Symbolic Enumeration of One-Rule String Rewriting Systems

Alfons Geser, Johannes Waldmann, Mario Wenzel HTWK Leipzig

Workshop on Termination, Obergurgl, 2016

Motivation: Size Does Matter

 looking at small hard examples (for anything, really)- highlights features of existing methods and implementations (strengths, weaknesses)
- invites invention of new methods and implementations (use small examples as "coffee table problems")
specifically, termination of one/few-rule string rewriting
- rule shape $0^{*} 1^{*} \rightarrow\{0,1\}^{*} \Rightarrow$ decision procedure (Sénizergues 1996)
- Zantema's problem $\left\{a^{2} b^{2} \rightarrow b^{3} a^{3}\right\} \Rightarrow$ matchbounds (2003)
- Zantema's "other problem" $\left\{a^{2} \rightarrow b c, b^{2} \rightarrow a c, c^{2} \rightarrow a b\right\} \Rightarrow$ matrix interpretations (2006)
Any sufficiently complex decision problem must have small hard instances. Termination of one-rule string rewriting could be decidable.

Traditional Approach: Explicit Enumeration

- enumerate canonical representatives (w.r.t. permuting letters, mirroring words, permuting rules)
- filter
(w.r.t. "easy" criteria that imply termination or non-termination, e.g., overlaps, count letters)
drawback:
- time-consuming (generate-and-test ... many tests!)
- more clever generator (less tests) \Rightarrow more complex program (deal with several criteria at once)
history:
- Kurth 1990 (one-rule, rhs size ≤ 6)
- Geser 2001 (one-rule, rhs size ≤ 9)
- Waldmann 2007 (total size ≤ 12)

Filter Criteria: Redundance

redundant = has (lexicographically) smaller equivalent system

- permute letters, reverse words, (permute rules) equivalence class of $\{10 \rightarrow 011\}$ is $\{\{10 \rightarrow 011\},\{01 \rightarrow 100\},\{01 \rightarrow 110\},\{10 \rightarrow 001\}\}$.
- borders (common prefix and suffix) Ex.: abba \rightarrow abaaba is bordered by a, $[b b] \rightarrow[b][][b]$ is shorter, and equivalent for termination
- codes (inverse morphism)

Ex..for $b c a \rightarrow$ aabc, use code $\{a, b c\}$, reduce termination problem to $[b c][a] \rightarrow[a][a][b c]$. code must be free of overlaps

Filter Criteria: Ease

termination is implied

- counting letters
- Kurth's non-overlap criterion D
nontermination is implied
- loops of length 1 (embedding)
- loops of length 2 (overlap patterns)
decision procedure is known
- (McNaughton) \exists inhibitor $i \in \Sigma(r) \backslash \Sigma(I)$
- (Sénizergues) $I \in 0^{*} 1^{*}$
- (Geser) grid criterion $\exists a \in \Sigma:|I|_{a}=|r|_{a}>0$

Our New Approach: Symbolic Enumeration

 key points:- represent set of (interesting) SRS symbolically, as set of models of a binary decision diagram (BDD)
- fix $\Sigma,|||,|r|$, one-hot encoding for letters
- construct BDD by Boolean operations (conjunction) from (encodings of) interesting properties advantages:
- orthogonality: encode each criterion on its own
- counting, inclusion check without enumeration
- arbitrary boolean combinations drawback:
- not everything can be encoded efficiently (quantification is expensive, since it needs to be expanded)

Implementation

done by Mario Wenzel

- use cudd BDD library, Haskell API
- Haskell main program
- filter locally with matchbox and ttt2 (low timeout) (20.000 CPU hours)
- filter on starexec (larger timeout)
- submit remaining systems for TPDB
- with small modifications, do the same for cycle rewriting technical observation:
- "canonicity after reversal and renaming" implemented by enumerating all permutations of letters, this is exponential in $|\Sigma|$

Observations and Expected Results

- pure-matchbox (used for filtering) did: RFC matchbounds, forward closure enumeration
- after observing performance on these one-rule SRS, extended by
- "strip symbols" (Torpa had it? AProVE has it, and it helps),
- transport systems (Matchbox already had this at some point)
- for cycle rewriting, use full matchbounds, and adapt transport systems
- if there was a one-rule SRS/cycles category, matchbox should currently win it...

Concrete Examples

smallest one-rule systems unsolved in tests on starexec:

- strings:

http:
//termcomp.imn.htwk-leipzig.de/competitions/168
- cycles

http:
//termcomp.imn.htwk-leipzig.de/competitions/167

Is Termination Decidable ...

... for string rewriting with only one rule? (Geser 2001)
Some say "yes". Two approaches:

- non-terminating \Longleftrightarrow has loop
- there is a computable bound on the length of a shortest loop
- terminating \Longleftrightarrow RFC-matchbounded...
- after stripping common prefix/suffix ...
- and codes (inverse homomorphism) ...
- with a condition that allows harmless overlaps

And, for cycle rewriting?

