Sπ(tj0σ). To conclude property (1), it remains to verify
u mk−1 Sπ(tjσ) for the remaining j ∈ safe(g). We either have s >πpop tj or
π(si) D π(tj) (for some i). In the former subcase we proceed as in the claim,
and for the latter we observe π(tjσ) ∈ Valπ, and thus Sπ(tjσ) = [] follows. This
establishes property (1).

To conclude property (2), it suffices to show width(u :: BNπ(sσ)) + k >
width(Nπ(tσ)), or equivalently ‖π(sσ)‖ + 1 + k > ‖π(tσ)‖. The latter can be
shown, if we proceed similar as in the claim. ut

Recall the definition of Q−→R from Section 2 and defineQ := {f(x1, . . . , xn)→
⊥ | f ∈ D}, and set v−→R:= Q−→R. We suppose ⊥ ∈ F is a constructor symbol
not occurring in R. As the normal forms of Q coincide with Val, v−→R is the
restriction of i−→R, where arguments need to be values instead of normal forms
of R. From Lemma 17 and 19 we derive an embedding of root steps v−→ε

R.
Now, suppose the step s v−→R t takes place below the root. Observe that

π(s) 6= π(t) need not hold in general. Thus we cannot hope to prove Nπ(s) Ik
Nπ(t). However, we have the following stronger result.

Lemma 20. There exists a uniform k ∈ N (depending only on R) such that if
R ⊆ >πpop∗ holds then s v−→ε

R t implies Nπ(s) Ik Nπ(t). Moreover, if R ⊆ ∼>
π
pop∗

holds then s v−→R t implies Nπ(s) I&k Nπ(t).

Proof. We consider the first half of the assertion. Suppose R ⊆ >πpop∗ and s v−→ε
R

t, that is for some rule f(l1, . . . , ln)→ r ∈ R and substitution σ : V → Val we
have s = f(l1σ, . . . , lnσ) and t = rσ. Depending on whether π collapses f , the
property either directly follows from Lemma 17 or is a consequence of Lemma
19(2).

In order to conclude the second half of the assertion, one performs induction
on the rewrite context. In addition, one shows that for the special case Sπ(s) ≈
Sπ(t), still ‖π(s)‖ > ‖π(t)‖ holds. From this the lemma follows. ut

For constructor TRSs, we can simulate i−→R using v−→R. We extend R with
suitable rules Φ(R), which replace normal forms that are not values by some
constructor symbol. To simplify the argument we re-use the symbol ⊥ from
above. We define the TRS Φ(R) as

Φ(R) := {f(t1, . . . , tn)→ ⊥ | f(t1, . . . , tn) ∈ NF(R) ∩ T (F) and f ∈ D} .

Moreover, we define φR(t) := t↓Φ(R). Observe that φR(·) is well-defined since
Φ(R) is confluent and terminating.

Lemma 21. Let R ∪ S be a constructor TRS. Define S ′ := S ∪ Φ(R ∪ S). For
s ∈ T (F),

s i−→ε
R/S t implies φR∪S(s) v−→ε

R/S′ φR∪S(t) ,

where v−→R/S′ abbreviates v−→∗S′ · v−→R · v−→∗S′ .

Proof. It is easy to see that s i−→R t implies φR(s) v−→R · v−→!
Φ(R) φR(t). Suppose

s i−→ε
R/S t, then there exist ground terms u and v such that s i−→∗S u i−→ε

R v i−→∗S t.
Let φ(t) := φR∪S(t). From the above, φ(s) v−→∗S′ φ(u) v−→ε

R · v−→∗S′ φ(v) v−→∗S′ φ(t)
follows as desired. ut

Suppose R ⊆ >πpop∗ and S ⊆ ∼>
π
pop∗ holds. Together with Lemma 20, the

above simulation establishes the promised embedding of i−→ε
R/S into Ik.

Lemma 22. Let R ∪ S be a constructor TRS, and suppose R ⊆ >πpop∗ and
S ⊆ ∼>

π
pop∗ hold. Then for k depending only on R and S, we have for s ∈ T (F),

s i−→ε
R/S t implies Nπ(φ(s)) I+

k Nπ(φ(t)) .

Proof. Consider a step s i−→ε
R/S t and set φ(t) := φR∪S(t). By Lemma 21 there

exist terms u and v such that φ(s) v−→∗S∪Φ(R∪S) u v−→ε
R v v−→∗S∪Φ(R∪S) φ(t).

Since R ⊆ >πpop∗ holds, by Lemma 20 Nπ(u) Ik1 Nπ(v) follows. Moreover from
S ⊆ ∼>

π
pop∗ together with Lemma 20 we conclude that r1 v−→S∪Φ(R∪S) r2 im-

plies Nπ(r1) I&k2 Nπ(r2). Here we use the easily verified fact that steps using
Φ(R ∪ S) are embeddable into I&k2 . In both cases k1 and k2 depend only on R
and S respectively; set k := max{k1, k2}. In sum we have Nπ(φ(s)) I&∗k Nπ(u) Ik
Nπ(v) I&∗k Nπ(φ(t)). It is an easy to see that Ik · ≈ ⊆ Ik and ≈ ·Ik ⊆ Ik holds.
Hence the lemma follows. ut

Theorem 23. Let R ∪ S be a constructor TRS, and suppose R ⊆ >πpop∗ and
S ⊆ ∼>

π
pop∗ holds. Then there exists a polynomial p depending only R ∪ S such

that for any basic term t, dl(t, i−→ε
R/S) 6 p(|t|).

Proof. Assume t 6∈ NF(R∪S), otherwise dl(t, i−→ε
R/S) is trivially bounded. With-

out loss of generality, we assume that t is ground. As t is a basic term: φR∪S(t) =
t. From Lemma 22 we infer (for some k) dl(t, i−→ε

R/S) 6 Gk(Nπ(φR∪S(t))) =
Gk(Nπ(t)), such that the latter is polynomially bounded in |t| and the polyno-
mial only depends on k, cf. Lemma 16. Note that k depends only on R∪S. ut

Suppose R is a constructor TRS, and let P denote the set of weak innermost
dependency pairs. For the moment, suppose that all compound symbols of P are
nullary. Provided that P is non-duplicating and U(P) compatible with some SLI,
as a consequence of the above theorem paired with Proposition 7, the inclusions
P ⊆ >πpop∗ and U(P) ⊆ ∼>

π
pop∗ certify that rci

R is polynomially bounded. Observe
that for the application of >πpop∗ and ∼>

π
pop∗ in the context of P and U(P), we

alter Definitions 10 and 11 such that f ∈ D] is demanded.

Example 24 (Example 14 continued). Reconsider the TRSRbits, and let P denote
WIDP(Rbits) as drawn in Example 5. By taking the SLI A with 0A = 0, sA(x) =
x+1 and halfA(x) = x+1 we obtain U(P) ⊆ >A and moreover, observe that P is
both non-duplicating and contains only nullary compound symbols. In Example
14 we have seen that P ⊆ >πpop∗ holds. Similarly, U(WIDP(Rbits)) ⊆ ∼>

π
pop∗ can

easily be shown. From the above observation we thus conclude a polynomial
runtime complexity of Rbits.

The assumption that all compound symbols from P need to be nullary is
straightforward to lift, but technical. Hence, we do not provide a complete proof
here, but only indicate the necessary changes, see [18] for the formal construction.

Note that in the general case, it does not suffice to embed root steps of
P into Ik, rather we have to embed steps of form C[s]1, . . . , s

]
i , . . . , s

]
n] v−→P

C[s]1, . . . , t
]
i , . . . , s

]
n] with C being a context built from compound symbols. As

first measure we require that the argument filtering π is safe [5], that is π(c) =
[1, . . . , n] for each compound symbol c of arity n. Secondly, we adapt the predica-
tive interpretation Nπ in such a way that compound symbols are interpreted as
sequences, and their arguments by the interpretation Nπ. This way, the renewed
embedding requires Nπ(s]i) Ik Nπ(t]i) instead of Sπ(s]i) Ik Sπ(t]i).

Theorem 25. Let R be a constructor TRS, and let P denote the set of weak
innermost dependency pairs. Assume P is non-duplicating, and suppose U(P) ⊆
>A for some SLI A. Let π be a safe argument filtering. If P ⊆ >πpop∗ and
U(P) ⊆ ∼>

π
pop∗ then the innermost runtime complexity rci

R induced is polynomi-
ally bounded.

Above it is essential that R is a constructor TRS. This even holds if POP∗

is applied directly.

Example 26. Consider the TRS Rexp below:

exp(x)→ e(g(x)) e(g(s(x)))→ dp1(g(x)) g(0)→ 0

dp1(x)→ dp2(e(x), x) dp2(x, y)→ pr(x, e(y))

The above rules are oriented directly by >pop∗ induced by safe and % such that:
(i) the argument position of g and exp are normal, the remaining argument
positions are safe, and (ii) exp � g � dp1 � dp2 � e � pr � 0. On the other
hand, Rexp admits at least exponential innermost runtime-complexity, as for
instance exp(sn(0)) normalizes in exponentially (in n) many innermost rewrite
steps.

We adapt the definition of >pop∗ in the sense that we refine the notion of
defined function symbols as follows. Let GC denote the least set containing C
and all symbols appearing in arguments to left-hand sides in R. Moreover, set
GD := F \ GC and set Val := T (GC ,V). Then in order to extend Theorem 25 to
non-constructor TRS it suffices to replace D by GD and C by GC in all above
given definitions and arguments (see [17] for the formal construction). Thus the

next theorem follows easily from combining Proposition 9 and Theorem 25. This
theorem can be extended so that in each path different termination techniques
(inducing polynomial runtime complexity) are employed, see [6] and Section 6.

Theorem 27. Let R be a TRS. Let G denote the weak innermost dependency
graph, and let F = GD] GC be separated as above. Suppose for every path
(P1, . . . ,Pn) in G/≡ there exists an SLI A and a pair (∼>

π
pop∗, >

π
pop∗) based on

a safe argument filtering π such that (i) U(P1 ∪ · · · ∪ Pn) ⊆ >A (ii) P1 ∪ · · · ∪
Pn−1∪U(P1∪· · ·∪Pn) ⊆ ∼>

π
pop∗, and (iii) Pn ⊆ >πpop∗ holds. Then the innermost

runtime complexity rci
R induced is polynomially bounded.

The next theorem establishes that POP∗ in conjunction with (weak inner-
most) dependency pairs induces polytime computability of the function de-
scribed through the analysed TRS. We kindly refer the reader to [18] for the
proof.

Theorem 28. Let R be an orthogonal, S-sorted and completely defined con-
structor TRS such that the underlying signature is simple. Let P denote the set
of weak innermost dependency pairs. Assume P is non-duplicating, and suppose
U(P) ⊆ >A for some SLI A. If P ⊆ >πpop∗ and U(P) ⊆ ∼>

π
pop∗ then the functions

computed by R are computable in polynomial time.

Here simple signature [19] essentially means that the size of any constructor
term depends polynomially on its depth. Such a restriction is always necessary
in this context, compare [18] and e.g. [19]. This restriction is also responsible for
the introduction of sorts.

6 Experimental Results

All described techniques have been incorporated into the Tyrolean Complex-
ity Tool TCT, an open source complexity analyser1. We performed tests on two
testbeds: T constitutes of the 1394 examples from the Termination Problem
Database Version 5.0.2 used in the runtime complexity category of the termina-
tion competition 20082. Moreover, testbed C is the restriction of testbed T to
constructor TRSs (638 in total). All experiments were conducted on a machine
that is identical to the official competition server (8 AMD Opteron R© 885 dual-
core processors with 2.8GHz, 8x8 GB memory). As timeout we use 5 seconds.
We orient TRSs using >πpop∗ by encoding the constraints on precedence and so
forth in propositional logic (cf. [17] for details), employing MiniSat [20] for find-
ing satisfying assignments. In a similar spirit, we check compatibility with SLIs
via translations to SAT. In order to derive an estimated dependency graph, we
use the function ICAP (cf. [21]).

Experimental findings are summarised in Table 1.3 In each column, we high-
light the total on yes-, maybe- and timeout-instances. Furthermore, we annotate
1 Available at http://cl-informatik.uibk.ac.at/software/tct.
2 See http://termcomp.uibk.ac.at.
3 See http://cl-informatik.uibk.ac.at/~zini/rta09 for extended results.

http://cl-informatik.uibk.ac.at/software/tct
http://termcomp.uibk.ac.at
http://cl-informatik.uibk.ac.at/~zini/rta09

polynomial path orders dependency graphs mixed
DIRECT WIDP WIDG P PP M MP

T Yes 46/0.03 69/0.09 80/0.07 198/0.54 198/0.51 200/0.63 207/0.48

Maybe 1348/0.04 1322/0.10 1302/0.14 167/0.77 170/0.82 142/0.61 142/0.63

Timeout 0 3 12 1029 1026 1052 1045

C Yes 40/0.03 48/0.08 55/0.05 99/0.40 100/0.38 98/0.26 105/0.23

Maybe 598/0.05 587/0.10 576/0.13 143/0.72 146/0.77 119/0.51 119/0.54

Timeout 0 3 7 396 392 421 414

Table 1. Experimental Results

average times in seconds. In the first three columns we contrast POP∗ as di-
rect technique to POP∗ as base to (weak innermost) dependency pairs. I.e., the
columns WIDP and WIDG show results concerning Proposition 7 together with
Theorem 25 or Theorem 27 respectively.

In the remaining four columns we assess the power of Proposition 7 and 9
in conjunction with different base orders, thus verifying that the use of POP∗

in this context is independent to existing techniques. Column P asserts that the
different paths are handled by linear and quadratic restricted interpretations [5].
In column PP, in addition POP∗ is employed. Similar, in column M restricted
matrix interpretations (that is matrix interpretations [22], where constructors
are interpreted by triangular matrices) are used to handle different paths. Again
column MP extends column M with POP∗. Note that all methods induce poly-
nomial innermost runtime complexity.

Table 1 reflects that the integration of POP∗ in the context of (weak) de-
pendency pairs, significantly extends the direct approach. Worthy of note, the
extension of [2] with quasi-precedences alone gives 5 additional examples. As ad-
vertised, POP∗ is incredibly fast in all settings. Consequently, as evident from
the table, polynomial path orders team well with existing techniques, without
affecting overall performance: note that due to the addition of POP∗ the number
of timeouts is reduced.

7 Conclusion

In this paper we study the runtime complexity of rewrite systems. We extend
polynomial path orders with the scheme of predicative recursion and parameter
substitution. If the conditions of our main result are met, we can conclude the
innermost polynomial runtime complexity of the studied term rewrite system.
Moreover, we obtain an alternative characterization of the polytime computable
functions. We have implemented the technique and experimental evidence clearly
indicates the power and in particular the efficiency of the new method.

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Volume 355 of LNCS. (1989) 167–177

2. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS.
Volume 4989 of LNCS. (2008) 130–146

3. Simmons, H.: The realm of primitive recursion. ARCH 27 (1988) 177–188
4. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime

functions. CC 2(2) (1992) 97–110
5. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency

pair method. In: Proc. 4th IJCAR. Volume 5195 of LNCS. (2008) 364–380
6. Hirokawa, N., Moser, G.: Complexity, graphs, and the dependency pair method.

In: Proc. 15th LPAR. Volume 5330 of LNCS. (2008) 667–681
7. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Proc.
10th SAT. Volume 4501 of LNCS. (2007) 340–354

8. Geser, A.: Relative Termination. PhD thesis, University of Passau, Faculty for
Mathematics and Computer Science (1990)

9. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations: A way to control
resources. TCS (2009) To appear.

10. Marion, J.Y., Péchoux, R.: Characterizations of polynomial complexity classes
with a better intensionality. In: Proc. 10th PPDP, ACM (2008) 79–88

11. Arai, T., Moser, G.: Proofs of termination of rewrite systems for polytime functions.
In: Proc. 25th FSTTCS. Volume 3821 of LNCS. (2005) 529–540

12. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

13. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

14. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, University of Aachen, Department of Computer Science (2007)

15. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS
236(1–2) (2000) 133–178

16. Avanzini, M., Moser, G., Schnabl, A.: Automated implicit computational com-
plexity analysis (system description). In: Proc. 4th IJCAR. Volume 5195 of LNCS.
(2008) 132–138

17. Avanzini, M.: Automation of polynomial path orders. Master’s thesis, Uni-
versity of Innsbruck, Faculty for Computer Science. (2009) Available at http:

//cl-informatik.uibk.ac.at/~zini/MT.pdf.
18. Avanzini, M., Moser, G.: Dependency pairs and polynomial path orders. CoRR

ab/cs/0904.0981 (2009) Available at http://www.arxiv.org/.
19. Marion, J.Y.: Analysing the implicit complexity of programs. IC 183 (2003) 2–18
20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. 6th SAT. Volume 2919

of LNCS. (2003) 502–518
21. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination

of higher-order functions. In: Proc. 5th FroCoS. Volume 4501 of LNCS. (2005)
340–354

22. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2–3) (2008) 195–220

http://cl-informatik.uibk.ac.at/~zini/MT.pdf
http://cl-informatik.uibk.ac.at/~zini/MT.pdf
http://www.arxiv.org/

	Dependency Pairs and Polynomial Path Orders
	 Martin Avanzini and Georg Moser

